首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that rabbit antisera raised against crotoxin from Crotalus durissus cascavella venom (cdc-crotoxin) and its PLA2 (cdc-PLA2) neutralized the neurotoxicity of this venom and its crotoxin. In this study, we examined the ability of these antisera to neutralize the neurotoxicity of Crotalus durissus terrificus and Bothrops jararacussu venoms and their major toxins, cdt-crotoxin and bothropstoxin-I (BthTX-I), respectively, in mouse isolated phrenic nerve-diaphragm preparations. Immunoblotting showed that antiserum to cdc-crotoxin recognized cdt-crotoxin and BthTX-I, while antiserum to cdc-PLA2 recognized cdt-PLA2 and BthTX-I. ELISA corroborated this cross-reactivity. Antiserum to cdc-crotoxin prevented the neuromuscular blockade caused by C. d. terrificus venom and its crotoxin at a venom/crotoxin:antiserum ratio of 1:3. Antiserum to cdc-PLA2 also neutralized the neuromuscular blockade caused by C. d. terrificus venom or its crotoxin at venom or toxin:antiserum ratios of 1:3 and 1:1, respectively. The neuromuscular blockade caused by B. jararacussu venom and BthTX-I was also neutralized by the antisera to cdc-crotoxin and cdc-PLA2 at a venom/toxin:antiserum ratio of 1:10 for both. Commercial equine antivenom raised against C. d. terrificus venom was effective in preventing the neuromuscular blockade typical of B. jararacussu venom (venom:antivenom ratio of 1:2), whereas for BthTX-I the ratio was 1:10. These results show that antiserum produced against PLA2, the major toxin in C. durissus cascavella venom, efficiently neutralized the neurotoxicity of C. d. terrificus and B. jararacussu venoms and their PLA2 toxins.  相似文献   

2.
Bothropstoxin-I (BthTX-I) and bothropstoxin-II (BthTX-II) are Lys-49 and Asp-49 phospholipases A2 (PLA2s), respectively, isolated from Bothrops jararacussu venom. Piratoxin-I (PrTX-I) is a Lys-49 PLA2 isolated from Bothrops pirajai venom. In this study, the ability of BthTX-I, BthTX-II and PrTX-I to recruit leucocytes into the rat pleural cavity and potential mechanisms underlying this effect were investigated. Intrapleural injection of either BthTX-I or PrTX-I (10–100 μg/cavity each) caused a significant leucocyte infiltration at 12 h after injection. The maximal cell migration was observed with the dose of 30 μg/cavity (14.9±15.5 and 17.6±1.6×106 cells/cavity, respectively). Leucocyte counts consisted mainly of mononuclear cells, but significant amounts of neutrophils and eosinophils were also observed. Intrapleural injection of BthTX-II (10–100 μg/cavity) caused a marked leucocyte infiltration at 6 and 12 h after injection. The maximal response was observed with the dose of 100 μg/cavity (57.3±3.4×106 cells/cavity, 6 h). The leucocyte counts were mainly composed of neutrophils and mononuclear cells. The treatment of either BthTX-I (30 μg/cavity, 12 h) or BthTX-II (30 μg/cavity, 6 h) with the PLA2 inhibitor p-bromophenacyl bromide (p-BPB) had no effect on the total and differential leucocyte counts induced by these proteins. The same treatment partially reduced the PrTX-I-induced pleural leucocyte infiltration. In rats depleted of the histamine and 5-hydroxytryptamine (5-HT) stores by chronic treatment with compound 48/80, the total leucocyte counts in response to BthTX-I, BthTX-II and PrTX-I was not significantly affected compared to control animals. In addition, BthTX-I, BthTX-II and PrTX-I (100 μg/ml each) significantly degranulated pleural mast cells in vitro leading to the release of [14C]5-hydroxytryptamine ([14C]5-HT). p-BPB and heparin (50 IU/ml) significantly reduced the [14C]5-HT release induced by these PLA2s. Our results demonstrate that BthTX-I, BthTX-II and PrTX-I recruit leucocyte into the pleural cavity of the rat by mechanisms unrelated to enzymatic activity and pleural mast cell degranulation.  相似文献   

3.
The effects of myotoxin III (MT-III), a phospholipase A(2) (sPLA(2)) from Bothrops asper snake venom, and crotoxin B (CB), a neurotoxic and myotoxic sPLA(2) from the venom of Crotalus durissus terrificus, on cyclooxygenases (COXs) expression and biosynthesis of prostaglandins (PGs) were evaluated, together with the mechanisms involved in these effects. Upon intraperitoneal injection in mice, both sPLA(2)s promoted the synthesis of PGD(2) and PGE(2), with a different time-course. MT-III, but not CB, induced COX-2 expression by peritoneal leukocytes without modification on COX-1 constitutive expression, whereas CB increased the constitutive activity of COX-1. MT-III increased the enzymatic activity of COX-1 and COX-2. Similar effects were observed when these sPLA(2)s were incubated with isolated macrophages, evidencing a direct effect on these inflammatory cells. Moreover, both toxins elicited the release of arachidonic acid from macrophages in vitro. Inhibition of cPLA(2) by AACOCF(3), but not of iPLA(2) by PACOCF(3) or BEL, significantly reduced PGD(2), PGE(2) and arachidonic acid (AA) release promoted by MT-III. These inhibitors did not affect MT-III-induced COX-2 expression. In contrast, cPLA(2) inhibition did not modify the effects of CB, whereas iPLA(2) inhibition reduced PGD(2) and AA production induced by CB. These findings imply that distinct regulatory mechanisms leading to PGs' synthesis are triggered by these snake venom sPLA(2)s. Such differences are likely to explain the dissimilar patterns of inflammatory reaction elicited by these sPLA(2)s in vivo.  相似文献   

4.
The ability of crude venom and a basic phospholipase A2 (LmTX-I) from Lachesis muta muta venom to increase the microvascular permeability in rat paw and skin was investigated. Crude venom or LmTX-I were injected subplantarly or intradermally and rat paw oedema and dorsal skin plasma extravasation were measured. Histamine release from rat peritoneal mast cell was also assessed. Crude venom or LmTX-I induced dose-dependent rat paw oedema and dorsal skin plasma extravasation. Venom-induced plasma extravasation was inhibited by the histamine H1 antagonist mepyramine (6 mg/kg), histamine/5-hydroxytriptamine antagonist cyproheptadine (2 mg/kg), cyclooxygenase inhibitor indomethacin (5 mg/kg), nitric oxide synthesis inhibitor l-NAME (100 nmol/site), tachykinin NK1 antagonist SR140333 (1 nmol/site) and bradykinin B2 receptor antagonist Icatibant (0.6 mg/kg). Platelet-activating factor (PAF) antagonist PCA4248 (5 mg/kg) had no effect. LmTX-I-induced skin extravasation was inhibited by cyproheptadine, mepyramine, indomethacin and PCA4248, while l-NAME and SR140333 had no effect. Additionally, both Lachesis muta muta venom and LmTX-I concentration-dependently induced histamine release from rat mast cells. In conclusion, Lachesis muta muta venom and LmTX-I increase microvascular permeability by mechanisms involving in vivo mast cell activation and arachidonic acid metabolites. Additionally, crude venom-induced responses also involve substance P, nitric oxide and bradykinin release, whether LmTX-I-induced responses involve PAF.  相似文献   

5.
This study was designed to elucidate the signalling pathways by which secretory phospholipases A2 (sPLA2s) induce in vitro neutrophil migration. The cell migration assays were performed with Naja mocambique venom PLA2 (sPLA2 with high catalytic activity), bothropstoxin-I (sPLA2 devoid of catalytic activity) and platelet-activating factor (PAF), using a 48-well microchemotaxis chamber. Both the non-selective protein kinase inhibitor staurosporine (30-300 nM) and the selective protein kinase C (PKC) inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpyperazine (H7; 50-200 microM) as well as the Gi inactivator pertussis toxin (30-300 nM) caused a concentration-dependent inhibition of the neutrophil migration induced by either N. mocambique venom PLA2 (100 microg/ml) or bothropstoxin-I (100 microg/ml). Pertussis toxin nearly abolished PAF-induced migration, while staurosporine and H7 partly (but significantly) inhibited the chemotactic responses to PAF. The dual inhibitor of cytosolic PLA2 and Ca2+ -independent PLA2 (iPLA2), arachidonil-trifluoromethyl-ketone (ATK; 0.2-20 microM), or the specific iPLA2 inhibitor bromoenol lactone (1-30 microM) caused a concentration-dependent inhibition of the migration induced by either sPLA2s. At the maximal concentration used for each compound, the migration was almost suppressed. In contrast, both of these compounds caused only slight inhibitions of PAF-induced migration. No rise in intracellular Ca2+ was observed in neutrophil-stimulated sPLA2, as determined in cells preloaded with fura 2-AM. In the experimental condition used, pertussis toxin, staurosporine, H7, ATK or bromoenol lactone did not induce cytotoxic effects, according to MTT assay. Our results suggest that activation of an endogenous PLA2 through activation of GTP-binding protein and PKC is the main mechanism by which exogenous sPLA2s cause neutrophil migration.  相似文献   

6.
An important group of toxins, whose action at the molecular level is still a matter of debate, is secreted phospholipases A(2) (sPLA(2)s) endowed with presynaptic or beta-neurotoxicity. The current belief is that these beta-neurotoxins (beta-ntxs) exert their toxicity primarily due to their extracellular enzymatic action on the plasma membrane of motoneurons at the neuromuscular junction. However, the discovery of several extra- and intracellular proteins, with high binding affinity for snake venom beta-ntxs, has raised the question as to whether this explanation is adequate to account for all the observed phenomena in the process of presynaptic toxicity. The purpose of this review is to critically examine the various published studies, including the most recent results on internalization of a beta-ntx into motor nerve terminals, in order to contribute to a better understanding of the molecular mechanism of beta-neurotoxicity. As a result, we propose that presynaptic neurotoxicity of sPLA(2)s is a result of both extra- and intracellular actions of beta-ntxs, involving enzymatic activity as well as interaction of the toxins with intracellular proteins affecting the cycling of synaptic vesicles in the axon terminals of vertebrate motoneurons.  相似文献   

7.
Crotoxin, the principal neurotoxin in venom of the South American rattlesnakes Crotalus durissus terrificus and Crotalus durissus cascavella, contains a basic phospholipase A2 (PLA2) and an acidic protein, crotapotin. In this work, we examined the ability of rabbit anti-sera against crotoxin and its PLA2 subunit to neutralize the neurotoxicity of venom and crotoxin from C. d. cascavella in mouse phrenic nerve-diaphragm and chick biventer cervicis preparations. Immunoblotting showed that the anti-sera recognized C. d. cascavella crotoxin and PLA2. This was confirmed by ELISA, with both anti-sera having end-point dilutions of 3 x 10(-6). Anti-crotoxin serum neutralized the neuromuscular blockade in phrenic nerve-diaphragm muscle preparations at venom or crotoxin:anti-serum ratios of 1:2 and 1:3, respectively. Anti-PLA2 serum also neutralized this neuromuscular activity at a venom or crotoxin:anti-serum ratio of 1:1. In biventer cervicis preparations, the corresponding ratio for anti-crotoxin serum was 1:3 for venom and crotoxin, and 1:1 and 1:2 for anti-PLA2 serum. The neutralizing capacity of the sera in mouse preparations was comparable to that of commercial anti-serum raised against C. d. terrificus venom. These results show that anti-sera against crotoxin and PLA2 from C. d. cascavella venom neutralized the neuromuscular blockade induced by venom and crotoxin in both nerve-muscle preparations, with the anti-serum against crotoxin being slightly less potent than that against crotoxin.  相似文献   

8.
Envenoming by Crotalus durissus subspecies leads to coagulation disorders, myotoxicity, neurotoxicity and acute renal failure. The most serious systemic alteration and primary cause of death after snakebite is acute renal failure. In this work, we isolated crotapotin, an acid component (Crtp) of crotoxin from Crotalus durissus cascavella venom and we investigated its bactericidal and pro-inflammatory activities as well as its renal effects in rat isolated perfused kidneys. Crtp was bactericidal to the Gram-negative species Xanthomonas axonopodis pv. passiflorae, but was less effective against the Gram-positive Claribacteri ssp, probably because of differences in the cell wall composition. Crtp showed a high amino acid sequence homology with other Crtps described in the literature (around of 90%) and its A and B chains had high conserved regions corresponding to the calcium-binding loop, catalytic site and helix 3 of PLA2. The Crtp showed moderate pro-inflammatory activity and increased significantly the inflammation evoked by PLA2 when co-injected or co-incubated with PLA2. The renal parameters evaluated included the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR) and percent of sodium tubular transport (%TNa+). Crotapotin (5 microg/ml) significantly increased the PP and RVR, whereas the GFR, UF and %TNa+ were unaffected. These results suggest that crotoxin is the main venom component responsible for nephrotoxicity and crotapotin contributes little to this phenomenom. The biological and bactericidal actions of Crtp also suggest that this protein may have functions other than simply acting as a chaperone for PLA2.  相似文献   

9.
S.C. Sampaio  C.M. Peres  Y. Cury 《Toxicon》2005,45(5):671-676
Recent work demonstrated that crotoxin, the main toxin of Crotalus durissus terrificus venom, inhibits macrophage spreading and phagocytic activities. The crotoxin molecule is composed of two subunits, an acidic non-toxic and non-enzymatic polypeptide named crotapotin and a weakly toxic basic phospholipase A2 (PLA2). In the present work, the active subunit responsible for the inhibitory effect of crotoxin on macrophage function was investigated. Peritoneal macrophages harvested from naive rats were used. Crotapotin (2.12, 3.75, or 8.37 nM/ml), added for 2 h to the medium of peritoneal cell incubation, did not modify the spreading and phagocytic activities of these cells. On the other hand, the PLA2 (1.43, 2.86, or 6.43 nM/ml) subunit caused a significant reduction (30, 33, and 35%, respectively) of the spreading activity. The PLA2 also inhibited the phagocytosis of opsonised zymosan, opsonised sheep erythrocytes, and Candida albicans, indicating that this inhibitory effect is not dependent on the type of receptor involved in the phagocytosis process. The inhibitory effect of PLA2 was not due to loss of cell membrane integrity, since macrophage viability was higher than 95%. These findings indicate that the inhibitory effect of crotoxin on macrophage spreading and phagocytic activities is caused by the phospholipase A2 subunit.  相似文献   

10.
11.
Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as IV-1 to IV-5, from which IV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2) ) venom (10 microg/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n=6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa(+)) and chloride tubular reabsorption (%TCl(-)) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney.  相似文献   

12.
Phospholipases A2 (PLA2s) constitute major components of snake venoms and have been extensively investigated not only because they are very abundant in these venoms but mainly because they display a wide range of biological effects, including neurotoxic, myotoxic, cytotoxic, edema-inducing, artificial membrane disrupting, anti-coagulant, platelet aggregation inhibiting, hypotensive, bactericidal, anti-HIV, anti-tumoral, anti-malarial and anti-parasitic. Due to this functional diversity, these structurally similar proteins aroused the interest of many researchers as molecular models for study of structure–function relationships. One of the main experimental strategies used for the study of myotoxic PLA2s is the traditional chemical modification of specific amino acid residues (His, Met, Lys, Tyr, Trp and others) and examination of the consequent effects upon the enzymatic, toxic and pharmacological activities. This line of research has provided useful insights into the structural determinants of the action of these enzymes and, together with additional strategies, supports the concept of the presence of ‘pharmacological sites’ distinct from the catalytic site in snake venom myotoxic PLA2s.  相似文献   

13.
Trimeresurus flavoviridis snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima and Okinawa. A phospholipase A2 (PLA2) of basic nature (pI 8.5) was isolated from the venom of Amami-Oshima T. flavoviridis. Its amino acid sequence determined by the ordinary procedures was completely in accord with that predicted from the nucleotide sequence of the cDNA previously cloned from Amami-Oshima T. flavoviridis venom gland, which was named PLA-B'. It consists of 122 amino acid residues and has aspartate at position 49. It induced edema in a mouse footpad assay and caused necrosis in mouse skeletal muscles. PLA-B' is similar in sequence to PLA-B (Tokunoshima) and PL-Y (Okinawa), both basic [Asp49]PLA2s, with a few amino acid substitutions, indicating occurrence of interisland mutation. Although PLA2s of Crotalinae subfamily were phylogenetically classified into four types, PLA2 (acidic or neutral [Asp49]PLA2) type, basic [Asp49]PLA2 type, neurotoxic [Asp49]PLA2 type and [Lys49]PLA2 type, it was ascertained that PLA2s of PLA2 type and [Lys49]PLA2 type are most essential as toxic components for Crotalinae snake venoms and that basic [Asp49]PLA2-type PLA2s are uniquely contained only in the venoms of T. flavoviridis species. Prediction of physiological activities of some PLA2s was made based on their location in the phylogenetic tree. Relationship of divergence of PLA2s via accelerated evolution followed by less rapid mutation and physiological activities was discussed.  相似文献   

14.
A phospholipase A2 inhibitor has been previously purified and cloned from the blood plasma of the South American rattlesnake, Crotalus durissus terrificus. This inhibitor, named CNF for Crotalus neutralizing factor, interacts with crotoxin, the main neurotoxin from C. d. terrificus venom, abolishing its phospholipase A2 activity. Crotoxin is a heterodimer of an acidic subunit (CA) and a basic phospholipase A2 (CB). CNF acts by forming a stable non-toxic complex with CB, replacing CA in the toxic CA–CB of crotoxin.In the present investigation, we have shown that CNF has a broader specificity. It is able to inhibit the PLA2 activity of the whole venom from the bushmaster snake (Lachesis muta muta), a species evolutionary related to Crotalus. Inhibition experiments have been carried out with four PLA2 active components isolated from L. m. muta venom, one basic and three acidic ones. CNF inhibition is not restricted to the basic PLA2, but extended to the three acidic forms as well.  相似文献   

15.
A novel acidic Asp49 phospholipase A(2) was isolated from Bothrops erythromelas (jararaca malha-de-cascavel) snake venom by four chromatographic steps. BE-I-PLA2 present a molecular weight of 13,649.57 Da as estimated by mass spectrometry. N-terminal and four internal peptides were sequenced, covering around one-third of the complete toxin sequence. The complete BE-I-PLA2 cDNA was cloned from a B. erythromelas venom-gland cDNA library. The cDNA sequence possesses 457 bp and encodes a protein with significant sequence similarity to many other phospholipase A(2) from snake venoms. When tested in platelet rich plasma, the enzyme showed a potent inhibitory effect on aggregation induced by arachidonic acid and collagen, but not ADP. On the other hand, BE-I-PLA2 did not modify aggregation in washed platelet. Furthermore, no action of BE-I-PLA2 on the principal platelets receptors was observed. Chemical modification with p-bromophenacyl bromide abolished the enzymatic activity of BE-I-PLA2, but its anti-platelet activity was only partially inhibited. In human umbilical-cord veins endothelial cells, BE-I-PLA2 was neither apoptotic nor proliferative but stimulated endothelial cells to release prostaglandin I(2), suggesting an increase of its potential anti-platelet activity in vivo. Further studies are required in order to determine the exact mechanism of action of BE-I-PLA2 in the inhibition of platelet aggregation.  相似文献   

16.
The present study was undertaken to evaluate the contractile response of several E- and F-ring isoprostanes (IsoP) in human umbilical vein (HUV) and to investigate the role of the endothelium on the effect of 15-E2t-IsoP, the most potent vasoconstrictor isoprostane, in human vessels. HUV rings with or without endothelium were suspended in an organ bath for recording the isometric tension in response to different agonists. The inhibitors to be evaluated were applied 30 min before the addition of the agonist. All of the compounds tested produced concentration-dependent contractions when tested on HUV rings with endothelium. Although these compounds were equieffective, significant differences were observed in their potency, with U46619 being the most potent followed by 15-E2t-IsoP > 15-E1t-IsoP = 15-F2t-IsoP > 15-F1t-IsoP = 9-epi-15-F2t-IsoP in descending rank order of potency. 15-E2t-IsoP was the most potent of the isoprostanes evaluated and, therefore, the one employed in the present study. When intact endothelium HUV rings were used, 15-E2t-IsoP-induced contraction was unaffected by the endothelin-converting enzyme inhibitor, phosphoramidon (10 μM), suggesting that short-term endothelin-1 release is not involved in this response. However, the non-selective cyclooxygenase (COX) inhibitor, indomethacin (10 and 30 μM), and the COX-2 selective inhibitor, NS-398 (3, 10 and 30 μM) produced inhibitory effects on 15-E2t-IsoP-induced contraction of HUV rings with endothelium. These results indicate that COX-derived contractile prostanoids are involved in this effect. Furthermore, the apparent pK b values estimated for indomethacin (5.5) and NS-398 (5.4) suggest that the prostanoids involved are derived from the COX-2 isoenzyme pathway. On HUV rings with endothelium, the phospholipase A2 inhibitor, oleyloxyethyl phosphorylcholine (30 and 100 μM), induced an inhibitory effect on 15-E2t-IsoP-induced contraction, suggesting that the phospholipase A2 pathway is also involved in this effect. In addition, the thromboxane A2 synthase inhibitor furegrelate (10 and 30 μM) also inhibited 15-E2t-IsoP-induced contraction of HUV rings with endothelium, indicating that thromboxane A2 is one of the contractile prostanoids involved in this response. Endothelium denudation clearly diminished the vasoconstrictor potency of 15-E2t-IsoP, demonstrating that the endothelium releases a vasoconstrictor factor in response to 15-E2t-IsoP. The absence of an inhibitory effect at the highest concentration of furegrelate (30 μM) on 15-E2t-IsoP-induced contraction of HUV rings without endothelium suggested that endothelium is the source of thromboxane A2. We conclude that prostanoids derived from the COX-2 isoenzyme pathway participate in 15-E2t-IsoP-induced vasoconstriction of isolated HUV rings. Our results also indicate that endothelial thromboxane A2 is one of the prostanoids involved in this effect.  相似文献   

17.
Two distinct phospholipase A2 (PLA2) inhibitory proteins (PLIs) were purified from the serum of the Japanese rat snake, Elaphe climacophora. The 150-kDa inhibitor, a trimer of a 50-kDa subunit, specifically inhibited the basic PLA2 purified from the venom of Gloydius brevicaudus, whereas the 120-kDa one composed of two distinct 25-kDa subunits, A and B, inhibited both the acidic and basic PLA2s of G. brevicaudus. On the basis of their amino acid sequences, these inhibitors were assigned as PLIβ and PLIγ, respectively. A PLIα homolog (PLIα-like protein; PLIα-LP) having an apparent molecular weight of 50-kDa and composed of 15-kDa subunits was also purified from the E. climacophora serum. This homolog was immunoreactive with antibody raised against the G. brevicaudus PLIα, but lacked in the inhibitory activity toward the acidic and basic PLA2s. The cDNAs encoding PLIα-LP, PLIβ, PLIγ-A, and PLIγ-B were cloned from liver RNA, and their nucleotide sequences were compared with those of other venomous and non-venomous snakes.  相似文献   

18.
19.
Bothrops jararacussu myotoxin I (BthTx-I; Lys 49) and II (BthTX-II; Asp 49) were purified by ion-exchange chromatography and reverse phase HPLC. In this work we used the isolated perfused rat kidney method to evaluate the renal effects of B. jararacussu myotoxins I (Lys49 PLA2) and II (Asp49 PLA2) and their possible blockage by indomethacin. BthTX-I (5 microg/ml) and BthTX-II (5 microg/ml) increased perfusion pressure (PP; ct120=110.28+/-3.70 mmHg; BthTX I=171.28+/-6.30*mmHg; BthTX II=175.50+/-7.20*mmHg), renal vascular resistance (RVR; ct120=5.49+/-0.54 mmHg/ml.g(-1)min(-1); BthTX I=8.62+/-0.37*mmHg/ml g(-1)min(-1); BthTX II=8.9+/-0.36*mmHg/ml g(-1)min(-1)), urinary flow (UF; ct(120)=0.14+/-0.01ml g(-1)min(-1); BthTX I=0.32+/-0.05*ml g(-1)min(-1); BthTX II=0.37+/-0.01*ml g(-1)min(-1)) and glomerular filtration rate (GFR; ct120=0.72+/-0.10 ml g(-1)min(-1); BthTX I=0.85+/-0.13*ml g(-1)min(-1); BthTX II=1.22+/-0.28*ml g(-1)min(-1)). In contrast decreased the percent of sodium tubular transport (%TNa(+); ct(120)=79,76+/-0.56; BthTX I=62.23+/-4.12*; BthTX II=70.96+/-2.93*) and percent of potassium tubular transport (%TK(+);ct120=66.80+/-3.69; BthTX I=55.76+/-5.57*; BthTX II=50.86+/-6.16*). Indomethacin antagonized the vascular, glomerular and tubular effects promoted by BthTX I and it's partially blocked the effects of BthTX II. In this work also evaluated the antibacterial effects of BthTx-I and BthTx-II against Xanthomonas axonopodis. pv. passiflorae (Gram-negative bacteria) and we observed that both PLA2 showed antibacterial activity. Also we observed that proteins Also we observed that proteins chemically modified with 4-bromophenacyl bromide (rho-BPB) decrease significantly the antibacterial effect of both PLA2. In conclusion, BthTx I and BthTX II caused renal alteration and presented activity antimicrobial. The indomethacin was able to antagonize totally the renal effects induced by BthTx I and partially the effects promoted by BthTx II, suggesting involvement of inflammatory mediators in the renal effects caused by myotoxins. In the other hand, other effects could be independently of the enzymatic activity of the BthTX II and the C-terminal domain could be involved in both effects promoted for PLA2.  相似文献   

20.
The inflammatory events induced in the peritoneal cavity of mice by two PLA2s isolated from Bothrops asper snake venom were investigated. MT-III, an Asp-49 catalytically active enzyme and MT-II, a catalytically inactive Lys-49 variant induced increase in vascular permeability. Inhibition of enzymatic activity of MT-III with p-bromophenacyl bromide reduced this effect. MT-III induced a larger neutrophil infiltrate than MT-II. This activity was significantly reduced after inhibition of catalytic activity. Reduction in the number of neutrophils was observed when antibodies against L-selectin, CD18 or LFA-1 were used, suggesting the involvement of these adhesion molecules in the effects of both PLA2s. There was no effect with antibodies against ICAM-1 and PECAM-1. Increase in the levels of LTB4 and TXA2, as well as of IL-1, IL-6 and TNF-alpha, were observed in the peritoneal exudates induced by MT-III. MT-II did not enhance levels of eicosanoids but increased those of cytokines. It is concluded that both PLA2s induce inflammatory events in this model. Since MT-III exerts a stronger proinflammatory effect, the enzymatic phospholipid hydrolysis may be relevant for these phenomena. However, the fact that MT-II induced inflammation suggests that molecular regions distinct from the catalytic site elicit inflammatory events perhaps by interacting with specific cell membrane acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号