首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Objectives

To compare image quality of coronary artery plaque visualization at CT angiography with images reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model based iterative reconstruction (MBIR) techniques.

Methods

The coronary arteries of three ex vivo human hearts were imaged by CT and reconstructed with FBP, ASIR and MBIR. Coronary cross-sectional images were co-registered between the different reconstruction techniques and assessed for qualitative and quantitative image quality parameters. Readers were blinded to the reconstruction algorithm.

Results

A total of 375 triplets of coronary cross-sectional images were co-registered. Using MBIR, 26% of the images were rated as having excellent overall image quality, which was significantly better as compared to ASIR and FBP (4% and 13%, respectively, all p < 0.001). Qualitative assessment of image noise demonstrated a noise reduction by using ASIR as compared to FBP (p < 0.01) and further noise reduction by using MBIR (p < 0.001). The contrast-to-noise-ratio (CNR) using MBIR was better as compared to ASIR and FBP (44 ± 19, 29 ± 15, 26 ± 9, respectively; all p < 0.001).

Conclusions

Using MBIR improved image quality, reduced image noise and increased CNR as compared to the other available reconstruction techniques. This may further improve the visualization of coronary artery plaque and allow radiation reduction.  相似文献   

2.
ObjectivesTo compare image quality characteristics of high-resolution computed tomography (HRCT) in the evaluation of interstitial lung disease using three different reconstruction methods: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP).MethodsEighty-nine consecutive patients with interstitial lung disease underwent standard-of-care chest CT with 64-row multi-detector CT. HRCT images were reconstructed in 0.625-mm contiguous axial slices using FBP, ASIR, and MBIR. Two radiologists independently assessed the images in a blinded manner for subjective image noise, streak artifacts, and visualization of normal and pathologic structures. Objective image noise was measured in the lung parenchyma. Spatial resolution was assessed by measuring the modulation transfer function (MTF).ResultsMBIR offered significantly lower objective image noise (22.24 ± 4.53, P < 0.01 among all pairs, Student's t-test) compared with ASIR (39.76 ± 7.41) and FBP (51.91 ± 9.71). MTF (spatial resolution) was increased using MBIR compared with ASIR and FBP. MBIR showed improvements in visualization of normal and pathologic structures over ASIR and FBP, while ASIR was rated quite similarly to FBP. MBIR significantly improved subjective image noise (P < 0.01 among all pairs, the sign test), and streak artifacts (P < 0.01 each for MBIR vs. the other 2 image data sets).ConclusionMBIR provides high-quality HRCT images for interstitial lung disease by reducing image noise and streak artifacts and improving spatial resolution compared with ASIR and FBP.  相似文献   

3.

Purpose

To evaluate the subjective and objective qualities of computed tomography (CT) venography images at 80 kVp using model-based iterative reconstruction (MBIR) and to compare these with those of filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) using the same CT data sets.

Materials and methods

Forty-four patients (mean age: 56.1?±?18.1) who underwent 80 kVp CT venography (CTV) for the evaluation of deep vein thrombosis (DVT) during 4 months were enrolled in this retrospective study. The same raw data were reconstructed using FBP, ASIR, and MBIR. Objective and subjective image analysis were performed at the inferior vena cava (IVC), femoral vein, and popliteal vein.

Results

The mean CNR of MBIR was significantly greater than those of FBP and ASIR and images reconstructed using MBIR had significantly lower objective image noise (p?<?.001). Subjective image quality and confidence of detecting DVT by MBIR group were significantly greater than those of FBP and ASIR (p?<?.005), and MBIR had the lowest score for subjective image noise (p?<?.001).

Conclusion

CTV at 80 kVp with MBIR was superior to FBP and ASIR regarding subjective and objective image qualities.

Key Points

? MBIR provides superior image quality compared with FBP and ASIR ? CTV at 80kVp with MBIR improves diagnostic confidence in diagnosing DVT ? CTV at 80kVp with MBIR presents better image quality with low radiation
  相似文献   

4.

Purpose

To compare objective and subjective image quality in neck CT images acquired at different tube current–time products (275 mA s and 340 mA s) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR).

Materials and methods

HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current–time-product (340 mA s; n = 33) or reduced tube-current–time-product (275 mA s, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mA s and 275 mA s. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise.

Results

Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mA s and 275 mA s. Reduction of tube current from 340 mA s to 275 mA s resulted in an increase in mean objective image noise (p = 0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mA s images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mA s CT images reconstructed with FBP (p > 0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique.

Conclusion

Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality.  相似文献   

5.

Purpose

To prospectively compare image quality of cranial computed tomography (CCT) examinations with varying slice widths using traditional filtered back projection (FBP) versus sinogram-affirmed iterative image reconstruction (SAFIRE).

Materials and methods

29 consecutive patients (14 men, mean age: 72 ± 17 years) referred for a total of 40 CCT studies were prospectively included. Each CCT raw data set was reconstructed with FBP and SAFIRE at 5 slice widths (1–5 mm; 1 mm increments). Objective image quality was assessed in three predefined regions of the brain (white matter, thalamus, cerebellum) using identical regions of interest (ROIs). Subjective image quality was assessed by 2 experienced radiologists. Objective and subjective image quality parameters were statistically compared between FBP and SAFIRE reconstructions.

Results

SAFIRE reconstructions resulted in mean noise reductions of 43.8% in the white matter, 45.6% in the thalamus and 42.0% in the cerebellum (p < 0.01) compared to FBP on non contrast-enhanced 1 mm slice width images. Corresponding mean noise reductions on 1 mm contrast-enhanced studies were 45.7%, 47.3%, and 45.0% in the white matter, thalamus, and cerebellum, respectively (p < 0.01). There was no significant difference in mean attenuation of any region or slice width between the two reconstruction methods (all p > 0.05). Subjective image quality of IR images was mostly rated higher than that of the FBP images.

Conclusion

Compared to FBP, SAFIRE provides significant reductions in image noise while increasing subjective image in CCT, particularly when thinner slices are used. Therefore, SAFIRE may allow utilization of thinner slices in CCT, potentially reducing partial volume effects and improving diagnostic accuracy.  相似文献   

6.

Objectives

To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation.

Study design

After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures.

Results

Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P = 0.1606) or among the 3 densities of intravascular contrast material (MBIR, P = 0.8185; Detail kernel, P = 0.0802).

Conclusions

Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation.  相似文献   

7.

Objectives

To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage.

Methods

Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment.

Results

There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images.

Conclusions

M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.  相似文献   

8.

Objectives

To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR).

Methods

One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50?% ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student’s t-test.

Results

Compared with reference-dose CT, there was a 79.0?% decrease in dose–length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93?±?3.00) than low-dose ASIR (49.24?±?9.11, P?P?Conclusion Diagnostically acceptable chest CT images acquired with nearly 80?% less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality.

Key Points

? Model-based iterative reconstruction (MBIR) creates high-quality low-dose CT images. ? MBIR significantly improves image noise and artefacts over adaptive statistical iterative techniques. ? MBIR shows greater potential than ASIR for diagnostically acceptable low-dose CT. ? The prolonged processing time of MBIR may currently limit its routine use in clinical practice.  相似文献   

9.

Purpose

To assess ASIR (adaptive statistical iterative reconstruction) technique regarding dose reduction and its impact on image quality in evaluation CTs of potential kidney donors.

Materials and methods

Between May and November 2013, a prospective study of 53 assumingly healthy potential kidney donors was conducted. The subjects underwent abdominal evaluation CT prior to the planned explantation of a kidney and were randomly divided into 2 groups: Group A was examined with an ASIR 40 protocol (n = 26), group B (n = 27) was examined using a standard FBP (filtered back projection) protocol. Image quality was assessed both quantitatively (by obtaining attenuation values in different organ regions and calculating SNR and CNRs) and qualitatively (by two observers who evaluated image quality using a 5-point scale system). Applied dose was analyzed as CTDIvol (mGy), total DLP (mGy × cm) and effective dose (mSv).

Results

Applied dose in group A was about 26% lower than in group B (p < 0.05). Between both groups, dose determining parameters such as scan length and patients’ body diameter showed no significant difference. SNR (signal-to-noise ratio) was significantly higher in group A (p < 0.05). CNRs (contrast-to-noise ratios) for different tissues were not significantly different. Observer rated image quality showed no significant difference.

Conclusion

ASIR can contribute to a relevant dose reduction without any loss of image quality in CT scans for evaluating potential kidney donors.  相似文献   

10.

Objective

To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study).

Materials and methods

We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis.

Results

Twenty-six patients (M:F = 13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P < 0.001), DLP (from 307.42 to 134.51 mGy × cm, P < 0.001), and effective dose (from 4.12 to 1.84 mSv, P < 0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P = 0.004), but was not different in the aorta (18.23 vs. 18.72, P = 0.726). The subjective image quality demonstrated no difference between the two studies.

Conclusion

A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality.  相似文献   

11.
Ren Q  Dewan SK  Li M  Li J  Mao D  Wang Z  Hua Y 《European journal of radiology》2012,81(10):2597-2601

Purpose

To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products.

Materials and methods

In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software.

Results

There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found.

Conclusion

ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.  相似文献   

12.

Objectives

To compare quantitative and subjective image quality between virtual monochromatic spectral (VMS) and conventional polychromatic 120-kVp imaging performed during the same abdominal computed tomography (CT) examination.

Materials and methods

Our institutional review board approved this prospective study; each participant provided written informed consent. 51 patients underwent sequential fast kVp-switching dual-energy (80/140 kVp, volume CT dose index: 12.7 mGy) and single-energy (120-kVp, 12.7 mGy) abdominal enhanced CT over an 8 cm scan length with a random acquisition order and a 4.3-s interval. VMS images with filtered back projection (VMS-FBP) and adaptive statistical iterative reconstruction (so-called hybrid IR) (VMS-ASIR) (at 70 keV), as well as 120-kVp images with FBP (120-kVp-FBP) and ASIR (120-kVp-ASIR), were generated from dual-energy and single-energy CT data, respectively. The objective image noises, signal-to-noise ratios and contrast-to-noise ratios of the liver, kidney, pancreas, spleen, portal vein and aorta, and the lesion-to-liver and lesion-to-kidney contrast-to-noise ratios were measured. Two radiologists independently and blindly assessed the subjective image quality. The results were analyzed using the paired t-test, Wilcoxon signed rank sum test and mixed-effects model with Bonferroni correction.

Results

VMS-ASIR images were superior to 120-kVp-FBP, 120-kVp-ASIR and VMS-FBP images for all the quantitative assessments and the subjective overall image quality (all < 0.001), while VMS-FBP images were superior to 120-kVp-FBP and 120-kVp-ASIR images (all < 0.004).

Conclusions

VMS images at 70 keV have a higher image quality than 120-kVp images, regardless of the application of hybrid IR. Hybrid IR can further improve the image quality of VMS imaging.  相似文献   

13.
目的 比较滤过反向投影(filtered back projection,FBP),自适应迭代重建技术(adaptive statistical iterative reconstruction,ASIR),基于模型的迭代重建(model-based iterative reconstruction,MBIR)三种算法重建颈肩部CT平扫和增强图像质量.方法 对20例患者颈肩部进行相对低剂量CT平扫及增强扫描,采用FBP,ASIR(权重50%),MBIR三种算法重建出颈肩部CT图像,测量甲状腺,腋下脂肪、锁骨下动脉及周围肌肉的CT值,采用方差分析比较三种重建算法图像的对比噪声比(contrast noise ratio,CNR)及噪声指数(noise index,NI).同时,两名医生对图像进行主观评价,采用卡方检验比较三种重建算法的主观评级.结果 颈肩部CT平扫和增强图像,MBIR和ASIR的CNR显著高于FBP,NI显著低于FBP. MBIR的CNR显著高于ASIR,NI显著低于ASIR.主观图像噪声和胸廓入口处射线硬化伪影,MBIR和ASIR显著优于FBP;主观图像对比,FBP显著优于MBIR和ASIR;小结构可视程度、主观视觉病灶可信度与诊断信心,三者不存在显著性差异.结论 在相对低剂量扫描条件下,MBIR和ASIR能够显著降低颈肩部的主观和客观图像噪声,显著提高CNR.但是由于图像面貌的改变导致的主观图像对比的下降,未能显著提高小结构可视程度,主观视觉病灶可信度与诊断信心.  相似文献   

14.

Purpose

Iterative reconstruction has recently been revisited as a promising concept for substantial CT dose reduction. The purpose of this study was to assess the potential benefit of sinogram affirmed iterative reconstruction (SAFIRE) in head CT by comparing objective and subjective image quality at reduced tube current with standard dose filtered back projection (FBP).

Materials and methods

Non-contrast reduced dose head CT (255 mA s, CTDIvol 47.8 mGy) was performed in thirty consecutive patients and reconstructed with SAFIRE and FBP. Images were assessed in terms of quantitative and qualitative image quality and compared with FBP of standard dose acquisitions (320 mA s, CTDIvol 59.7 mGy).

Results

In reduced dose CT examinations, use of SAFIRE versus FBP resulted in 47% increase in contrast-to-noise ratio (CNR) (2.49 vs. 1.69; p < 0.0001). While reduction of tube current was associated with 13% decrease in CNR, quantitative degradation of image quality at lower dose was more than compensated through SAFIRE (2.49 vs. 1.96; p = 0.0004). Objective measurements of image sharpness were comparable between FBP and SAFIRE reconstructions (575.9 ± 74.1 vs. 583.4 ± 74.7 change in HU/Pixel; p = 0.28). Compared to standard dose FBP, subjective grading of noise as well as overall image quality scores were significantly improved when SAFIRE was used in reduced dose exams (1.3 vs. 1.6, p = 0.006; 1.3 vs. 1.7, p = 0.026).

Conclusion

At 20% dose reduction, reconstruction of head CT by SAFIRE provides above standard objective and subjective image quality, suggesting potential for more vigorous dose savings in neuroradiology CT applications.  相似文献   

15.

Objective

To prospectively compare subjective and objective image quality in 20% tube current coronary CT angiography (cCTA) datasets between an iterative reconstruction algorithm (SAFIRE) and traditional filtered back projection (FBP).

Materials and methods

Twenty patients underwent a prospectively ECG-triggered dual-step cCTA protocol using 2nd generation dual-source CT (DSCT). CT raw data was reconstructed using standard FBP at full-dose (Group_1a) and 80% tube current reduced low-dose (Group_1b). The low-dose raw data was additionally reconstructed using iterative raw data reconstruction (Group_2). Attenuation and image noise were measured in three regions of interest and signal-to-noise-ratio (SNR) as well as contrast-to-noise-ratio (CNR) was calculated. Subjective diagnostic image quality was evaluated using a 4-point Likert scale.

Results

Mean image noise of group_2 was lowered by 22% on average when compared to group_1b (p < 0.0001–0.0033), while there were no significant differences in mean attenuation within the same anatomical regions. The lower image noise resulted in significantly higher SNR and CNR ratios in group_2 compared to group_1b (p < 0.0001–0.0232). Subjective image quality of group_2 (1.88 ± 0.63) was also rated significantly higher when compared to group_1b (1.58 ± 0.63, p = 0.004).

Conclusions

Image quality of 80% tube current reduced iteratively reconstructed cCTA raw data is significantly improved when compared to standard FBP and consequently may improve the diagnostic accuracy of cCTA.  相似文献   

16.
《Radiography》2018,24(4):345-351
IntroductionThe aim of this study was to assess and compare the effects of CT image reconstruction techniques on low-dose CT image quality using phantoms.MethodsAnthropomorphic torso and spatial/contrast-resolution phantoms were scanned at decreasing tube currents between 400 and 10 mA. CT thorax and abdomen/pelvis series were reconstructed with filtered back projection (FBP) alone, combined 40% adaptive statistical iterative reconstruction & FBP (ASIR40), and model-based iterative reconstruction (MBIR) [(resolution-preference 05 (RP05) and RP20 in the thorax and RP05 and noise-reduction 05 (NR05) in the abdomen)]. Two readers rated image quality quantitatively and qualitatively.ResultsIn thoracic CT, objective image noise on MBIR RP05 data sets outperformed FBP at 200, 100, 50 and 10 mA and outperformed ASIR40 at 50 and 10 mA (p < 0.001). MBIR RP20 outperformed FBP at 50 and 10 mA and outperformed ASIR40 at 10 mA (p < 0.001). Compared with both FBP and ASIR40, MBIR RP05 demonstrated significantly better signal-to-noise ratio (SNR) at 10 mA. In abdomino-pelvic CT, MBIR RP05 and NR05 outperformed FBP and ASIR at all tube current levels for objective image noise. NR05 demonstrated greater SNR at 200, 100, 50 and 10 mA and RP05 demonstrated greater SNR at 50 and 10 mA compared with both FBP and ASIR. MBIR images demonstrated better subjective image quality scores. Spatial resolution, low-contrast detectability and contrast-to-noise ratio (CNR) were comparable between image reconstruction techniques.ConclusionCTs reconstructed with MBIR have lower image noise and improved image quality compared with FBP and ASIR. These effects increase with reduced radiation exposure confirming optimal use for low-dose CT imaging.  相似文献   

17.

Objectives

To investigate the diagnostic performance of 256-slice cardiac CT for the evaluation of the in-stent lumen by using a hybrid iterative reconstruction (HIR) algorithm combined with a high-resolution kernel.

Methods

This study included 28 patients with 28 stents who underwent cardiac CT. Three different reconstruction images were obtained with: (1) a standard filtered back projection (FBP) algorithm with a standard cardiac kernel (CB), (2) an FBP algorithm with a high-resolution cardiac kernel (CD), and (3) an HIR algorithm with the CD kernel. We measured image noise and kurtosis and used receiver operating characteristics analysis to evaluate observer performance in the detection of in-stent stenosis.

Results

Image noise with FBP plus the CD kernel (80.2 ± 15.5 HU) was significantly higher than with FBP plus the CB kernel (28.8 ± 4.6 HU) and HIR plus the CD kernel (36.1 ± 6.4 HU). There was no significant difference in the image noise between FBP plus the CB kernel and HIR plus the CD kernel. Kurtosis was significantly better with the CD- than the CB kernel. The kurtosis values obtained with the CD kernel were not significantly different between the FBP- and HIR reconstruction algorithms. The areas under the receiver operating characteristics curves with HIR plus the CD kernel were significantly higher than with FBP plus the CB- or the CD kernel. The difference between FBP plus the CB- or the CD kernel was not significant. The average sensitivity, specificity, and positive and negative predictive value for the detection of in-stent stenosis were 83.3, 50.0, 33.3, and 91.6% for FBP plus the CB kernel, 100, 29.6, 40.0, and 100% for FBP plus the CD kernel, and 100, 54.5, 40.0, and 100% for HIR plus the CD kernel.

Conclusions

The HIR algorithm combined with the high-resolution kernel significantly improved diagnostic performance in the detection of in-stent stenosis.  相似文献   

18.

Purpose

The aim of this study is to assess the value of adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) for reduction of metal artifacts due to dental hardware in carotid CT angiography (CTA).

Methods

Thirty-seven patients with dental hardware who underwent carotid CTA were included. CTA was performed with a GE Discovery CT750 HD scanner and reconstructed with filtered back projection (FBP), ASIR, and MBIR. We measured the standard deviation at the cervical segment of the internal carotid artery that was affected most by dental metal artifacts (SD1) and the standard deviation at the common carotid artery that was not affected by the artifact (SD2). We calculated the artifact index (AI) as follows: AI = [(SD1)2 ? (SD2)2]1/2 and compared each AI for FBP, ASIR, and MBIR. Visual assessment of the internal carotid artery was also performed by two neuroradiologists using a five-point scale for each axial and reconstructed sagittal image. The inter-observer agreement was analyzed using weighted kappa analysis.

Results

MBIR significantly improved AI compared with FBP and ASIR (p < 0.001, each). We found no significant difference in AI between FBP and ASIR (p = 0.502). The visual score of MBIR was significantly better than those of FBP and ASIR (p < 0.001, each), whereas the scores of ASIR were the same as those of FBP. Kappa values indicated good inter-observer agreements in all reconstructed images (0.747–0.778).

Conclusions

MBIR resulted in a significant reduction in artifact from dental hardware in carotid CTA.
  相似文献   

19.

Objective

In medical imaging, lowering radiation dose from computed tomography scanning, without reducing diagnostic performance is a desired achievement. Iterative image reconstruction may be one tool to achieve dose reduction. This study reports the diagnostic performance using a blending of 50% statistical iterative reconstruction (ASIR) and filtered back projection reconstruction (FBP) compared to standard FBP image reconstruction at different dose levels for liver phantom examinations.

Methods

An anthropomorphic liver phantom was scanned at 250, 185, 155, 140, 120 and 100 mA s, on a 64-slice GE Lightspeed VCT scanner. All scans were reconstructed with ASIR and FBP. Four readers evaluated independently on a 5-point scale 21 images, each containing 32 test sectors. In total 672 areas were assessed. ROC analysis was used to evaluate the differences.

Results

There was a difference in AUC between the 250 mA s FBP images and the 120 and 100 mA s FBP images. ASIR reconstruction gave a significantly higher diagnostic performance compared to standard reconstruction at 100 mA s.

Conclusion

A blending of 50–90% ASIR and FBP may improve image quality of low dose CT examinations of the liver, and thus give a potential for reducing radiation dose.  相似文献   

20.

Purpose

To compare the image quality and radiation dose between iterative reconstruction (IR) and standard filtered back projection (FBP) in CT of the chest and abdomen.

Materials and methods

Thoracic CT was performed in 50 patients (38 male, 12 female; mean age, 51 ± 23 yrs; range, 7–85 yrs) and abdominal CT was performed in 50 patients (36 male, 14 female; mean age, 62 ± 13 yrs; range, 20–85 yrs), using IR as well as FBP for image reconstruction. Image noise was quantitatively assessed measuring standard deviation of Hounsfield Units (HU) in defined regions of interest in subcutaneous tissue. Scan length and Computed Tomography Dose Index (CTDI) were documented. Scan length, image noise, and CTDI of both reconstruction techniques were compared by using paired tests according to the nature of variables (McNemar test or Student t test). Overall subjective image quality and subjective image noise were compared.

Results

There was no significant difference between the protocols in terms of mean scan length (p > 0.05). Image noise was statistically significantly higher with IR, although the difference was clinically insignificant (13.3 ± 3.0 HU and 13.6 ± 3.0 HU for thoracic CT and 11.5 ± 3.1 HU and 11.7 ± 3.0 HU for abdominal CT, p < 0.05). There was no significant difference in overall subjective image quality and subjective image noise. The radiation dose was significantly lower with IR. Volume-weighted CTDI decreased by 64% (6.2 ± 2.5 mGy versus 17.1 ± 9.5 mGy, p < 0.001) for thoracic CT and by 58% (7.8 ± 4.6 mGy versus 18.5 ± 8.6 mGy, p < 0.001) for abdominal CT.

Conclusions

Our study shows that in thoracic and abdominal CT with IR, there is no clinically significant impact on image quality, yet a significant radiation dose reduction compared to FBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号