首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purposes of this study were to compare the deoxygenation patterns of the vastus lateralis (VL) and the lateral head of gastrocnemius (GL) and examine the relationship between the muscle oxygenation level and pulmonary oxygen uptake (VO2) during graded treadmill exercise. Changes in oxygenation in each muscle were measured using near infrared spectroscopy (NIRS). Eight healthy male subjects participated in this study. Two NIRS probes were placed on VL and GL, and thereafter the leg arteries were occluded in all subjects to enable normalization of the NIR signals. The subjects then walked at 4 km·h–1 and 6 km·h–1, and then ran continuously at speeds ranging from 8 km·h–1 to 16 km·h–1. The muscle oxygenation level was defined as being 100% at rest and 0% at its lowest value during occlusion. Pulmonary VO2 was measured using indirect calorimetry. After the subjects had started walking, the muscle oxygenation in VL increased and exceeded the level at rest. Thereafter, the muscle oxygenation in both muscles decreased in relation to the increase in speed (P<0.001). A significant difference in the level of muscle oxygenation between VL and GL was found at speeds of 10 km·h–1 and 12 km·h–1 (P<0.05). The muscle oxygenation level at 16 km·h–1 was [mean (SEM)] 51.9 (4.6)% in VL and 52.8 (3.6)% in GL. There was a negative relationship between pulmonary VO2 and the muscle oxygenation level (VL: r=–0.803 to –0.986; GL: r=–0.848 to –0.963, P<0.05). We concluded that the pattern of deoxygenation between VL and GL was somewhat different and that the muscle oxygenation level was associated with pulmonary VO2. Electronic Publication  相似文献   

2.
Energy consumption during static contraction of the human triceps surae muscles was studied in 11 healthy subjects. The subjects had to stand intermittently on the left and then right foot at different frequencies (for periods of 15 s, 10 s or 5 s), first on the whole foot and then on the forefoot. The mean static energy consumption of all subjects was 13.4 (15) W [mean (s.d.)] at a calf muscle moment of 105 Nm. Assuming that static energy consumption (in W)is proportional to static moment (in Nm), a proportionality factor of 0.17 (0.19) s−1 is found. Because of the limited attainable accuracy, no significant differences between endurance athletes and sprinters could be found. Electronic Publication  相似文献   

3.
Summary The effects of 21 days voluntary leg (plaster) immobilization on the mechanical properties of the triceps surae have been studied in 11 young female subjects, mean age 19.4 years. The results show that during the period of immobilization the mean time to peak tension (TPT) and half relaxation time (1/2RT) and tension (Pt) of the maximal twitch increased significantly (p<0.001) but the effects were short lived. Maximal tension and contraction times of the twitch recovered within 2–14 days following the removal of the plaster cast. The electrically evoked tetanic tensions at 10 Hz and 20 Hz did not change significantly (p>0.1) during immobilization, but the 50 Hz tetanic tension (P°50) and maximal voluntary contraction (MVC) were reduced (p<0.05). The fall in P°50 and MVC was associated with 10% decrease in the estimated muscle (plus bone) cross-sectional area. The relative (%) change in P°50 and MVC following immobilization was related to the initial physiological status (as indicated by the response of the triceps surae to a standard fatigue test prior to immobilization) of the muscle. The rate of rise and recovery fall of the tetanus were slightly but significantly (p<0.01) reduced on day 7 of immobilization, but thereafter remained constant. The isokinetic properties of the triceps surae as reflected in the measured torque/velocity relation of the muscle in 4 subjects did not change significantly if account was taken of the slight degree of atrophy present following immobilization. It was concluded that short term voluntary leg immobilization produces atrophy and some loss of isometric twitch and tetanic function, but has little effect on the isokinetic properties of the triceps surae. The changes in the twitch characteristics during and immediately following immobilization may be indicative of a prolongation of the active state of the muscle.  相似文献   

4.
To elevate effects of carbon dioxide (CO2) retention by way of an increased respiratory load during submaximal exercise (150 W), the concentration changes of oxy‐ (ΔHbO2) and deoxy‐haemoglobin (ΔHb) of active muscles and the brain were determined by near‐infrared spectroscopy (NIRS) in eight healthy males. During exercise, pulmonary ventilation increased to 33 (28–40) L min–1 (median with range) with no effect of a moderate breathing resistance (reduction of the pneumotach diameter from 30 to 14 and 10 mm). The end‐tidal CO2 pressure (PETCO 2) increased from 45 (42–48) to 48 (46–58) mmHg with a reduction of only 1% in the arterial haemoglobin O2 saturation (SaO 2). During control exercise (normal breathing resistance), muscle and brain ΔHbO2 were not different from the resting levels, and only the leg muscle ΔHb increased (4 (–2–10) μM , P < 0.05). Moderate resistive breathing increased ΔHbO2 of the intercostal and vastus lateralis muscles to 6 ± (–5–14) and 1 (–7–9) μM (P < 0.05), respectively, while muscle ΔHb was not affected. Cerebral ΔHbO2 and ΔHb became elevated to 6 (1–15) and 1 (–1–6) μM by resistive breathing (P < 0.05). Resistive breathing caused an increased concentration of oxygenated haemoglobin in active muscles and in the brain. The results indicate that CO2 influences blood flow to active skeletal muscle although its effect appears to be smaller than for the brain.  相似文献   

5.
The effect of a 120-day period of bed rest on the mechanical properties of human triceps surae muscle was studied in a group of male volunteers (n = 6, mean age 38 years). The results shows that the contractile properties of skeletal muscle in response to disuse change considerably. Time to isometric peak tension of the triceps surae muscle increased from 120 (SEM 3.0) ms to 136 (SEM 2.9) ms (P < 0.01), half relaxation time from 92 (SEM 2.1) ms to 100 (SEM 1.6) ms (P < 0.05) and total contraction time from 440 (SEM 9.9) ms to 540 (SEM 18.7) ms (P < 0.001). Isometric twitch force (F t) decreased by a mean of 36.7% (P < 0.05), maximal voluntary contraction (MVC) and maximal force (F max) by a mean of 45.5% and 33.7%, respectively (P < 0.05-0.01). The valueF max:F t ratio increased by 3.6% (nonsignificant). The difference betweenF max and MVC, expressed as a percentage ofF max and referred to as force deficiency, has also been calculated. Force deficit increased by a mean of 60% (P < 0.001) after bed rest. Force-velocity properties of the triceps surae muscle calculated according to an absolute scale of voluntary and electrically evoked contraction development decreased considerably. The calculations of the same properties on a relative scale did not differ substantially from the initial physiological state. The results would suggest that muscle disuse is associated with both atrophy and a reduction in contractility in the development ofF max and decreased central (motor) drive. The change in the triceps surae muscle contractile velocity properties may indicate changes in the kinetically active state in the muscles.  相似文献   

6.
The study examined the influence of cerebral (prefrontal cortex) and muscle (vastus lateralis) oxygenation on the ability to perform repeated, cycling sprints. Thirteen team-sport athletes performed ten, 10-s sprints (with 30 s of rest) under normoxic (FIO2 0.21) and acute hypoxic (FIO2 0.13) conditions in a randomised, single-blind fashion and crossover design. Mechanical work was calculated and arterial O2 saturation (SpO2) was estimated via pulse oximetry for every sprint. Cerebral and muscle oxy-(O2Hb), deoxy-(HHb), and total haemoglobin (THb) were monitored continuously by near-infrared spectroscopy. Compared with normoxia, hypoxia induced larger decrements in SpO2 and work (11.6 and 7.6%, respectively; P < 0.05). In the muscle, we observed a fairly constant level of deoxygenation across sprints, with no effect of the condition. In normoxia, regional cerebral oxygenation increased during the first two sprints and slightly fluctuated thereafter. In contrast, this initial cerebral hyper-oxygenation was attenuated in hypoxia. Changes in [O2Hb] and [HHb] occurred earlier and were larger in hypoxia compared with normoxia (P < 0.05), while regional blood volume (Δ[THb]) remained unaffected by the condition. Changes in cerebral [HHb] and mechanical work were strongly correlated in normoxia and hypoxia (R 2 = 0.81 and R 2 = 0.85, respectively; P < 0.05), although the slope of this relationship differed (normoxia, −351.3 ± 183.3 vs. hypoxia, −442.4 ± 227.2; P < 0.05). The results of this NIRS study show that O2 availability influences prefrontal cortex, but not muscle, oxygenation during repeated, short sprints. By using a hypoxia paradigm, the study suggests that cerebral oxygenation contributes to the impairment of repeated-sprint ability.  相似文献   

7.
The intent of this study was to investigate physiological recruitment strategies employed by the triceps surae (TS) muscles during sustained low-level activation. Surface-recorded electromyographic (EMG) signal data were recorded from the medial gastrocnemius (MG), lateral gastrocnemius (LG), and medial soleus (MS) muscles while eight subjects sustained static plantarflexion contractions at 10% of their maximum voluntary contraction (MVC) for 1 h. Fine-wire EMG activity was simultaneously recorded from electrodes located at three sites within the MG muscle. Correlation coefficients were computed among root mean square (RMS) amplitude values recorded from MG, LG, and MS to investigate between-synergist substitution, as well as between the three wire channels to investigate local substitution within the MG motor unit pool. Over the 1-h test, EMG amplitude in LG and MS increased linearly, and there was a moderately strong (R 2=0.662, P<0.023) positive correlation in the detrended activity between LG and MS, suggesting that these muscles generally acted together. When the data were divided into 5-min blocks, regression analysis on the partial correlation data revealed that MS and LG were correlated over the duration of the contraction (P<0.001) suggesting co-activation synergism, whereas MG and LG and MS and MG demonstrated a tendency toward trade-off synergism. In five of eight individuals at least one wire channel pair within the MG was negatively correlated, suggesting that there was some form of substitution between motor units or motor unit pools. The other three individuals maintained correlated activity between all three pairs throughout the 1-h contraction.  相似文献   

8.
Aim: This study determined changes in knee extensor and plantar flexor muscle volume during 29 days of bed rest with or without resistance exercise using a gravity‐independent flywheel ergometer. Methods: Seventeen men (26–41 years) were subjected to 29 days of bed rest with (n = 8) or without (n = 9) resistance exercise; Supine Squat (SS) and Calf Press (CP) performed every third day. Quadriceps and triceps surae muscle volume was determined before and after bed rest and force and power were measured during training. Prior to these interventions, reproducibility of this device for training and testing was assessed in 23 subjects who performed bilateral maximal concentric, eccentric and isometric (MVC) knee extensions and plantar flexions over repeated sessions with simultaneous measurements of force, power and electromyographic (EMG) activity. Results: Quadriceps and triceps surae muscle volume decreased (P < 0.05) 10 and 16%, respectively, after 29 days bed rest. Exercise maintained quadriceps volume and mitigated triceps surae atrophy. Thus, either muscle showed different response across subject groups (P < 0.05). Force and power output during training were either maintained (P > 0.05) or increased (P < 0.05). EMG amplitude in the training mode was similar (SS; P > 0.05) or greater (CP; P < 0.05) compared with that elicited during MVC. Peak force and power test‐retest coefficient of variation (CV) ranged 5–6% and 7–8% for SS and CP, respectively. Conclusion: The present data suggest that this resistance exercise paradigm counteracts quadriceps and abates the more substantial triceps surae muscle atrophy in bedridden subjects, and therefore should be an important asset to space travellers.  相似文献   

9.
This paper compares the effects of 7-daydry immersion and intermittent muscle contraction on electrical and mechanical failure during muscle fatigue in the human triceps surae muscle electrically stimulated at 50 impulses·s−1 via its motor nerve. Intermittent contractions of 60-s duration were separated by 1-s intervals for identical duration of tension development. The 60-s intermittent contractions decreased tetanic force to 57% (P<0.05) of initial values, but force reduction was not significantly different in the two fatigue tests: the fatigue index was 36.2 (SEM 5.4)% versus 38.6 (SEM 2.8)%, respectively (P>0.05). Whilst identical force reduction was present in the two fatigue tests, it would appear that concomitant electrical failure was considerably different. This electromechanical dissociation would suggest that a slowing of conduction along nerve and muscle membranes did not explain the observed mechanical failure. It is suggested that intracellular processes played major role in contractile failure during intermittent contractions after muscle disuse.  相似文献   

10.
Determination of hydrocephalus and its severity is important for optimal management of the condition. We have used near infrared spectroscopy (NIRS) to assess changes in concentrations of oxygenated (O2Hb), deoxygenated (HHb), total haemoglobin (tHb) and cytochrome c oxidase (Caa3) in normal and hydrocephalic Texas (HTx) rats in response to a 5 min head down tilt and a sodium pentobarbitone (NaPB) challenge. The former was used to test vascular responses and the latter to test metabolic responses. The haemoglobin oxygenation index (HbD) was derived which provides information regarding oxygen utilisation ([HbD]=[O2Hb]−[HHb]). With the tilt challenge, a significant (P=0.001) difference was observed in [HbD] between normal (n=24) and hydrocephalic (n=14) rats (–3.50 (−6.00 to 0.00) μM cm−1 and 7.50 (0.75 to 14.25) μM cm−1, respectively). In another experiment we tested the response of ten rats to NaPB administration and observed a significant difference (P=0.008) in [Caa3] between normal (n=5) and hydrocephalic (n=5) rats (−6.60 (−7.55 to −5.50) μM cm−1 and −2.20 (−5.60 to −1.05) μM cm−1, respectively). Coronal sections of these ten rat brains were analysed and significant (P<0.05) relationships were found between some of the NIRS parameters and cortical thickness or lateral ventricle area measurements. Our studies demonstrate that a significant difference in cerebral oxygenation and haemodynamics can be observed between normal and hydrocephalic HTx rats using NIRS.  相似文献   

11.
To examine whether the kinetics of local muscle oxygenation reflect systemic oxygen intake, we measured the kinetics of local muscle oxygenation and systemic oxygen consumption (V˙O 2). This study included 16 healthy males who performed an exercise tolerance test on a bicycle ergometer. During the exercise test, expiratory gas analysis was performed with an expiratory gas analyzer, and the kinetics of vastus lateralis muscle oxygenation were determined by near-infrared spectroscopy (NIRS). Oxygenated hemoglobin (OxyHb) and tissue blood oxygen saturation (S tO2) gradually decreased during the exercise test, while deoxygenated hemoglobin (DeoxyHb) gradually increased. We examined correlations between the mean values of these parameters, which were calculated by time-integrating the values obtained using NIRS and dividing them by the integral time, and V˙O 2. There was a marked positive correlation between DeoxyHb and V˙O 2 (r=0.893 − 0.986), and a marked negative correlation between S tO2 and V˙O 2 (r=0.859 − 0.995). There was a negative correlation between V˙O 2 and OxyHb (r=0.726 − 0.978), and no correlation between TotalHb and V˙O 2. These results suggest that the kinetics of peripheral muscle oxygenation reflect systemic V˙O 2. Accepted: 23 October 2000  相似文献   

12.
Near-infrared spectroscopy (NIRS) allows non-invasive monitoring of central and peripheral changes in oxygenation during exercise and may provide valuable insight into the factors affecting fatigue. This study aimed to explore the changes in oxygenation of prefrontal cortex and active muscle tissue as limiting factors of incremental exercise performance in trained cyclists. Thirteen trained healthy subjects (mean ± SE: age 24.9 ± 1.5 years, body mass 70.1 ± 1.2 kg, training 6.1 ± 0.9 h week−1) performed a progressive maximal exercise to exhaustion on a cycling ergometer. Prefrontal cortex (Cox) and vastus lateralis muscle (Mox) oxygenation were measured simultaneously by NIRS throughout the exercise. Maximal voluntary isometric knee torques and quadriceps neuromuscular fatigue (M-wave properties and voluntary activation ratio) were evaluated before and after exercise. Maximal power output and oxygen consumption were 380.8 ± 7.9 W and 75.0 ± 2.2 ml min−1 kg−1, respectively. Mox decreased significantly throughout exercise while Cox increased in the first minutes of exercise but decreased markedly from the workload corresponding to the second ventilatory threshold up to exhaustion (P < 0.05). No significant difference was noted 6 min after maximal exercise in either the voluntary activation ratio or the M-wave properties. These findings are compatible with the notion that supraspinal modulation of motor output precedes exhaustion. An erratum to this article can be found at  相似文献   

13.
This study examined the role of muscle pump in the development of cardiovascular drift (CVdrift) during cycling. Twelve healthy males (23.4 ± 0.5 years, mean ± SE) exercised for 90 min with 40 and 80 pedal revolutions per minute (rpm) at the same oxygen consumption, in two separate days. CVdrift was developed in both conditions as indicated by the drop in stroke volume (SV) and the rise in heart rate (HR) from the 20th min onwards (ΔSV = −16.2 ± 2.0 and −17.1 ± 1.0 ml beat−1; ΔHR = 18.3 ± 2.0 and 17.5 ± 3.0 beats min−1 for 40 and 80 rpm, respectively, P < 0.05) but without difference between conditions. Mean cardiac output (CO2 rebreathing) was 14.7 ± 0.3 l min−1 and 15.0 ± 0.3 l min−1, and mean arterial pressure was 100.0 ± 1.0 mmHg and 96.7 ± 0.8 mmHg for 40 and 80 rpm, respectively, without significant changes over time, and without difference between conditions. Electromyographic activity (iEMG) was lower throughout exercise with 80 rpm (35.6 ± 1.2% and 11.0 ± 1.0% for 40 and 80 rpm, respectively). Similarly, total hemoglobin, determined with near-infrared spectroscopy (NIRS) was 58.0 ± 0.8 (AU) for 40 rpm and 53.0 ± 1.4 (arbitrary units) for 80 rpm, from 30th min onwards (P < 0.05), an indication of lower leg blood volume during the faster pedal rate condition. Thermal status (rectal and mean skin temperature), blood and plasma volume changes, blood lactate concentration, muscle oxygenation (NIRS signal) and the rate of perceived exertion were similar in the two trials. It seems that muscle pump is not an important factor for the development of CVdrift during cycling, at least under the present experimental conditions.  相似文献   

14.
During orthostatic hypotension we evaluated whether presyncopal symptoms relate to a reduced brain oxygenation. Nine subjects performed 50° head-up tilt for 1 h and eight subjects were followed during 2 h of supine rest and during 1 h of 10° head-down tilt. Cerebral perfusion was assessed by transcranial Doppler determined middle cerebral artery blood velocity (MCA vmean), while brain blood oxygenation was assessed by near-infrared spectrophotometry determined concentration changes for oxygenated (ΔHbO2) and deoxygenated haemoglobin and brain cell oxygenation by the oxidized cytochrome c concentration (ΔCytO2). During head-up tilt, six volunteers developed presyncopal symptoms and mean arterial pressure (88 (78–103) to 68 (57–79) mmHg; median and range), heart rate (96 (72–111) to 65 (50–107) beats min?1), MCA vmean (59 (51–82) to 41 (29–56) cm s?1), ΔHbO2 (by ?5.3 (?3.0 to ?14.8) μmol l?1) and ΔCytO2 were reduced (by ?0.2 (?0.1 to ?0.4) μmol l?1; P < 0.05). During tilt down the cardiovascular variables recovered immediately and ΔHbO2 increased to 2.2 (?0.9–12.0) mmol L?1 above the resting value and also ΔCytO2 recovered. In the nonsyncopal head-up tilted subjects as in the controls, blood pressure, heart rate, MCA vmean and brain oxygenation indices remained stable. The results suggest that during orthostasis, presyncopal symptoms relate not only to cerebral hypoperfusion but also to reduced brain oxygenation.  相似文献   

15.
Previous research has shown that an acute bout of passive muscle stretching can diminish performance in certain movements where success is a function of maximal force and/or power output. Two possible mechanisms that might account for such findings are a change in active musculotendinous stiffness and a depression of muscle activation. To investigate the likelihood of these two mechanisms contributing to a post-stretch reduction in performance, we examined the acute effects of stretching on the active stiffness and muscle activation of the triceps surae muscle group during maximal single-joint jumps with movement restricted to the ankle joint. Ten males performed both static (SJ) and countermovement (CMJ) jumps before and after passively stretching the triceps surae. Electrical activity of the triceps surae during each jump was determined by integrating electromyographic recordings (IEMG) over the course of the movement. Triceps surae musculotendinous stiffness was calculated before and after stretching using a technique developed by Cavagna (1970). Following stretching, a significant decrease [mean (SD) 7.4 (1.9)%; P<0.05] in jump height for the CMJ occurred, but for the SJ, no significant (P>0.05) change in jump height was found. A small but significant decrease [2.8 (1.24)%; P<0.05] in stiffness was noted, but the magnitude of this change was probably not sufficient for it to have been a major factor underlying the decline in CMJ performance. Paradoxically, after stretching, the SJ exhibited a significant (P<0.05) decrease in IEMG, but the IEMG for the CMJ remained unchanged (P>0.05). It appears that an acute bout of stretching can impact negatively upon the performance of a single-joint CMJ, but it is unlikely that the mechanism responsible is a depression of muscle activation or a change in musculotendinous stiffness. Electronic Publication  相似文献   

16.
In elderly males muscle plantar flexor maximal voluntary contraction (MVC) torque normalised to muscle volume (MVC/VOL) is reduced compared to young males as a result of incomplete muscle activation in the elderly. The aim of the present study was to determine the influence of a 12-month resistance training programme on muscle volume, strength, MVC/VOL, agonist activation and antagonist coactivation of the plantarfexors in elderly males. Thirteen elderly males aged 70 years and over (range 70–82 years), completed a 12-month whole body resistance-training programme (TRN), training three times a week. Another eight males (range 18–30 years), who maintained their habitual physical activity for the same 12-month period as the TRN group acted as controls (CTRL). Isometric plantarflexor maximal voluntary contraction (MVC) torque increased in the TRN group by 20% (P<0.01), from 113.1±22.0 Nm to 141.5±19.2 Nm. Triceps surae volume (TS VOL) assessed using MRI, increased by 12%, from 796.3±78.9 cm3 to 916.8±144.4 cm3 . PF activation, measured using supramaximal double twitch interpolation, increased from 83.6±11.0% pre training, to 92.1±7.6% post training (P<0.05). Dorsiflexion MVC and antagonist coactivation (assessed using surface electromyography) did not change with training. Plantarflexor MVC torque normalized for triceps surae muscle volume (MVC/VOL) was 142.6±32.4 kN m–2 before training and 157.0± 27.9 kN m–2 after training (a non-significant increase of 8%). No significant change in any measurement was observed in the CTRL group. This study has shown that the gain in muscle strength in response to long-term (12-month) training in older men is mostly accounted for by an increased muscle volume and activation.  相似文献   

17.
Summary Functional near-infrared spectroscopic imaging (NIRS imaging) has the potential to elucidate the relationship between neuronal activity and oxygenation responses. However, its signal specificity to the functional cortex is sometimes spoiled by its rough spatial resolution. In this study we incorporated transcranial magnetic stimulation (TMS) motor mapping into an NIRS imaging study to enhance spatial specificity to the functional cortex. Distinctive biphasic responses in the cortical oxygenation status were observed in the center of the primary motor cortex during a motor task. The early response phase, occurring within 1 to 3 seconds after task initiation, represents a cortical deoxygenation which consists of a significant increase in deoxygenated hemoglobin concentration (HbR) and a nonsignificant decreasing tendency in oxygenated hemoglobin concentration (HbO2). The delayed response phase represents an excess of incoming blood flow, which appears as an increase in HbO2/total Hb (tHb) and a decrease in HbR following the early response. In the surrounding area, cortical oxygenation change showed a monophasic response consisting of an increase in HbO2/tHb and a decrease in HbR. Combining TMS mapping with NIRS imaging enabled us to specify the cortex with the strongest functional activity.  相似文献   

18.
To evaluate the possibility of using near-infrared spectroscopy (NIRS) to measure tissue oxygenation (StO2) during hyperbaric oxygen (HBO) therapy. Nine healthy volunteers (1 female) age 25−37 years, breathed air or oxygen. Tissue oxygenation was measured using NIRS on the thumb. Subjects were blinded to breathing gas. A range of partial pressures of oxygen were administered in 10-min intervals: 21, 101, 21 kPa (compression to 280 kPa), 59, 280, 59 (decompression), 21 kPa. Data were averaged over last 5 min at each pressure. When switching from air to normobaric oxygen (NBO 101 kPa) StO2 increased from 83% (82−85%, median and interquartile range) to 85% (84−87%) (P < 0.01), while when switching from air at pressure (59 kPa O2) to HBO (280 kPa), StO2 increased from 85% (85−86%) to 88% (87−89%) (P < 0.001). There was no difference between baseline StO2 while air breathing before NBO or after decompression. Values did not reach the maximal value of 100% at any point. The changes in hemoglobin oxygen saturation in tissue registered by the NIRS monitor when switching from air to oxygen followed inspired PO2 under normobaric and hyperbaric conditions.  相似文献   

19.
The main purpose of our study was to determine the parameters of the postocclusive reactive hyperemia test that could help and provide the clinician with information about the tissue oxygenation, the severity of the disease, and the results of the applied therapies. Near infrared spectroscopy (NIRS) proved to be a valid noninvasive trend monitor useful for investigating the physiology of oxygen transport to tissue. Important advantages of NIRS over transcutaneous oximetry (TcpO2) are: (a) a more dynamic nature of the NIRS signals which reflects more closely the actual response of the peripheral vasculature to the occlusive provocation; (b) larger sampling volume; and (c) the ability of assessing tissue oxygenation at deeper tissue levels. We demonstrated that the time parameters of reactive hyperemia, the rate of reactive hyperemia, and the maximal change during reactive hyperemia, all calculated from the oxyhemoglobin (HbO2) signal of the NIRS, clearly distinguish between healthy volunteers and patients with vascular disorder. The time parameters of reactive hyperemia were significantly longer (p < 0.01), and the rate of reactive hyperemia (p = 0.01) as well as the maximal change during reactive hyperemia (p = 0.02) were significantly lower in patient group compared to healthy volunteers. These parameters were also in good correlation with the values of ankle brachial index (ABI) and the resting values of oxygen partial pressure (TcpO2). Values of the chosen parameters obtained from the HbO2 signal were further compared between groups of diabetic and nondiabetic patients with peripheral vascular disease. Although longer time parameters of reactive hyperemia and lower rates of hyperemic response were detected, the difference between both groups was not statistically significant. © 2001 Biomedical Engineering Society. PAC01: 8764Je, 8719Xx  相似文献   

20.
Summary Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle.Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0±7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0±10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension.In contrast the heart rate rose to a higher level (P<0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups.It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sjöholm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号