首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
目的 应用含有神经生长因子(NGF)的壳聚糖神经导引管作为神经再生室桥接大鼠坐骨神经缺损,观察其对神经再生的作用。方法 选用Wistat大鼠60只,手术造成右后肢坐骨神经长约15mm的缺损,A组以含有NGF的壳聚糖神经导引管桥接神经缺损,B组则单纯采用壳聚糖导管,分别于术后4、12、24周进行大体及显微解剖观察、组织学检查、电镜观察和神经电生理测定。结果 A组在促进神经再生、加快血管化进程、再生神经纤维排列规律化、提高再生神经髓鞘化、加速再生神经功能重建等方面均优于B组。结论 壳聚糖神经导引管可以为大鼠坐骨神经再生提供一个良好的再生微环境,NGF对神经再生有显促进作用。  相似文献   

2.
聚乳酸聚羟基乙酸共聚物三维神经导管修复周围神经缺损   总被引:1,自引:0,他引:1  
背景:异体神经移植由于存在难以消除的宿主免疫排斥反应,限制了其使用,许多学者试图用其他组织替代来弥补以上不足,但效果均不满意。目前,尚没有研制出公认的效果满意的人工神经,自体神经移植至今仍被认为是最佳选择。 目的:观察聚乳酸聚羟基乙酸共聚物(PLGA,85∶15)三维神经导管修复大鼠周围神经缺损的可行性,及神经导管内微丝支架的作用和不同数量微丝对神经再生的影响。 方法:40只成年SD大鼠随机数字表法分为4组,制作大鼠12 mm的左侧坐骨神经缺损模型,用该导管桥接大鼠12 mm的坐骨神经缺损。A组:PLGA神经导管组;B组:PLGA神经导管内纵形放入20根PLGA微丝;C组:PLGA神经导管内纵形放入40根PLGA微丝;D组:自体神经移植组。A、B、C组神经导管内均注入层粘蛋白+神经生长因子混合液。造模后动态观察大鼠肌肉萎缩、跛行情况,测量神经导管内再生神经的传导速度、小腿三头肌湿质量恢复率。对再生神经中1/3段行组织学观察及图像分析以评价神经修复的效果。 结果与结论:造模后各组再生神经均已通过神经导管长入远端,B、D组再生神经较A、C组粗大;再生神经的运动神经传导速度B组和D组明显快于A组和C组(P < 0.05);A组、C组肌肉萎缩最明显,而B组、D组肌肉萎缩较轻且肌肉萎缩程度基本相当。病理图像分析神经纤维计数以D组最多,B组次之,而与A组、C组相比差异均有显著性意义(P < 0.05),B组与D组的再生神经纤维数量及成熟程度均要明显优于A组和C组。提示新型的PLGA三维神经导管能有效引导SD大鼠坐骨神经长过12 mm的神经缺损,是一种较理想的神经导管;神经导管内微丝支架能有效引导神经再生,数量过多反而可能抑制神经再生。  相似文献   

3.
壳聚糖导管桥接周围神经缺损的实验研究   总被引:6,自引:0,他引:6  
目的 应用壳聚糖神经导引管作为神经再生室桥接大鼠坐骨神经缺损 ,观察对神经再生的作用。方法 选用体重 2 0 0± 2 0g的Wistar大鼠 30只 ,手术造成右侧坐骨神经长约 12mm的缺损 ,以壳聚糖导管桥接神经缺损 ,以左侧正常坐骨神经作为对照 ,分别于术后 4、 12、 2 4周进行大体及显微解剖观察、组织学检查、免疫组化检查、电镜观察和神经电生理测定。结果 术后大鼠右后肢感觉、运动功能有不同程度的恢复 ;光镜和电镜组织学检查发现术后 12周再生轴突已长过神经缺损间隙 ,2 4周再生完全 ,髓鞘化良好 ,神经纤维排列整齐规则 ,导管大部分被降解吸收 ;神经电生理检查在术后 2 4周记录到再生坐骨神经的复合动作电位。结论 壳聚糖神经导引管为大鼠坐骨神经再生提供一个良好的再生微环境 ,再生坐骨神经功能恢复良好  相似文献   

4.
背景:作者已经成功制备了无细胞神经移植物,并且复合骨髓间充质干细胞构建组织工程人工神经桥接大鼠坐骨神经缺损。 目的:无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损后运动功能的恢复。 方法:成年雄性SD大鼠构建大鼠坐骨神经15 mm缺损模型,分别应用组织工程人工神经、组织工程神经支架或自行神经桥接坐骨神经缺损。桥接后20周再生神经电生理学测定,手术侧胫骨前肌湿质量、腓肠肌组织学及透视电镜分析。 结果与结论:桥接20周后,组织工程人工神经与自体神经移植组胫骨前肌湿质量比较,差异无显著性意义(P > 0.05),神经干传导速度为(30.56±2.15)m/s。结果提示,无细胞神经移植物复合骨髓间充质干细胞构建的组织工程人工神经桥接大鼠坐骨神经缺损后,可以促进再生神经运动功能的恢复。  相似文献   

5.
目的 探讨甲状腺素凝胶对大鼠坐骨神经损伤修复的作用.方法 54只雄性SD大鼠双侧坐骨神经切断造成0.8 cm缺损,用甲壳素导管桥接神经缺损后随机分为3组,每组18只.A组管内注入甲状腺素凝胶,B组管内注入赋形剂明胶,C组管内注入等渗盐水.术后第4、8周分别检测各组运动神经传导速度(MNCV)并收集标本,行特殊染色、S -100免疫组织化学染色,观察再生神经的组织学变化,并进行统计学分析.结果 术后4、8周 A组神经传导速度优于B、C组,其差异有统计学意义(P<0.05),B、C2组差异无统计学意义(P>0.05);A组S -100免疫组织化学染色示阳性神经纤维数及特殊染色显示再生有髓神经纤维数均多于B、C组(P<0.05),B、C组差异无统计学意义(P>0.05).结论 局部应用甲状腺素凝胶可以促进周围神经的再生和功能恢复.  相似文献   

6.
背景:作者前期已经成功将无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经,并证明可以促进周围神经再生。 目的:构建组织工程人工神经,观察和验证桥接大鼠坐骨神经缺损后的神经功能恢复情况。 方法:成年雄性SD大鼠60只构建大鼠坐骨神经15 mm缺损模型。随机分成3组,每组20只。桥接大鼠坐骨神经缺损,实验组采用组织工程人工神经,空白对照组采用无细胞组织工程神经支架,自体神经对照组采用自体神经移植。桥接后12周通过大体观察、胫骨前肌湿质量、组织学等方法分析坐骨神经组织学及功能恢复情况。 结果与结论:桥接术后12周:实验组大鼠肢体可以支撑着地,钳夹大鼠手术侧足底皮肤出现逃避反射,足底皮肤s-100蛋白染色呈阳性反应。实验组与自体神经移植组胫骨前肌湿质量比差异无显著性意义(P > 0.05)。实验组辣根过氧化物酶逆行示踪实验显示脊髓、后根神经节均可见数量不等的辣根过氧化物酶标记阳性细胞。实验组移植物与自体神经移植组有髓神经纤维数、髓鞘厚度、神经组织面积比较差异无显著性意义。实验结果验证了无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损,可以促进神经组织学的修复重建和功能的恢复。  相似文献   

7.
本实验探讨联合应用甲壳素导管与IGF-1对大鼠坐骨神经再生功能的影响,为治疗周围神经损伤提供科学依据。1实验方法健康雄性SD大鼠48只,随机分为3组,每组16只,制备双侧大鼠坐骨神经缺损模型(神经缺损10mm),以可吸收甲壳素神经导管桥接神经两断端形成神经再生室。A组为空白对照组:神经再生室内注入等渗生理盐水20μL;B组为对照组:神经再生室内注入明胶溶液20μL;C组为实验组:神经再生室内注入IGF-1凝胶20μL。术后4周、8周收集标本并观察再生神经的大体形态,检测神经传导速度,并进行特殊染色,S-100免疫组化检测,使用统计软件SPSS 17.0进行统计学分析。  相似文献   

8.
背景:周围神经缺损在现代生产生活中极为常见,自体神经移植被公认为是修复神经缺损的“金标准”;但是自体神经来源受限,且会导致供区感觉功能障碍,感觉神经细小,无法满足较粗神经缺损的需要,限制了其在临床上的广泛应用。因此,人们一直在努力寻找一种自体神经替代物来桥接神经缺损,同种异体神经﹑自体非神经组织、高分子人工合成材料以及二十世纪80年代兴起的组织工程学人工神经研究,用于修复周围神经缺损,但效果都不理想,临床应用还有很大距离距。 目的:本研究即不是风靡世界的人工神经研究,也不是各种神经细胞的培养,而是从另外一个新角度,使神经缺损很简便易行的转化成多个再生室用自体神经片段串联起来,完成修复。探讨对长距离神经缺损修复的一种新方法。 设计、时间及地点:市场购买成品壳聚糖粉、胶原、CNTF、成年SD大耳白兔。随机分组。在辽宁医学院组织胚胎实验室,附属第一医院动物实验室于2009年6月至2010年1月实验完成。 材料:日本大耳白兔28只,辽宁医学院实验动物中心提供。成品壳聚糖粉、胶原、CNTF、Sigma公司产品。 方法:健康日本大耳白兔28只(4周龄), 雌雄不限,随机分为A、B、C、D四组,每组7只。麻醉下解剖大耳白兔坐骨神经,分别在梨状肌下缘6mm以远,造成右侧坐骨神经12mm、16 mm、30mm的缺损。A组采用30mm自体神经切取后,翻转180度进行桥接;B、C、D组分别采用10mm自体神经片段串联两个等长(6mm、8mm、10mm)壳聚糖-胶原-CNTF复合再生室桥接坐骨神经缺损。 主要观察指标:四通道肌电图仪、BH-2型光学显微镜及摄像系统、日本日立H/7500电镜检测神经传导速度和再生神经有髓纤维数目。 结果:术后24周A、B、C、D四组坐骨神经传导速度(41.99±2.10)m/s (39.79±2.20 )m/s(27.94±1.67)m/s(19.89±1.57)m/s;最远端所取标本神经纤维数目(612.8±7.63).(604.5±7.18).(341.8±7.19).(276.2±7.52)。以上指标A、B组比较差异无统计学意义(P >0.05);A组与D、 C组比较差异有统计学意义( P<0.05)。 结论:1、壳聚糖-胶原-CNTF再生室具有良好的组织相容性,对大白兔坐骨神经缺损具有良好的桥梁作用和促进神经生长作用。 2、串联两个6mm壳聚糖-胶原-CNTF复合再生室修复坐骨神经12mm缺损的效果,近似自体神经移植效果。 3、串联再生室自体神经片段的雪旺细胞是可以分泌多种神经活性物质,在有效趋化距离内,神经活性物质可充分发挥其作用。  相似文献   

9.
目的探讨川芎嗪对紫杉醇致神经病理性疼痛大鼠的疗效及其对坐骨神经中神经生长因子(NGF)表达的影响。方法成年雄性SD大鼠30只随机分为A组(对照组,n=6)、B组(n=8)、C组(n=8)、D组(n=8)。以首次给药为d1,实验前一日为d0,各组分别在d1、d3、d5、d7腹腔注入2.0 mg/(kg·d)紫杉醇。于d1~d14,B组腹腔注入川芎嗪200 mg/(kg·d),C组口服普瑞巴林3 mg/(kg·d),D组同时腹腔注射川芎嗪和口服普瑞巴林,剂量同B组、C组。分别于d0和d7、d12、d16、d20测定大鼠的机械缩足反射阈值(MWT)和热缩足潜伏期(TWL)。采用透射电镜观察各组大鼠坐骨神经的超微结构,用免疫组化法检测大鼠坐骨神经中NGF的表达。结果 4组大鼠d0时后肢MWT差异无统计学意义(均P0.05);D组大鼠d7~d20时后肢平均MWT与A组及C组相比明显升高(均P0.05);B、C组大鼠d12~d20时后肢MWT与A组相比明显升高(均P0.05);B组d12、d16时MWT明显高于C组(均P0.05)。4组大鼠d0时后肢TWL差异无统计学意义(均P0.05);B、C、D组大鼠d7~d20时后肢TWL与A组相比明显升高(均P0.05);D组大鼠d7~d20时后肢TWL与C组相比明显升高(均P0.05);C组大鼠d16、d20时后肢TWL与B组相比明显升高(均P0.05)。透射电镜下,A组大鼠的坐骨神经纤维髓鞘板层结构明显松散,呈网状,严重脱髓鞘;B组、C组、D组大鼠的坐骨神经纤维髓鞘板层结构较松散,明显脱髓鞘,但较A组明显减轻,且B组、D组脱髓鞘程度较C组更轻。与A组比较,B组和C组大鼠坐骨神经中NGF表达减少不明显(均P0.05),D组大鼠坐骨神经中NGF表达明显减少(P0.05)。结论川芎嗪能有效防治紫杉醇所致的大鼠神经病理性疼痛,疗效与普瑞巴林相似并有协同作用,作用机理可能是减低坐骨神经NGF的表达,减轻神经损伤。  相似文献   

10.
背景:作者前期将无细胞神经移植物与骨髓间充质干细胞复合培养,成功构建了组织工程人工神经。 目的:应用辣根过氧化物酶(HRP)神经逆行示踪技术对无细胞神经移植物复合骨髓间充质干细胞构建的神经移植复合体桥接大鼠坐骨神经缺损后运动神经元的保护作用进行评价。 方法:成年清洁级健康雄性SD大鼠,随机分成3组:①实验组:采用复合骨髓间充质干细胞的无细胞神经移植物桥接大鼠坐骨神经缺损。②空白对照组:采用无细胞神经移植物桥接大鼠坐骨神经缺损。③自体神经对照组:采用自体神经移植桥接大鼠坐骨神经缺损。术后12周应用辣根过氧化物酶神经逆行示踪技术对脊髓前角运动神经元的再生进行评价。 结果与结论:术后12周脊髓前角运动神经元再生评价结果显示:实验组优于无细胞神经移植物组,而与自体神经移植物组相比差异无显著性意义。证实无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损,对大鼠脊髓运动神经元具有保护作用,可能达到与自体神经移植相似的效果。 关键词:无细胞神经移植物;骨髓间充质干细胞;辣根过氧化物酶;神经移植;大鼠  相似文献   

11.
The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide(PDLLA)-based nerve conduit that was modified using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} and β-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve fibers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle fibers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury.  相似文献   

12.
Objective: To investigate the therapeutic effect of artificial nerve conduit in the sciatic nerve injury and repair in the rat model.

Methods: A total of 60 adult male Sprague Dawley rats were evenly randomized into five groups to build the model of sciatic nerve injury and perform the injury repair experiment. The five groups were: group A which was treated with artificial nerve conduit, group B which was treated with common carotid artery (CCA) autograft, group C which was treated with sciatic nerve autograft, group D which was treated with sham operation, and group E as the normal control. The injury was repaired by direct coaptation of the nerve ends. Postoperatively, the rats’ behavior, motor nerve conduction velocity (MNCV), incubation period, amplitude, remaining rate of wet weight of the gastrocnemius muscle, the diameter and section area of the gastrocnemius cell, and the histological changes were assessed. The results were analyzed by one-way ANOVA and two-way ANOVA.

Results: Twelve days postoperatively, 36 rats in groups A, B, and C presented with denervated adermotrophia on the injured ankle. The electrophysiological indicators in groups D and E were constant and similar. The values of MNCV and amplitude were group C > group A > group B, with an increasing tendency. The values of the incubation period were group C < group A < group B with statistical difference (p < 0.05) and showed a decreasing tendency. The wet gastrocnemius muscle in groups D and E showed plump morphology with luster and elasticity. Groups A and C had similar atrophic gastrocnemius muscles and reduced flexibility while the phenomena were more severe in group B. Progressive decrease of the cell diameter and sectional area was observed in groups A, B, and C. The adhesion between the sciatic nerve and the surrounding area in groups A, B, and C had statistical significance (P < 0.05), with group B the most serious.

Conclusions: The results suggest that artificial nerve conduit facilitated functional and morphological regeneration of the nerve. It seemed more effective than CCA but inferior to sciatic nerve autograft in repairing sciatic nerve injury in the rat model.  相似文献   

13.
外源性GM1对癫痫大鼠脑损伤的保护作用   总被引:7,自引:1,他引:6  
目的 探讨外源性神经节苷脂GM1对癫痫大鼠脑损伤有无保护作用。方法 采用硫代氨基脲 (7.5mg/kg)诱导大鼠癫痫发作模型 ,用免疫组化方法动态观察致痫组大鼠和GM 1干预组大鼠在癫痫发作 2 4小时、4 8小时、72小时及 7天时 ,以及正常对照组、生理盐水组大鼠 72小时时神经生长因子 (NGF)在实验大鼠海马及额叶神经细胞表达情况。同时应用电镜技术观察受损海马神经细胞形态及结构变化。结果 正常对照组和生理盐水组大鼠无癫痫发作 ,致痫组和GM1干预组大鼠有Ⅰ Ⅴ级癫痫发作。免疫组化结果显示 ,癫痫鼠在其海马、额叶有较多的NGF阳性神经细胞表达 ,而未致痫鼠偶有NGF阳性细胞表达 (P <0 .0 5 )。在致痫鼠中 ,GM1干预后NGF表达明显高于未干预组 (P <0 .0 5 ) ,且以 72小时NGF表达为最高(P <0 .0 5 )。电镜显示癫痫鼠神经细胞损伤 ,但GM1干预后损伤减轻 ,而正常对照组和生理盐水组神经细胞形态和结构正常。结论 癫痫发作可引起脑细胞损伤 ;GM1对癫痫大鼠脑损伤具有一定保护作用 ,其保护作用可能通过诱导NGF表达增多来实现。  相似文献   

14.
This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.  相似文献   

15.
The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently, the use of conduits in nerve injury repair, made possible by tissue engineering, has shown therapeutic potential. We manufactured a biodegradable, collagen-based nerve conduit containing decellularized sciatic nerve matrix and compared this with a silicone conduit for peripheral nerve regeneration using a rat model. The collagen-based conduit contains nerve growth factor, brain-derived neurotrophic factor, and laminin, as demonstrated by enzyme-linked immunosorbent assay. Scanning electron microscopy images showed that the collagen-based conduit had an outer wall to prevent scar tissue infiltration and a porous inner structure to allow axonal growth. Rats that were implanted with the collagen-based conduit to bridge a sciatic nerve defect experienced significantly improved motor and sensory nerve functions and greatly enhanced nerve regeneration compared with rats in the sham control group and the silicone conduit group. Our results suggest that the biodegradable collagen-based nerve conduit is more effective for peripheral nerve regeneration than the silicone conduit.  相似文献   

16.
Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β(an indicator of tissue fibrosis) decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.  相似文献   

17.
The aim of the present study was to evaluate whether tissue levels of vitamin B complex and vitamin B12 were altered after crush-induced peripheral nerve injury in an experimental rat model. A total of 80 male Wistar rats were randomized into one control (n = 8) and six study groups (1, 6, 12, 24 hours, 3, and 7 days after experimental nerve injury;n = 12 for each group). Crush-induced peripheral nerve injury was per-formed on the sciatic nerves of rats in six study groups. Tissue samples from the sites of peripheral nerve injury were obtained at 1, 6, 12, 24 hours, 3 and 7 days after experimental nerve injury. Enzyme-linked immunosorbent assay results showed that tissue levels of vitamin B complex and vitamin B12 in the injured sciatic nerve were signiifcantly greater at 1 and 12 hours after experimental nerve injury, while they were signiifcantly lower at 7 days than in control group. Tissue level of vitamin B12 in the injured sciatic nerve was signiifcantly lower at 1, 6, 12 and 24 hours than in the control group. These results suggest that tissue levels of vitamin B complex and vitamin B12 vary with progression of crush-induced peripheral nerve injury, and supplementation of these vitamins in the acute period may be beneficial for acceleration of nerve regeneration.  相似文献   

18.
《中国神经再生研究》2016,(12):2012-2017
Magnesium(Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire(3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A m RNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号