首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
GABAergic afferent inputs are thought to play an important role in the control of the firing pattern of substantia nigra pars compacta (SNc) dopaminergic neurons. We report here the actions of presynaptic kainite (KA) receptors in GABAergic transmission of rat SNc dopaminergic neurons. In mechanically dissociated rat SNc dopaminergic neurons attached with native presynaptic nerve terminals, GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded by use of conventional whole cell patch recording mode. In the voltage-clamp condition, KA (3 microM) significantly increased GABAergic mIPSC frequency without affecting the current amplitude. This facilitatory effect of KA was not affected in the presence of 20 microM GYKI52466, a selective AMPA receptor antagonist, but was completely inhibited in the presence of 20 microM CNQX, an AMPA/KA receptor antagonist. Presynaptic KA receptors on GABAergic terminals were mainly permeable to Na+ but impermeable to Ca2+ because KA-induced facilitation of mIPSC frequency was completely suppressed in either Na+-free or Ca2+-free external solutions, and in the presence of 200 microM Cd2+, a general voltage-dependent Ca2+ channel blocker. In the slice preparation, KA increased GABAergic spontaneous mIPSC frequency, but significantly suppressed evoked IPSC (eIPSC) amplitude. However, this inhibitory action on eIPSCs was reversed by 10 microM CGP55845, a selective GABAB receptor antagonist, implicating the possible involvement of GABAB autoreceptors in KA-induced modulation of GABAergic transmission. Thus presynaptic KA receptors on GABAergic nerve terminals synapsing onto SNc neurons may play functional roles contributing the fine control of neuronal excitability and firing pattern of SNc.  相似文献   

3.
In isolated nerve terminals from ox neurohypophyses the following concentrations of polyamines [pmol (microgram protein)-1 (mean +/- SEM)] were found: spermine: 2.07 +/- 0.14 (n = 3), spermidine: 0.22 +/- 0.01 (n = 4), putrescine: 0.20 +/- 0.01 (n = 4). In secretory granules isolated from the same tissue, the concentrations were: spermine: 0.57 +/- 0.02 (n = 3), spermidine: 0.07 +/- 0.04 (n = 3), putrescine: 0.13 +/- 0.04 (n = 3). After incubation of isolated nerve terminals with the polyamines, they were taken up as a function of time and concentration, approaching saturation at high concentrations. The kinetic parameters of their synthesizing enzyme, ornithine decarboxylase, in ox neurohypophyseal nerve terminals (apparent Km 0.75 mM and Vmax 22.5 pmol mg protein-1 h-1) were comparable to those previously found in cerebral cortex of rats. When isolated, hemilobes from rat neurohypophyses were incubated in a medium which contained spermidine (5 mM), and were stimulated by 56 mM K+, release of vasopressin was smaller than in control experiments. However, after removal of spermidine and after restimulation, 50 min after initial stimulation, the release was significantly elevated. It is suggested that polyamines may take part in modulation of vasopressin release.  相似文献   

4.
The primary function of the presynaptic nerve terminal is to release transmitter quanta and thus activate the postsynaptic target cell. In almost every step leading to the release of transmitter quanta, there is a substantial involvement of ion channels. In this review, the multitude of ion channels in the presynaptic terminal are surveyed. There are at least 12 different major categories of ion channels representing several tens of different ion channel types; the number of different ion channel molecules at presynaptic nerve terminals is many hundreds. We describe the different ion channel molecules at the surface membrane and inside the nerve terminal in the context of their possible role in the process of transmitter release. Frequently, a number of different ion channel molecules, with the same basic function, are present at the same nerve terminal. This is especially evident in the cases of calcium channels and potassium channels. This abundance of ion channels allows for a physiological and pharmacological fine tuning of the process of transmitter release and thus of synaptic transmission.  相似文献   

5.
Associated with acts of violence and polydrug use, abuse of anabolic androgenic steroids (AAS) is an increasing problem in society. The aim of the present study was to elucidate whether sub-chronic treatment with the AAS nandrolone decanoate affects dopamine release and dopamine metabolism in the rat nucleus accumbens shell, before and after an amphetamine challenge. Male Sprague–Dawley rats received daily i.m. injections of nandrolone decanoate (15 mg/kg) or vehicle for 14 days. On day 15, the animals were anaesthetized and a microdialysis probe was implanted into the nucleus accumbens shell. Extracellular fluid was collected 1 h before and 3 h after a single amphetamine injection (5 mg/kg). The samples were then analyzed regarding the content of dopamine, and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), using HPLC with electrochemical detection. Two weeks of nandrolone decanoate administration caused a significant decrease of the basal DOPAC and HVA levels, which remained low during the first hour following the amphetamine challenge. Dopamine levels did not differ significantly between groups, neither after the nandrolone pre-treatment nor the amphetamine challenge. In conclusion, these novel findings indicate that AAS alter the metabolism of dopamine in a brain region involved in the development of drug dependence.  相似文献   

6.
The present work was undertaken to examine the central pharmacokinetics of phenytoin (PHT) in an experimental model of epilepsy, induced by administration of 3-mercaptopropionic acid (MP), and possible participation of P-glycoprotein in this model of epilepsy. Repeated seizures were induced in male Wistar rats by injection of 3-MP (45 mg kg(-1), i.p.) during 10 days. Control rats (C) were injected with saline solution. In order to monitor extracellular PHT levels, either a shunt microdialysis probe or a concentric probe was inserted into carotid artery or hippocampus, respectively. All animals were administered with PHT (30 mg kg(-1), i.v.) 30 min after intraperitoneal administration of vehicle (V) or nimodipine (NIMO, 2 mg kg(-1)). No differences were found in PHT plasma levels comparing all experimental groups. In pre-treated rats with V, hippocampal PHT concentrations were lower in MP (maximal concentration, C(max): 2.7+/-0.3 microg ml(-1), p<0.05 versus C rats) than in C animals (C(max): 5.3+/-0.9 microg ml(-1)). Control rats pre-treated with NIMO showed similar results (C(max): 4.5+/-0.8 microg ml(-1)) than those pre-treated with V. NIMO pre-treatment of MP rats showed higher PHT concentrations (C(max): 6.8+/-1.0 microg ml(-1), p<0.05) when compared with V pre-treated MP group. Our results indicate that central pharmacokinetics of PHT is altered in MP epileptic rats. The effect of NIMO on hippocampal concentrations of PHT suggests that P-glycoprotein has a role in reduced central bioavailability of PHT in our epileptic refractory model.  相似文献   

7.
A F Boyne  S McLeod 《Neuroscience》1979,4(5):615-624
In a previous morphometric analysis of fatigued Torpedine ray electric organ, it was shown that loss of vesicles from nerve terminals was correlated with growth of plasma membrane in the form of double-walled structures containing vesicles, which were seen inside the nerve terminals. In this paper, we show that the nerve terminals form a fenestrated sheet on the ventral electrocyte surface. Detailed three-dimensional reconstructions show that the processes within stimulated nerve terminals are pseudopodia arising from adjacent, abutted terminal branches. Apparently disconnected pseudopodia were also encountered. The possible relevance to ultrastructural plasticity in stimulated central nervous systems is discussed.  相似文献   

8.
Numerous striatal neurons innervating the substantia nigra contain substance P and/or neurokinin A. In contrast to substance P or neurokinin A, little neurokinin B is found in the substantia nigra. This led us to compare the effects of nigral application of these tachykinins on the release of dopamine from dendrites and nerve terminals of nigrostriatal dopaminergic neurons. Experiments were made in halothane-anesthetized cats implanted with one push-pull cannula in the substantia nigra and another in the ipsilateral caudate nucleus [3H]Tyrosine was delivered continuously to each push-pull cannula and the release of newly synthesized [3H]dopamine measured in the superfusate. Unlike substance P or neurokinin A, neurokinin B (10(-8) M) applied for 30 min into the pars compacta of the substantia nigra was without effect on the release of [3H]dopamine from nerve terminals or dendrites. When either substance P (10(-8) M) or neurokinin A (10(-8) M) was applied into the pars compacta, the release of [3H]dopamine from nerve terminals was enhanced. While neurokinin A also stimulated the dendritic release of [3H]dopamine, this was reduced by substance P. At a lower concentration (10(-9) M), neurokinin A induced similar effects to those observed at 10(-8) M whereas substance P (10(-9) M) stimulated moderately [3H]dopamine release from nerve terminals but did not affect the dendritic release of the [3H]amine. When superfused into the pars reticulata, substance P (10(-8) M) still stimulated [3H]dopamine release from nerve terminals but not from dendrites while neurokinin A (10(-8) M) was without effect either in the caudate nucleus or the substantia nigra. Additional experiments were made to determine whether or not substance P (10(-8) M) or neurokinin A (10(-8) M) act directly on nigral dopaminergic neurons when applied into the pars compacta. The effects of substance P on [3H]dopamine release from nerve terminals and dendrites were prevented when 2-amino-6-trifluoromethoxy benzothiazole (10(-5) M), an antagonist of glutamatergic transmission, was applied continuously into the caudate nucleus. In contrast, the stimulatory effects of neurokinin A on [3H]dopamine release from nerve terminals and dendrites were insensitive to 2-amino-6-trifluoromethoxy benzothiazole (10(-5) M). These results suggest that neurokinin A, but not substance P, acts directly on dopaminergic cells. In the light of previous observations, we propose that the effects of substance P on dopaminergic transmission are mediated by a nigro-thalamo-cortico-striatal loop.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Met-enkephalin-like immunoreactivity has been observed in adrenal medullary gland cells of the rat, guinea-pig and cat. There were marked quantitative differences in untreated animals. Most medullary gland cells were positive in the cat, a large proportion in the guinea-pig but only a few in the rat. After sectioning of the splanchnic nerve, however, a large proportion of the gland cells were met-enkephalin positive also in the rat. Occasionally the met-enkephalin-like immunoreactivity had a granular appearance suggesting that the storage sites could be vesicular.In the guinea-pig a moderate number of met-enkephalin immunoreactive nerve fibers were observed in the adrenal medulla. They disappeared to a large extent after sectioning of the splanchnic nerve. A few fibers were also seen in the rat adrenal medulla, and in the cat some fibers could be seen in areas with few immunoreactive cells.The present findings suggest that in the adrenal medulla an enkephalin-like peptide(s) is present both in gland cells and in nerve terminals arising mainly from fibers in the splanchnic nerve. Thus, the possibility exists that in the adrenal medulla opioid peptides may be released from the gland cells into the blood as hormones as well as from nerve terminals to act as a modulator or transmitter. It should, however, be emphasized that the well-documented metabolic instability of met-enkephalin may be somewhat difficult to reconcile with a hormonal role of this peptide.  相似文献   

10.
Motor nerve terminals in mouse and frog display behavior consistent with an appreciable permeability of the nerve terminal membrane to chloride. In mouse diaphragm, in the presence of 15 mM K+ and 2 mM or 8 mM Ca2+, replacement of Cl by NO 3 , Br or acetate causes a transient increase in the quantal release of acetylcholine, measured as the frequency of spontaneously occurring miniature end plate potentials (FMEPP); a rapid rise in FMEPP is followed by a slow decline, with a half-time of about 4 min, to an equilibration level close to the control level. After equilibration in a solution in which the Cl is replaced by another anion, return to Cl-containing solution causes a transient decrease in FMEPP with a subsequent slow recovery. The data are consistent with transient nerve terminal depolarization or hyperpolarization, reflecting a nerve terminal permeability to anions in the sequence Cl>Br>NO 3 >acetate. In 5 mM K+, changes in nerve terminal excitability, determined using focal stimulation, are also consistent with alteration of nerve terminal membrane potential as a consequence of anion substitution. The time course of relaxation of FMEPP after a change from Cl to an anion of lower permeability, or vice versa, is considerably slower than that expected if Cl permeability of nerve terminals is similar to that of skeletal muscle fibres, and if the nerve terminal behaves as a single compartment. In frog cutaneous pectoris, transient changes in FMEPP produced by substitution of anions in the bathing solution were similar to those produced in mouse diaphragm, but more rapid in time course.This work was supported by grants from the Muscular DystrophyAssociation of Canada and the Medical Research Council of Canada  相似文献   

11.
12.
To obtain information about the electric membrane properties of frog motor nerve terminals we examined how depolarizing or hyperpolarizing current pulses of 2–8 ms duration to the preterminal, by electrotonic spread of potential, affected depolarization induced transmitter release. Sodium channels were blocked by tetrodotoxin. Under this condition a hyperpolarizing current pulse produced inhibition of release, followed by poten-tiation of release. Inhibition lasted more than 100 ms with a time constant of %I50 ms. When, in addition, potassium channels were blocked by 3,4-diaminopyridine or tetra-ethylammonium a depolarizing current pulse potentiated transmitter release for a period up to 50 ms. The results imply that inward currents in the nerve terminal are carried mainly by sodium and calcium ions and outward currents by potassium ions while “leak” conductances are negligible. A low “leak” conductance and therefore a high specific membrane resistance facilitates the spread of electrotonic potentials and thereby explains the long-lasting effects on transmitter release of brief current pulses to the preterminal.  相似文献   

13.
Hyperpolarization of mammalian motor nerve terminals   总被引:4,自引:2,他引:2       下载免费PDF全文
  相似文献   

14.
Levels of N-acetyl-aspartyl-glutamate measured by high-pressure liquid chromatography were found to be very high in the cat substantia nigra, particularly in the pars compacta, while those in the caudate nucleus were much lower. In halothane-anaesthetized cats implanted with push-pull cannulae, N-acetyl-aspartyl-glutamate (10(-8) M) induced a marked and prolonged release of newly synthesized [3H]dopamine, when infused into the posterior but not into the anterior part of the caudate nucleus. In contrast, in the presence of tetrodotoxin (10(-6) M), N-acetyl-aspartyl-glutamate (10(-8) M) reduced the residual release of [3H]dopamine; this effect was also more pronounced in the posterior than in the anterior part. In the conditions used, as indicated by experiments with [3H]N-acetyl-aspartyl-glutamate no glutamate was formed from the infused N-acetyl-aspartyl-glutamate. Ibotenate (10(-5) M) induced changes in [3H]dopamine release in both the absence and presence of tetrodotoxin, which were closely similar to those observed with N-acetyl-aspartyl-glutamate. Responses induced by either N-acetyl-aspartyl-glutamate or ibotenate were not mediated by N-methyl-D-aspartate receptors since N-methyl-D-aspartate stimulated the release of [3H]dopamine only when used in a high concentration (10(-4) M) and applied in a magnesium-free superfusion medium in both the presence of glycine (10(-6) M) and strychnine (10(-6) M). In addition, the stimulatory effect of N-methyl-D-aspartate persisted in the presence of tetrodotoxin; it was of similar amplitude in both parts of the caudate nucleus and of shorter duration than that evoked by either N-acetyl-aspartyl-glutamate or ibotenate alone. N-Acetyl-aspartyl-glutamate interacted with dopaminergic neurons not only presynaptically in the caudate nucleus but also in the substantia nigra since a marked increase in [3H]dopamine release was observed both from local dendrites and from nerve terminals in the ipsilateral caudate nucleus when N-acetyl-aspartyl-glutamate (10(-7) M) was infused locally into the substantia nigra pars compacta. No effect could be seen in contralateral structures. The isomer of natural N-acetyl-aspartyl-glutamate, beta-N-acetyl-aspartyl-glutamate (10(-7) M), had no effect on [3H]dopamine release when applied similarly in the substantia nigra, thus confirming the specificity of the action of N-acetyl-aspartyl-glutamate.  相似文献   

15.
Norepinephrine (NE) uptake has been studied in the adult (3-6 months) and aging (5 yr) chick iris, in which there is a discrete population of norepinephrine containing nerve terminals. although total accumulation of 3H-NE in the iris does not change with age, there is a decline in Na+-dependence, temperature-sensitivity, ouabain-and inhibitor -sensitivity of uptake. The results indicate either a loss of active, carrier-mediated NE uptake during aging, or a change in the biochemical and pharmacological characteristics of this uptake. changes in the composition of the organ and in the sites of accumulation of NE are considered.  相似文献   

16.
Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet., 12, 1881-1895], we investigated the effect of EL deficiency in isolated murine nerve terminals (synaptosomes) on the pre-synaptic release of the neurotransmitters (NTs) glutamate and acetylcholine. Both Ca(2+)-dependent exocytosis and Ca(2+)-independent efflux of the transmitters were affected. EL-deficient synaptosomes respire at a reduced rate and exhibit a lowered adenosin-5'-triphosphate/adenosine diphosphate (ATP/ADP) ratio. Consequently, ATP-driven processes, such as synaptic vesicle cycling and maintenance of Na(+), K(+) and Ca(2+) homeostasis, might be disturbed. Analyzing reactive oxygen species in EL-deficient neural and non-neural tissues revealed that plasmalogens (PLs), the most abundant EL species in mammalian central nervous system, considerably contribute to the generation of the lipid peroxidation product malondialdehyde. Although EL-deficient tissue contains less lipid peroxidation products, fibroblasts lacking ELs are more susceptible to induced oxidative stress. In summary, these results suggest that due to the reduced energy state of EL-deficient tissue, the Ca(2+)-independent efflux of NTs increases while the Ca(2+)-dependent release declines. Furthermore, lack of PLs is mainly compensated for by an increase in the concentration of phosphatidylethanolamine and results in a significantly lowered level of lipid peroxidation products in the brain cortex and cerebellum.  相似文献   

17.
1. Electrophysiological and electron microscope studies were done on cells in the ciliary ganglion of chickens which had been axotomized on the day of hatching. 2. By the third day after post-ganglionic axotomy both electrical and chemical transmission through the ganglion were severely depressed; by the fifth day ganglionic transmission had disappeared. 3. Action potential initiation and conduction in axotomized cells and in their associated presynaptic nerve terminals were unimpaired 3-4 days after axotomy. 4. Depression of ganglionic transmission in 3-4 day axotomized preparations was due to a reduction in amplitude of both the excitatory post-synaptic potential (e.p.s.p.) and the electrical coupling potential in individual ganglion cells. 5. In addition to being reduced in amplitude, e.p.s.p.s in axotomized cells were more subject to fatigue during low frequency (1/sec) stimulation. 6. The reduction in e.p.s.p. amplitude was due to a reduction in both the mean quantal content of the e.p.s.p.s and the calculated depolarization produced by an individual quantum of transmitter. On the average the e.p.s.p. was reduced by a factor of about 4, the mean quantum content to about two thirds normal and the quantal size to about a third normal, compared with responses in unaxotomized cells of the same age. 7. Ultrastructural studies revealed a progressive maturation of pre-synaptic terminals in normal ganglia between 0 and 9 days after hatching. Over this period the content of synaptic vesicles and mitochondria in the terminals increased and the background matrix became more dense. 8. After axotomy these signs of maturation was abolished or reversed, particularly from the third day onward. In addition there was an increase in the number of cell sections in which no synaptic terminals were observed. 9. It was concluded that loss of synaptic transmission was due to at least three factors: a reduction in release of transmitter from presynaptic terminals, a reduction in quantal size, probably due to a loss of post-synaptic sensitivity, and a partial loss of presynaptic contact.  相似文献   

18.
19.
Monoiodo[125I]Tyr3-neurotensin binding in coronal and sagittal brain sections from rats that had received a unilateral 6-hydroxydopamine lesion of the median forebrain bundle, revealed a complete loss of neurotensin binding (NTH)-sites in the caudate nucleus of the lesioned side. Moreover, in the lesioned side, 83% of the NTH-sites disappeared also from the nucleus accumbens and 65% from the olfactory tubercle. NTH-sites subsisted partly in the Islands of Calleja and no significant alteration was observed in the rhinal sulcus and in the cingulate cortex. We conclude that, in the terminal area of the nigrostriatal pathway, all functional NTH-sites are located on presynaptic dopaminergic nerve endings. In the terminal areas of the mesolimbic pathway, the vast majority of NTH-sites are also located on dopaminergic nerve endings. Only a few NTH-sites may possibly be located on non-dopaminergic nerve endings in the olfactory tubercle. NTH-sites can therefore be considered as specific markers of the dopaminergic nerve terminals in both the nigrostriatal and mesolimbic pathways.  相似文献   

20.
Olfactory receptor neurons of the nasal epithelium project via the olfactory nerve (ON) to the glomeruli of the main olfactory bulb, where they form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the olfactory bulb, and with juxtaglomerular interneurons. The glomerular layer contains one of the largest population of dopamine (DA) neurons in the brain, and DA in the olfactory bulb is found exclusively in juxtaglomerular neurons. D2 receptors, the predominant DA receptor subtype in the olfactory bulb, are found in the ON and glomerular layers, and are present on ON terminals. In the present study, field potential and single-unit recordings, as well as whole cell patch-clamp techniques, were used to investigate the role of DA and D2 receptors in glomerular synaptic processing in rat and mouse olfactory bulb slices. DA and D2 receptor agonists reduced ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells. Spontaneous and ON-evoked spiking of mitral cells was also reduced by DA and D2 agonists, and enhanced by D2 antagonists. DA did not produce measurable postsynaptic changes in juxtaglomerular cells, nor did it alter their responses to mitral/tufted cell inputs. DA also reduced 1) paired-pulse depression of ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells and 2) the amplitude and frequency of spontaneous, but not miniature, excitatory postsynaptic currents in juxtaglomerular cells. Taken together, these findings are consistent with the hypothesis that activation of D2 receptors presynaptically inhibits ON terminals. DA and D2 agonists had no effect in D2 receptor knockout mice, suggesting that D2 receptors are the only type of DA receptors that affect signal transmission from the ON to the rodent olfactory bulb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号