首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
Solid-pseudopapillary tumors (SPTs) are unusual pancreatic neoplasms of low malignant potential that most frequently affect young women. Genetic events contributing to the development of SPTs are unknown. Whereas the more common ductal adenocarcinomas of the pancreas essentially never harbor beta-catenin or APC gene mutations, we have recently identified alterations of the APC/beta-catenin pathway in other nonductal pancreatic neoplasms including pancreatoblastomas and acinar cell carcinomas. We analyzed a series of 20 SPTs for somatic alterations of the APC/beta-catenin pathway using immunohistochemistry for beta-catenin protein accumulation, direct DNA sequencing of beta-catenin exon 3, and direct DNA sequencing of the mutation cluster region in exon 15 of the APC gene in those SPTs that did not harbor beta-catenin mutations. Immunohistochemical labeling for cyclin D1 was performed to evaluate the overexpression of this cell-cycle protein as one of the putative downstream effectors of beta-catenin dysregulation. In addition, we analyzed the SPTs for genetic alterations commonly found in pancreatic ductal adenocarcinomas, including mutations in the K-ras oncogene and p53 and DPC4 tumor suppressor genes, using direct DNA sequencing of K-ras and immunostaining for p53 and Dpc4. Almost all SPTs harbored alterations in the APC/beta-catenin pathway. Nuclear accumulation of beta-catenin protein was present in 95% (19 of 20), and activating beta-catenin oncogene mutations were identified in 90% (18 of 20) of the SPTs. Seventy-four percent (14 of 19) showed overexpression of cyclin D1, ranging from 10 to 70% of tumor nuclei. In contrast, no K-ras mutations were present in any of the 20 SPTs, and Dpc4 expression was intact in all 16 SPTs for which immunohistochemical labeling was successful. Overexpression of p53 was limited to only 3 of 19 (15.8%) SPTs. These results emphasize the two distinct, divergent genetic pathways of neoplastic progression in pancreatic ductal and nonductal neoplasms.  相似文献   

2.
Acinar cell carcinomas (ACCs) are rare malignant tumors of the exocrine pancreas. The specific molecular alterations that characterize ACCs have not yet been elucidated. ACCs are morphologically and genetically distinct from the more common pancreatic ductal adenocarcinomas. Instead, the morphological, immunohistochemical, and clinical features of ACCs overlap with those of another rare pancreatic neoplasm, pancreatoblastoma. We have recently demonstrated a high frequency of allelic loss on chromosome arm 11p and mutations in the APC/beta-catenin pathway in pancreatoblastomas, suggesting that similar alterations might also play a role in the pathogenesis of some ACCs. We analyzed a series of 21 ACCs for somatic alterations in the APC/beta-catenin pathway and for allelic loss on chromosome 11p. In addition, we evaluated the ACCs for alterations in p53 and Dpc4 expression using immunohistochemistry, and for microsatellite instability (MSI) using polymerase chain amplification of a panel of microsatellite markers. Allelic loss on chromosome 11p was the most common genetic alteration in ACCs, present in 50% (6 of 12 informative cases). Molecular alterations in the APC/beta-catenin pathway were detected in 23.5% (4 of 17) of the carcinomas, including one ACC with an activating mutation of the beta-catenin oncogene and three ACCs with truncating APC mutations. One ACC (1 of 13, 7.6%) showed allelic shifts in four of the five markers tested (MSI-high), two (15.4%) showed an allelic shift in only one of the five markers tested (MSI-low), and no shifts were detected in the remaining 10 cases. The MSI-high ACC showed medullary histological features. In contrast, no loss of Dpc4 protein expression or p53 accumulation was detected. These results indicate that ACCs are genetically distinct from pancreatic ductal adenocarcinomas, but some cases contain genetic alterations common to histologically similar pancreatoblastomas.  相似文献   

3.
Solid pseudopapillary tumor, pancreatoblastoma, undifferentiated carcinoma with osteoclastic-like giant cells, and acinar cell carcinomas are rare pancreatic nonductal neoplasms. Compared to the significant advances in our understanding of the pathogenesis of pancreatic ductal adenocarcinomas in the last decades, the molecular mechanisms underlying pancreatic nonductal neoplasms are poorly understood. In order to elucidate their molecular pathogenesis, we constructed tissue microarrays to study the expression of some novel pancreatic ductal adenocarcinoma-associated tumor markers in these nonductal pancreatic neoplasms. We analyzed nine markers including tumor suppressor gene (14-3-3 sigma), proliferation marker (topoisomerase II alpha), epithelial markers (prostate stem cell antigen, mesothelin and cytokeratin 19), stromal markers (fascin, hsp47 and fibronectin), and gamma-synuclein whose function is not delineated. In addition, we included tumor suppressor gene DPC4 and oncogene Beta-catenin to further confirm their expression in pancreatic nonductal tumors. Our results showed that in contrast to pancreatic ductal adenocarcinomas that show loss of Dpc4 protein in 55% of cases, loss of Dpc4 expression is absent in pancreatic nonductal neoplasms. Expression of 14-3-3 sigma is frequently seen in both pancreatic nonductal neoplasms (25-100%) and ductal adenocarcinomas (89%). Aberrant nuclear expression of beta-catenin is common in pancreatic nonductal neoplasms, specifically in solid pseudopapillary tumors (88%) and pancreatoblastomas (100%) but is rarely seen in pancreatic ductal adenocarcinomas (<5%). Expression of topoisomerase II alpha is not seen in solid pseudopapillary tumors and undifferentiated carcinomas with osteoclastic-like giant cells but is focally seen in pancreatoblastomas (50%) and acinar cell carcinomas (85%). Expression of PSCA and mesothelin was observed in pancreatic nonductal neoplasms but their expression was seen less frequently (0-50%) and weaker than that in pancreatic ductal adenocarcinomas (60-100%). CK19, a marker of pancreatic ductal adenocarcinomas, is not expressed in pancreatic nonductal neoplasms. Expression of gamma-synuclein as well as stromal markers (fascin, hsp47 and fibronectin) is frequently seen in both. Our findings indicate pancreatic nonductal neoplasms have distinctive patterns of protein expression relative to pancreatic ductal adenocarcinomas and suggest that pancreatic nonductal neoplasms have different genetic pathways from the more common pancreatic ductal adenocarcinomas.  相似文献   

4.
Intraductal papillary neoplasms (IPNs) of the biliary tract are uncommon lesions that may be solitary or may spread extensively along the biliary tree. Some biliary IPNs are histologically and radiologically similar to intraductal papillary mucinous tumors (IPMNs) of the pancreas and present a risk for progression to invasive cholangiocarcinoma. Unlike pancreatic IPMNs, little is known about their molecular pathogenesis. We studied 14 biliary IPNs (including 5 cases with associated invasive cholangiocarcinoma) for genetic alterations in the APC/beta-catenin pathway, K-ras oncogene mutations, p53/chromosome 17p alterations, and Dpc4/18q alterations. Immunohistochemistry was performed for beta-catenin, p53, and Dpc4, and microdissected tissue was analyzed using direct DNA sequencing for exon 1 of K-ras and exon 3 of beta-catenin and allelic loss assays on chromosomes 5q, 17p, and 18q. Activating mutations in codon 12 of the K-ras oncogene were present in 4 of 14 (29%) biliary IPNs. Of these 4 cases, 2 patients had associated invasive cholangiocarcinoma, and identical K-ras mutations were present in both the intraductal and invasive components. Allelic loss on chromosome 18q was present in 4 of 13 informative cases (31%); however, no loss of normal Dpc4 expression was detected by immunohistochemistry. Nuclear accumulation of beta-catenin protein was demonstrated in 3 of 12 cases (25%); however, there were no beta-catenin gene mutations, and allelic loss on 5q was present in only 1 of 10 informative cases (10%). Both immunohistochemistry for p53 and 17p allelic loss assays were negative. Biliary IPNs therefore demonstrate a K-ras gene mutation frequency that is lower than that previously reported for pancreatic IPMNs, but similar to that reported for hepatic cholangiocarcinomas. The presence of K-ras mutations in 2 purely intraductal neoplasms, and identical K-ras mutations in 2 cases with both intraductal and invasive components, suggests that these mutations arise early in tumorigenesis. Finally, the frequency of allelic loss on 18q suggests that a locus on 18q is involved in the molecular pathogenesis of biliary IPNs, but this locus is not DPC4.  相似文献   

5.
Germline mutations of the APC gene cause familial adenomatous polyposis coli (FAP). APC inactivation results in dysregulation of wnt/wingless signaling and contributes to chromosomal instability in vitro. To investigate somatic alterations that follow a known germline mutation and contribute to the transition from normal to neoplastic mucosa, we studied 10 adenomatous polyps from a 27-year-old patient with an APC germline mutation at codon 554. Chromosomal imbalances were analyzed by comparative genomic hybridization; APC and K-ras were screened for somatic mutations. Before DNA analysis, the polyps were bisected to compare the genetic alterations with the corresponding immunohistologic phenotype of beta-catenin, a proto-oncogene product degraded by the APC tumor suppressor. Gains at chromosome 20 were the most frequent chromosomal alterations (6 polyps). Losses were found predominantly at chromosome 4q (3 polyps). A K-ras mutation was seen in 1 polyp, while all polyps displayed somatic intragenic APC mutations. Comparative immunohistologic analysis revealed strong membranous staining for beta-catenin in all adenomatous polyps, but only 1 adenoma showed nuclear accumulation. Our results suggest chromosomal aberrations contribute early to the progression of adenomatous polyps after biallelic APC inactivation. APC inactivation itself is insufficient for immunohistochemically detectable nuclear translocation of beta-catenin.  相似文献   

6.
Pancreatic neoplasms with acinar differentiation, including acinar cell carcinoma, pancreatoblastoma, and carcinomas with mixed differentiation, are distinctive pancreatic neoplasms with a poor prognosis. These neoplasms are clinically, pathologically, and genetically unique when compared to other more common pancreatic neoplasms. Most occur in adults, although pancreatoblastomas usually affect children under 10 years old. All of these neoplasms exhibit characteristic histologic features including a solid or acinar growth pattern, dense neoplastic cellularity, uniform nuclei with prominent nucleoli, and granular eosinophilic cytoplasm. Exocrine enzymes are detectable by immunohistochemistry and, for carcinomas with mixed differentiation, neuroendocrine or ductal lineage markers are also expressed. The genetic alterations of this family of neoplasms largely differ from conventional ductal adenocarcinomas, with only rare mutations in TP53, KRAS, and p16, but no single gene or neoplastic pathway is consistently altered in acinar neoplasms. Instead, there is striking genomic instability, and a subset of cases has mutations in the APC/β-catenin pathway, mutations in SMAD4, RAF gene family fusions, or microsatellite instability. Therapeutically targetable mutations are often present. This review summarizes the clinical and pathologic features of acinar neoplasms and reviews the current molecular data on these uncommon tumors.  相似文献   

7.
Gastric fundic gland polyps (FGPs) occur in two distinct clinicopathological scenarios: sporadic and familial adenomatous polyposis (FAP) associated. FAP-associated FGPs arise through somatic second hit alterations of the adenomatous polyposis coli (APC) gene and frequently demonstrate epithelial dysplasia (Am J Pathol 2000, 157:747-754). Sporadic FGPs, in contrast, tend to contain beta-catenin gene mutations and only infrequently show dysplasia (Am J Pathol 2001, 158:1005-1010). However, sporadic FGPs with dysplasia have not been previously investigated. We studied 13 sporadic FGPs with surface/foveolar low-grade dysplasia or changes indefinite for dysplasia for alterations in the APC/beta-catenin pathway, using chromosome 5q allelic loss assays and direct DNA sequencing of the mutation cluster region in exon 15 of APC and the phosphorylation region in exon 3 of beta-catenin. In addition, to evaluate for possible additional genetic alterations in FGPs, all cases were evaluated for microsatellite instability using fluorescent-based amplification of a standard panel of five microsatellite markers. Alterations in APC were present in seven (53.8%) FGPs, including two cases with bi-allelic APC inactivation (truncating intragenic mutation plus 5q allelic loss), two cases with APC mutation only, and three cases with 5q allelic loss only. In contrast, only two (15.4%) FGPs contained stabilizing beta-catenin mutations. All 13 FGPs were microsatellite stable. These results indicate that sporadic FGPs with dysplasia/indefinite for dysplasia are molecularly similar to FAP-associated FGPs, and are dissimilar to the more common sporadic nondysplastic FGPs. Mutations in APC and beta-catenin, despite occurring in the same genetic pathway, show differing biological properties, a phenomenon that has previously been demonstrated in colorectal neoplasms. The lack of microsatellite instability in FGPs in this study and of K-ras mutations in a previous study suggests that secondary genetic alterations are rare in both dysplastic and nondysplastic FGPs.  相似文献   

8.
Hepatoblastoma, a rare embryonic tumor that may arise sporadically or in the context of hereditary syndromes (familial adenomatous polyposis and Beckwith-Wiedemann's) is the most frequent liver cancer of childhood. Deregulation of the APC/beta-catenin pathway occurs in a consistent fraction of hepatoblastomas, with mutations in the APC and beta-catenin genes implicated in familial adenomatous polyposis-associated and sporadic hepatoblastomas, respectively. Alterations in other cancer-related molecular pathways have not been reported. We investigated a series of 21 sporadic paraffin-embedded hepatoblastoma cases for mutations in the p53 (exons 5-8) and beta-catenin (exon 3) genes, loss of heterozygosity at APC, microsatellite instability and immunohistochemical expression of beta-catenin and of the two main mismatch repair proteins, MLH1 and MSH2. No loss of heterozygosity at APC was detected. We found mutations in beta-catenin and p53 in 4/21 (19%) and 5/21 (24%) cases respectively, beta-catenin protein accumulation in 14/21 cases (67%), microsatellite instability in 17/21 cases (81%), of which eight resulted positive for high-level of microsatellite instability (in four cases associated with loss of MLH1/MSH2 immunostaining). No correlations between involved molecular pathway(s) and hepatoblastoma histotype(s) emerged. This study confirms that beta-catenin deregulation is involved in sporadic hepatoblastoma and also suggests that mismatch repair defects and p53 mutations contribute to this rare liver cancer. Sporadic hepatoblastoma appears to be molecularly and phenotypically heterogeneous and may reflect different pathways of liver carcinogenesis.  相似文献   

9.
Gallbladder carcinomas can be highly lethal neoplasms. Relatively little is known about the genetic abnormalities that underlie these tumors, particularly with respect to their timing in neoplastic progression. The authors evaluated 5 noninvasive dysplasias and 33 invasive gallbladder carcinomas (6 small cell carcinomas, 27 non-small cell carcinomas, of which 16 were accompanied by an in situ carcinoma component) for expression of the protein products of the p16, p53, Dpc4, and pRB tumor suppressor genes by immunohistochemistry. Neoplasms were also evaluated for the presence of activating K-ras oncogene mutations. Seventy-five percent of non-small cell gallbladder carcinomas demonstrated loss of p16 expression, whereas 63% accumulated high levels of p53. Loss of Dpc4 and pRB expression was less frequent, seen in 19% and 4% of the neoplasms, respectively. Thirty percent of neoplasms harbored activating K-ras mutations. In contrast, 100% of the small cell carcinomas of the gallbladder demonstrated inactivation of the pRB/p16 pathway; 67% showed loss of pRB expression, and the other 33% lost p16 expression. Eighty-three percent of small cell carcinomas accumulated high levels of p53, whereas loss of Dpc4 expression and activating K-ras mutations were not found. Among 15 evaluable in situ components, 13 harbored the same alterations found in the invasive component. Inactivation of p16 and p53 occur in the majority of non-small cell gallbladder carcinomas. Dpc4 inactivation and K-ras mutations occur in a significant minority of cases. pRB loss is uncommon in non-small cell gallbladder carcinoma, but virtually all small cell carcinomas inactivate the p16/pRB pathway, usually by retinoblastoma protein loss. It is noteworthy that all of these alterations occur at the level of carcinoma in situ.  相似文献   

10.
The K-ras oncogene is activated in approximately 90% of pancreatic adenocarcinomas, and the DPC4 (MADH4/SMAD4) tumor suppressor gene is inactivated in approximately 55% of pancreatic adenocarcinomas. The contributions of these genetic alterations to the development of adenocarcinoma of the ampulla of Vater have not been fully established. One hundred forty surgically resected ampullary adenocarcinomas (76 with associated adenomas with high-grade dysplasia) were immunohistochemically labeled for the DPC4 gene product, and in 85 cases the results were correlated with the status of the K-ras oncogene from previously reported data. The results were correlated with clinical outcome and with other pathologic predictors of prognosis. Complete loss of Dpc4 labeling was identified in 34% (95% confidence interval [CI]: 26%, 43%) of the invasive carcinomas and in none (upper 95% CI: 6%) of the associated adenomas. Focal loss of Dpc4 was seen in three (4%; 95% CI: 1%, 14%) of the areas of high-grade dysplasia. Complete loss of Dpc4 expression was seen in 28/77 intestinal-type tumors, in 17/46 pancreaticobiliary-type tumors, and in 0/10 colloid carcinomas. Activating point mutations in the K-ras gene were identified in 40% of the invasive cancers. There was no correlation between K-ras gene mutations and Dpc4 expression and no correlation between these variables and survival. The overall 5-year survival rate was 38%. Lymph node metastases were associated with shorter survival (P =.03). Loss of Dpc4 expression occurs in approximately one third of invasive ampullary cancers but is not seen in adenomas; thus, loss of Dpc4 expression occurs late in ampullary carcinogenesis. Although ampullary and pancreatic adenocarcinomas share histologic and molecular features, ampullary carcinomas are less likely to show loss of Dpc4 expression or K-ras gene mutations.  相似文献   

11.
Gastric adenomatous polyps are rare findings in upper gastrointestinal endoscopy; however, they are associated strongly with malignant transformation. Few series describe the oncogenic characteristics of gastric adenomas. In the present study, we immunohisto-chemically assessed the expression of cyclooxygenase (COX)-2, beta-catenin, p53, and adenomatous polyposis coli (APC) in paraffin-embedded specimens of 14 gastric adenomas. Control samples of normal gastric tissue and gastric adenocarcinoma also were analyzed. Of the adenomas, 7 demonstrated overexpression of COX-2, and all demonstrated nuclear p53 accumulation. Accumulation of beta-catenin in the nucleus and cytoplasm was detected in 38% (3/8) of specimens. Loss of APC staining was observed in 50% (4/8). Similar alterations in oncoprotein expression were seen in gastric cancers but not in normal control sections. Gastric adenomas display alterations in the expression of COX-2, beta-catenin, and APC similar to those seen in adenocarcinomas; however, accumulation of p53 was significantly more common in adenomas than in cancers.  相似文献   

12.
Familial adenomatous polyposis patients (FAP) harbour a germline mutation of the adenomatous polyposis coli gene (APC), and APC mutations are early events in the development of sporadic colorectal neoplasms. The APC protein interacts with beta-catenin and gamma-catenin and APC mutations are believed to play a role in the altered levels of beta-catenin in colorectal tumours. Immunohistochemical studies have shown changes in the expression and distribution of E-cadherin and catenins in sporadic colorectal neoplasms. This study assessed the expression and distribution of E-cadherin and catenins in colorectal neoplasms and non-neoplastic mucosa from FAP patients. The expression and cellular distribution of E-cadherin and catenins were studied by immunohistochemistry in 61 adenomas, five carcinomas, and non-neoplastic mucosa from 18 FAP patients. mRNA levels in the carcinomas were studied by in situ hybridization. The expression of E-cadherin and catenins was increased in over 80% of the adenomas, with evident cytoplasmic immunoreactivity. There was increased expression of E-cadherin and catenin in the carcinomas, with a notable increase in the levels of mRNA, in comparison with the non-neoplastic mucosa.  相似文献   

13.
14.
15.
Familial adenomatous polyposis (FAP) is an autosomal dominant condition characterized by the development of hundreds to thousands of colorectal adenomatous polyps. In addition to the classic form, there is also attenuated polyposis (attenuated adenomatous polyposis coli; AAPC), which is characterized by a milder phenotype. FAP/AAPC is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Very recently, germline mutations in the base-excision repair gene MYH have been associated with recessive inheritance of multiple colorectal adenomas in a subset of patients. APC pathogenic alterations are mostly (>95%) represented by frameshift or nonsense mutations leading to the synthesis of a truncated protein. We identified 20 APC truncating mutation carriers out of 30 FAP/AAPC patients from different Italian kindreds. In the remaining 10 patients, we searched for alterations other than truncating mutations by enzymatic mutation detection, real-time quantitative RT-PCR, and genotyping of polymorphic markers encompassing the APC locus. Moreover, to assess whether mutations of genes interacting with APC can substitute or act in association with APC alterations, we sequenced both CTNNB1 (beta-catenin) and CDH1 (E-cadherin) genes. No CTNNB1 or CDH1 mutations were found. On the contrary, four patients showed a reduced APC gene expression compared with healthy subjects. In three of the four cases, genotyping results were compatible with a constitutive allelic deletion. In one case this conclusion was confirmed by haplotype segregation analysis. Our results support the notion that FAP/AAPC can result from APC constitutive haploinsufficiency, with gene deletion being a possible cause of reduced gene expression.  相似文献   

16.
Fundic gland polyp (FGP) is the most common gastric polyp. It occurs sporadically or in association with familial adenomatous polyposis (FAP). FAP patients carry germline mutations of the adenomatous polyposis coli (APC) gene, and previous studies have revealed frequent somatic mutations of the APC gene in FGPs associated with FAP. Although inactivation of the APC gene contributes to histogenesis of FGPs associated with FAP, this rarely happens in sporadic cases. Loss of the APC gene promotes abnormal accumulation of beta-catenin, and mutation of GSK-3 beta phosphorylation sites in the beta-catenin gene can have a similar effect. To elucidate the contribution of beta-catenin gene mutation to the histogenesis of sporadic FGP, we analyzed beta-catenin gene mutation in exon 3 in 45 FGP lesions obtained from 35 patients. Somatic mutations were found in 29 lesions: 28 were missense mutations and one was an in-frame deletion. All of the missense mutations were confined to the former two serine residues of the GSK-3 beta phosphorylation sites and their flanking residues (codons 32, 33, 34, 37). Analysis in cases with multiple FGPs revealed a different mutation in each lesion, indicating their multicentric origin. Therefore, a significant proportion of sporadic FGPs have genetic alterations involving beta-catenin stabilization, as did FAP-associated FGPs.  相似文献   

17.
Familial adenomatous polyposis (FAP) is caused by mutation of the adenomatous polyposis coli (APC) gene and is characterized by multiple colorectal adenomas and tumors of other organs and sites. A 58-year-old woman with FAP syndrome and previous total colectomy presented for routine follow-up examination. Abdominal ultrasound and subsequent endoscopic evaluation revealed ampullary and duodenal polyps, as well as inhomogeneity of the pancreatic head. A pancreaticoduodenectomy confirmed multiple duodenal adenomas. In addition, high-grade pancreatic intraepithelial neoplasia (PanIN-3) was found in the smaller pancreatic ducts. Pancreatic precancerous lesions have only rarely been described in FAP, including 2 pancreatic duct adenomas and 2 intraductal papillary mucinous neoplasms. A review of the world English literature revealed no reports of PanIN-3 in association with FAP. Further studies are required to determine if patients with FAP are at increased risk for pancreatic premalignant lesions.  相似文献   

18.
Fibromatoses of the breast are nonmetastasizing tumors, but can be infiltrative and locally recurrent. Breast fibromatoses are rare, and their specific genetic alterations have not been elucidated. However, their occasional occurrence in patients with familial adenomatous polyposis (FAP) and their morphologic identification with other deep fibromatoses (desmoid tumors) suggest that alterations of the APC/beta-catenin pathway might be involved in the pathogenesis of sporadic and FAP-associated breast fibromatoses. We analyzed somatic beta-catenin and APC gene mutations in 33 breast fibromatoses (32 sporadic and 1 FAP-associated) using immunohistochemistry for beta-catenin, 5q allelic loss assays, and direct DNA sequencing for exon 3 of the beta-catenin gene and the mutation cluster region of the APC gene. Nuclear accumulation of beta-catenin was present in the stromal tumor cells in most (82%) cases but not in normal stroma or mammary epithelial cells. Somatic alterations of the APC/beta-catenin pathway were detected in 79% of breast fibromatoses, including activating beta-catenin gene mutations in 15 cases and somatic APC alterations (mutation or 5q allelic loss or both) in 11. These findings indicate that alterations of the APC/beta-catenin pathway with resultant nuclear translocation of beta-catenin are important in the pathogenesis of both sporadic and FAP-associated breast fibromatosis. The spectrum of beta-catenin and APC alterations is similar to that described for desmoid tumors of the abdomen, paraspinal region, and extremities.  相似文献   

19.
20.
Fundic gland polyps (FGPs) are the most common gastric polyps. FGPs traditionally have been regarded as nondysplastic hamartomatous or hyperplastic lesions, but their pathogenesis remains unclear. We have recently shown that somatic adenomatous polyposis coli (APC) gene alterations are frequently present in FGPs associated with familial adenomatous polyposis (FAP), raising the possibility that mutations of the beta-catenin gene affecting the APC/beta-catenin pathway might be involved in the pathogenesis of sporadic FGPs. We analyzed somatic beta-catenin gene mutations in 57 sporadic FGPs from 40 patients without FAP and in 19 FGPs from 13 FAP patients. Direct DNA sequencing of exon 3 encompassing the glycogen synthase kinase-3beta phosphorylation region for beta-catenin was used with confirmation by HIN:fI restriction endonuclease digestion. The foveolar epithelium and dilated fundic glands of the polyps were separately microdissected and analyzed in 22 of 57 sporadic FGPs. Activating beta-catenin gene mutations were present in 91% (52 of 57) of sporadic FGPs. Both the foveolar epithelium and the dilated fundic gland epithelium comprising the polyps were shown to have the same somatic beta-catenin mutation in 21 of 22 (95%) sporadic FGPs. In contrast, beta-catenin gene mutations were not present in any of the 19 FAP-associated FGPs (P: < 0.000001). The high frequency of beta-catenin mutations in sporadic FGPs indicates that these lesions arise through activating mutations of the beta-catenin gene. Beta-catenin mutations in gastrointestinal tract polyps have previously only been demonstrated in a subset of adenomatous (dysplastic) or neoplastic polyps. Sporadic FGPs are therefore the only lesions of the gastrointestinal tract to demonstrate beta-catenin mutations while lacking dysplastic morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号