首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Advances in genetics and transgenic approaches have a continuous impact on our understanding of Alzheimer’s disease (AD) and related disorders, especially as aspects of the histopathology and neurodegeneration can be reproduced in animal models. AD is characterized by extracellular Aβ peptide-containing plaques and neurofibrillary aggregates of hyperphosphorylated isoforms of microtubule-associated protein tau. A causal link between Aβ production, neurodegeneration and dementia has been established with the identification of familial forms of AD which are linked to mutations in the amyloid precursor protein APP, from which the Aβ peptide is derived by proteolysis. No mutations have been identified in the tau gene in AD until today. Tau filament formation, in the absence of Aβ production, is also a feature of several additional neurodegenerative diseases including progressive supranuclear palsy, corticobasal degeneration, Pick’s disease, and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). The identification of mutations in the tau gene which are linked to FTDP-17 established that dysfunction of tau can, as well as Aβ formation, lead to neurodegeneration and dementia. In this review, newly recognized cellular functions of tau, and the neuropathology and clinical syndrome of FTDP-17 will be presented, as well as recent advances that have been achieved in studies of transgenic mice expressing tau and AD-related kinases and phosphatases. These models link neurofibrillary lesion formation to neuronal loss, provide an in vivo model in which therapies can be assessed, and may contribute to determine the relationship between Aβ production and tau pathology.  相似文献   

2.
Tau and tauopathies   总被引:3,自引:0,他引:3  
Tau protein is a neuronal microtubule-associated protein (MAP), which localizes primarily in the axon. It is one of the major and most widely distributed MAPs in the central nervous system. Its biochemistry and molecular pathology is being increasingly studied. Tau is a key component of neurofbrillary tangles in Alzheimer's disease (AD). Disorders with neuronal, oligodendroglial or astrocytic filamentous tau inclusions are now grouped under the common rubric of tauopathies. The discovery of mutations in the tau gene, located on Chromosome 17 and its relationship to frontotemporal dementia with Parkinsonism (FTDP-17) has enhanced the importance of tau protein in cognitive neurology. Aberrant aggregates of tau have been documented in most of the neurodegenerative diseases with filamentous inclusions. The role of cerebrospinal fluid tau in the diagnosis of dementias is being investigated quite extensively. Recently, it has been shown that Abeta immunotherapy leads to the clearance of early tau pathology. It is becoming clearer that understanding tau better will lead to better understanding of many neurodegenerative diseases that may help develop interventional strategies.  相似文献   

3.
Abnormal protein aggregation is a common characteristic of many neurodegenerative diseases of the brain. Filamentous deposits made of the microtubule-associated protein tau constitute a major defining characteristic of several neurodegenerative diseases known as tauopathies. The role of tau in neurodegeneration has been clarified by the identification of genetic mutations in the tau gene in cases with familial frontotemporal dementia and parkinsonism linked to chromosome 17. Furthermore, some sporadic tauopathies are associated with tau gene polymorphisms. Although it is still debated how tau gene mutations lead to neuronal death, it is clear that different mutations lead to tau pathologies with characteristics similar to those found in sporadic tauopathies. These findings have definitely shown that in tauopathies tau aggregation is directly associated with development of neurodegeneration and neuronal death.  相似文献   

4.
Recent work on frontotemporal dementia (FTD) has revealed the existence of at least 3 genetically distinct groups of inherited FTD: FTDP-17, FTD and motor neuron disease linked to chromosome 9, and FTD linked to chromosome 3 (FTD-3). Tau, on chromosome 17, is the only gene where mutations have been identified and its involvement in FTD has been firmly established. The genes on chromosome 9 and chromosome 3 associated with familial forms of FTD remain to be identified. Abnormal aggregates of tau protein characterize the brain lesions of FTDP-17 patients and ubiquitin inclusions have been found in FTD with motor neuron disease linked to chromosome 9. In this study the frontal cortices of 3 FTD-3 patients from a unique Danish family were examined for characteristic neuropathological features. In these brains tau inclusions were present in neurons and some glial cells in the absence of beta-amyloid deposits. The presence of filamentous tau protein in the frontal cortex of these patients suggests a possible link between tau and the genetic defect present on chromosome 3 and associated with FTD-3, although the limited amount of tau deposits observed makes it difficult to define this as a tauopathy.  相似文献   

5.
Tau and axonopathy in neurodegenerative disorders   总被引:5,自引:0,他引:5  
The microtubule (MT)-associated protein (MAP) tau in neurons has been implicated as a significant factor in the axonal growth, development of neuronal polarity, and the maintenance of MT dynamics. Tau is localized to the axon, and is known to promote MT assembly and to stabilize axonal MTs. These functions of tau are primarily regulated by the activities of protein kinases and phosphatases. In Alzheimer's disease and other neurodegenerative disorders, abundant filamentous tau inclusions are found to be major neuropathological characteristics of these diseases. Both somato-dendritic and axonal tau lesions appear to be closely associated with axonal disruption. Furthermore, recent discoveries of pathogenic mutations on the tau gene suggest that abnormalities of tau alone are causative of neurodegeneration. Finally, analyses of transgenic mice that express human tau proteins have enabled in vivo quantitative assessments of axonal functions and have provided information about mechanistic relationships between pathological alteration of tau and axonal degeneration.  相似文献   

6.
Tau pathology: a marker of neurodegenerative disorders   总被引:9,自引:0,他引:9  
Tau is not only a basic component of neurofibrillary degeneration, but is also an aetiological factor, as demonstrated by mutations on the tau gene responsible for frontotemporal dementias with parkinsonism linked to chromosome 17. Polymorphisms on the tau gene and the hierarchical invasion of neocortical areas by tau pathology in numerous sporadic neurodegenerative diseases also suggest that tau pathology is a primary pathogenic event in non-familial dementing diseases and a lead for solid diagnostic and therapeutic approaches.  相似文献   

7.
We studied whether denervation affects the expression of tau, in particular phosphorylated tau, and how it is degraded in rat soleus muscles. Immunoblot analysis showed a high molecular weight, approximately 110 kDa (big tau), in normal muscle. Tau levels increased significantly in denervated muscles treated with chloroquine (a lysosomotrophic agent) and in untreated ones, as compared to levels of similarly treated contralateral, innervated muscles. Most of the tau in the innervated and denervated muscles was phosphorylated. Immunohistochemically, tau and β‐tubulin colocated in the sarcoplasm of innervated, saline‐treated (intact) muscle, but the staining intensities were very weak. Both proteins, however, were expressed extensively in these areas in the denervated muscles from saline‐treated rats. In the denervated muscle of chloroquine‐treated rats there were numerous autophagic vacuoles in the sarcoplasm, and phosphorylated‐tau accumulation was marked within these vacuoles, indicative that tau first was taken into autophagic, vacuoles by nonselective autophagy then degraded via the lysosomal as well as the nonlysosomal calpain system. Our findings suggest that phosphorylated big tau accumulates with β‐tubulin in denervated muscular atrophy, possibly in order to maintain or preserve the integrity of the muscle fiber during progressive atrophy or regeneration. © 1999 John Wiley & Sons, Inc. Muscle Nerve 22: 61–70, 1999  相似文献   

8.
Formation of neurofibrillary tangles (NFTs) is the most common feature in several neurodegenerative diseases, including Alzheimer's disease (AD). Here we report the formation of filamentous tau aggregations having a beta-sheet structure in transgenic mice expressing mutant human tau. These mice contain a tau gene with a mutation of the frontotemporal dementia parkinsonism (FTDP-17) type, in which valine is substituted with methionine residue 337. The aggregation of tau in these transgenic mice satisfies all histological criteria used to identify NFTs common to human neurodegenerative diseases. These mice, therefore, provide a preclinical model for the testing of therapeutic drugs for the treatment of neurodegenerative disorders that exhibit NFTs.  相似文献   

9.
Tau-positive inclusions in neurons are consistent neuropathologic features of the most common causes of dementias such Alzheimer's disease and frontotemporal dementia. Ubiquitinated tau-positive inclusions have been reported in brains of Alzheimer's disease patients, but involvement of the ubiquitin-dependent proteasomal system in tau degradation remains controversial. Before considering the tau degradation in pathologic conditions, it is important to determine whether or not endogenous tau is normally degraded by the proteasome pathway. We therefore investigated this question using two complementary approaches in vitro and in vivo. Firstly, SH-SY5Y human neuroblastoma cells were treated with different proteasome inhibitors, MG132, lactacystin, and epoxomicin. Under these conditions, neither total nor phosphorylated endogenous tau protein levels were increased. Instead, an unexpected decrease of tau protein was observed. Secondly, we took advantage of a temperature-sensitive mutant allele of the 20S proteasome in Drosophila. Genetic inactivation of the proteasome also resulted in a decrease of tau levels in Drosophila. These results obtained in vitro and in vivo demonstrate that endogenous tau is not normally degraded by the proteasome.  相似文献   

10.

Background

The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D2-family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy.

Methods

To better understand how loss of D2-family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene–induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D2 receptors.

Results

We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D2-family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes.

Conclusions

Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan.  相似文献   

11.
In many cases of sporadic frontotemporal dementia (FTD) and in FTD caused by tau mutations (FTDP-17) there is disruption of the normal splicing of tau leading to the aberrant expression of tau isoforms and neurodegeneration. This suggests a central role for tau in the pathogenesis of FTD. However, more than half the cases of sporadic FTD show no tau deposition. We question whether altered expression is also involved in the pathogenesis of tau-negative FTD. Real-time polymerase chain reaction was used to investigate tau isoform expression in tau-negative FTD and age-matched controls. There were no differences in total tau mRNA or 4R versus 3R isoform expression. Our study suggests that perturbed tau mRNA expression is unlikely to be involved in the pathogenesis of tau-negative FTD.  相似文献   

12.
Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role because of their ability to unfold and refold abnormal proteins. The progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathologic and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking out CRBN enhances the chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules, and reduced accumulation of pathologic tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/β, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mouse models of Alzheimer’s disease. This implies that CRBN-mediated DJ2/Hsp70 pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn−/− mice serve as an animal model of resistance against tauopathies for further exploration of the molecular mechanisms of neurodegeneration.  相似文献   

13.
Herpes Simplex Virus Type 1 (HSV-1) is ubiquitous, neurotropic, and the most common pathogenic causes of sporadic acute encephalitis in humans. Herpes simplex encephalitis is associated with a high mortality rate and significant neurological, neuropsychological, and neurobehavioral sequelae, which afflict patients for life. HSV-1 infects limbic system structures in the central nervous system and has been suggested as an environmental risk factor for Alzheimer's disease. However, the possible mechanisms that link HSV-1 infection with the neurodegenerative process are still largely unknown. In a previous study we demonstrated that HSV-1 triggers hyperphosphorylation of tau epitopes serine202/threonine205 and serine396/serine404 in neuronal cultures, resembling what occurs in neurodegenerative diseases. Therefore, the aim of the present study was to evaluate at the cellular level if another event associated with neurodegeneration, such as caspase-3 induced cleavage of tau, could also be triggered by HSV-1 infection in primary neuronal and astrocyte cultures. As expected, induction of caspase-3 activation and cleavage of tau protein at its specific site (aspartic acid 421) was observed by Western blot and immunofluorescence analyses in mice neuronal primary cultures infected with HSV-1. In agreement with our previous study on tau hyperphosphorylation, tau cleavage was also observed during the first 4 hours of infection, before neuronal death takes place. This tau processing has been previously demonstrated to increase the kinetics of tau aggregation in vitro and has also been observed in neurodegenerative pathologies. In conclusion, our findings support the idea that HSV-1 could contribute to induce neurodegenerative processes in age-associated pathologies such as Alzheimer's disease.  相似文献   

14.
The hyperphosphorylated tau is a major protein component of neurofibrillary tangle, which is one of hallmarks of Alzheimer??s disease (AD). While the level of methylglyoxal (MG) is significantly increased in the AD brains, the role of MG in tau phosphorylation is still not reported. Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). Glycogen synthesis kinase-3?? (GSK-3??) and p38 MAPK were activated, whereas the level and activity of JNK, Erk1/2, cdk5, and PP2A were not altered after MG treatment. Simultaneous inhibition of GSK-3?? or p38 attenuated the MG-induced tau hyperphosphorylation. Aminoguanidine, a blocker of AGEs formation, could effectively reverse the MG-induced tau hyperphosphorylation. These data suggest that MG induces AD-like tau hyperphosphorylation through AGEs formation involving RAGE up-regulation and GSK-3?? activation and p38 activation is also partially involved in MG-induced tau hyperphosphorylation. Thus, targeting MG may be a promising therapeutic strategy to prevent AD-like tau hyperphosphorylation.  相似文献   

15.
Since its discovery as a structural component of neurofibrillary lesions of Alzheimer's disease more than twenty years ago, tau protein has been implicated in the cascade of events associated with neurodegeneration. Specifically, the "tau hypothesis" posits that misfunction of tau, which occurs in response to unknown stimuli, results in its intracellular assembly into filaments that eventually prove toxic to the cells that produce them. The tau hypothesis is supported by numerous neuropathological and genetic observations of authentic human disease cases. However, experiments designed to study aggregate toxicity in biological models suggest that some aggregate species may be inert or could potentially serve a neuroprotective function. Distinguishing these possibilities experimentally has been complicated by currently available biological models, which do not fully recapitulate aggregation conditions seen in disease. Additional model systems which better approximate physiological conditions may help elucidate the molecular mechanisms involved in aggregation associated toxicity. Here we examine the accumulated evidence linking aggregation and neurodegeneration, and experimental approaches to the problem of tau aggregation-mediated toxicity.  相似文献   

16.
Nogo-66 plays a central role in the myelinmediated inhibition of neurite outgrowth.Tau is a microtubule-associated protein involved in microtubule assembly and stabilization.It remains unverified whether tau interacts directly with growth factor receptors,or engages in cross-talk with regeneration inhibitors like Nogo-66.Here,we report that plasmid overexpression of tau significantly elevated the protein levels of total tau,phosphorylated tau,and microtubule-affinity regulating kinase(MARK).Nogo-66 transiently elevated the total tau protein level and persistently reduced the level of p-S262 tau(tau phosphorylated at serine 262),whereas it had little influence on the level of p-T205 tau(tau phosphorylated at threonine 205).Nogo-66 significantly decreased the protein level of MARK.Hymenialdisine,an inhibitor of MARK,significantly reduced the level of p-S262 tau.Overexpression of tau rescued the Nogo-66-induced inhibition of neurite outgrowth in neuroblastoma 2a(N2a) cells and primary cortical neurons.However,concomitant inhibition of MARK abolished the rescue of neurite outgrowth by tau in N2 a cells.We conclude that dephosphorylation of tau at S262 is able to regulate Nogo-66 signaling,and that overexpression of tau can rescue the Nogo-66-induced inhibition of neurite outgrowth in vitro.  相似文献   

17.
Lesions containing aggregated and hyperphosphorylated tau protein are characteristic of neurodegenerative tauopathies. We have developed a cellular model of pathological tau deposition and clearance by overexpressing wild type human tau in HEK293 cells. When proteasome activity is inhibited, HEK293/tau cells accumulate tau protein in structures that bear many of the hallmarks of aggresomes. These include recruitment of tau into large spherical inclusions, accumulation of the retrograde motor protein dynein at the centrosome, formation of an intermediate filament cage around inclusions, and clustering of mitochondria at the aggresome. Tau aggresomes form rapidly and can be cleared upon relief of proteasome inhibition. We observe recruitment of pathological misfolded phospho-tau species to aggresomes. Immunoblotting reveals accumulation of detergent insoluble aggregated tau species. Knockdown of histone deacetylase 6, a protein known to interact with tau, reveals a requirement for HDAC6 activity in tau aggresome formation. Direct observation of the accumulation and clearance of abnormal tau species will allow us to dissect the cellular and molecular mechanisms at work in clearing aggresomal tau and its similarity to disease relevant pathological tau clearance mechanisms.  相似文献   

18.
19.
A number of neurodegenerative diseases are characterized by the presence of abundant deposits containing Tau protein. Expression of the human tau gene is under complex regulation. Mutations in the tau gene have been identified in patients with frontotemporal lobe dementia. These mutations affect either biochemical/biophysical properties or the delicate balance of different splicing isoforms. In this review, we summarize recent advances in our understanding of genetics and molecular pathogenesis of tauopathies with the focus on frontotemporal lobe dementia. We review published studies on tau pre-mRNA splicing regulation. Understanding molecular mechanisms of tauopathies may help in developing effective therapies for neurodegenerative tauopathies and related disorders, including Alzheimer disease.  相似文献   

20.
Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, which are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express the entire human MAPT gene in the presence and absence of the mouse Mapt gene and compared the expression and regulation of mouse and human tau isoforms during development and in the young adult. We found differences between mouse and human tau in the regulation of exon 10 inclusion. Despite these differences, the isoform splicing pattern seen in normal human brain is replicated in our mouse models. In addition, we found that all tau, both in the neonate and young adult, is phosphorylated. We also examined the normal anatomic distribution of mouse and human tau isoforms in mouse brain. We observed developmental and species-specific variations in the expression of 3R- and 4R-tau within the frontal cortex and hippocampus. In addition, there were differences in the cellular distribution of the isoforms. Mice transgenic for the human MAPT gene exhibited higher levels of neuronal cell body expression of tau compared to wildtype mice. This neuronal cell body expression of tau was limited to the 3R isoform, whereas expression of 4R-tau was more "synaptic like," with granular staining of neuropil rather than in neuronal cell bodies. These developmental and species-specific differences in the regulation and distribution of tau isoforms may be important to the understanding of normal and pathologic tau isoform expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号