首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barman SA  Marrero MB 《Lung》2005,183(6):425-439
Mitogen-activated protein kinases (MAPKs) belong to the group of serine–threonine kinases that are rapidly activated in response to growth factor stimulation. In adult mammalian cells, the MAPK family includes extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2 or p44mapk and p42mapk), which translocate to the nucleus and integrate signals from second messengers leading to cellular proliferation or differentiation, but the specific role of MAPKs in neonatal pulmonary vascular smooth muscle is not well understood. Expression of p44mapk and p42mapk in primary cultured pulmonary vascular smooth muscle cells from neonatal (1–2 day old) rats was identified by Western immunoblot analysis and treatment with 10 nM endothelin-1 (ET-1), a potent vasoconstrictor with vascular mitogenic properties, induced cell proliferation, and phosphorylation of both p44mapk and p42mapk. The protein kinase C (PKC) isozyme inhibitor (α, β, γ, δ, ζ) Go 6983, the ETA receptor antagonist BQ 123, and the MAPK kinase inhibitor PD98059 blocked the cell proliferation response to ET-1. Also, BQ 123, Go 6983, and PKC inhibitor 20-28 (Myr-N-FARKGAL-RQ-NH2-PKCα antagonist) inhibited ET-1–induced phosphorylation of both p44mapk and p42mapk. In contrast, the reactive oxygen species (ROS) inhibitor diphenylene iodonium (DPI), the PKCδ inhibitor rottlerin, and the ETB receptor antagonist BQ 788 did not block ET-1–induced phosphorylation of MAPKs. Collectively, these data demonstrate the expression and phosphorylation of MAPKs by ET-1 and suggests that MAPK activation and cell proliferation by ET-1 occurs via ETA receptor stimulation and specific PKC isozyme activation in rat neonatal pulmonary vascular smooth muscle.  相似文献   

2.
OBJECTIVE: The role of reactive oxygen species (ROS) in mitogen-activated protein kinase (MAPK) signaling by angiotensin (Ang) II and endothelin-1 (ET-1) in human vascular smooth muscle cells (VSMC) was investigated. DESIGN: VSMCs were derived from resistance arteries from healthy subjects. MAPK activity was assessed using phospho-specific antibodies. ROS generation was measured by CMH2DCFDA fluorescence and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity by lucigenin chemiluminescence. RESULTS: Ang II and ET-1 increased MAPK phosphorylation (P < 0.01). Pre-treatment with Tiron and Tempol, *O2 scavengers, attenuated agonist-stimulated phosphorylation of p38MAPK, c-Jun N-terminal kinases (JNK) and ERK5, but not of ERK1/2 (extracellular signal-regulated kinases). Apocynin and diphenylene iodinium (DPI), NAD(P)H oxidase inhibitors, decreased Ang II-induced responses 60-70%. ET-1-mediated MAPK phosphorylation was unaffected by apocynin but was reduced (> 50%) by thenoyltrifluoroacetone (TIFT) and carboxyl cyanide-m-chlorophenylhydrazone (CCCP), mitochondrial inhibitors. Allopurinol and N-nitro-l-arginine methyl ester (l-NAME), xanthine oxidase and nitric oxide synthase (NOS) inhibitors, respectively, did not influence MAPK activation. Intracellular ROS generation, was increased by Ang II and ET-1 (P < 0.01). DPI inhibited Ang II- but not ET-1-mediated ROS production. Expression of p22phox and p47phox and activation of NAD(P)H oxidase were increased by Ang II but not by ET-1. CCCP and TIFT significantly attenuated ET-1-mediated ROS formation (P < 0.05), without influencing Ang II effects. CONCLUSIONS: Ang II activates p38MAPK, JNK and ERK5 primarily through NAD(P)H oxidase-generated ROS. ET-1 stimulates these kinases via redox-sensitive processes that involve mitochondrial-derived ROS. These data suggest that redox-dependent activation of MAPKs by Ang II and ET-1 occur through distinct ROS-generating systems that could contribute to differential signaling by these agonists in VSMCs.  相似文献   

3.
Jiang B  Brecher P 《Hypertension》2000,35(4):914-918
We have reported previously that N-acetyl-L-cysteine facilitated interleukin-1beta-induced nitric oxide synthase (iNOS) expression in rat vascular smooth muscle cells. The present study compares the effect of N-acetyl-L-cysteine with other antioxidants and tested the possibility that N-acetyl-L-cysteine potentiates iNOS induction by a mechanism involving activation of p44/42 mitogen-activated protein kinases (MAPKs). The effect of N-acetyl-L-cysteine on potentiating interleukin-1beta-induced nitrite production and iNOS expression was mimicked either by the enantiomers, L-cysteine and D-cysteine, or by a non-thiol-containing antioxidant, L-ascorbic acid. Interleukin-1beta activated p44/42 MAPK, and this activation was enhanced in the presence of N-acetyl-L-cysteine. Inhibition of p44/42 MAPK phosphorylation by the selective inhibitor PD98059 clearly inhibited iNOS expression induced by interleukin-1beta either in the absence or in the presence of N-acetyl-L-cysteine. These observations, combined with previous results, indicate that p44/42 MAPK activation is required for interleukin-1beta induction of iNOS and that N-acetyl-L-cysteine may act as a reducing agent and facilitate interleukin-1beta-induced iNOS expression through a reduction/oxidation-related mechanism involving potentiation of cytokine activation of the p44/42 MAPK signaling pathway.  相似文献   

4.
Kim B  Kim J  Bae YM  Cho SI  Kwon SC  Jung JY  Park JC  Ahn HY 《Hypertension》2004,43(5):1086-1091
We investigated whether the diminished contractile responsiveness to endothelin-1 (ET-1) is associated with the altered activation of mitogen-activated protein kinase (MAPK) in aortic smooth muscles from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. ET-1 dose-dependently increased contractions in aortic smooth muscle strips, and the contractions were significantly attenuated in tissues from DOCA-salt hypertensive rats compared with those from sham-operated rats. The phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was elevated by ET-1, with the magnitude and time-course being similar between strips. Although ET-1 also increased the phosphorylation of p38 MAPK in both strips, the increment was markedly lower in the strips from DOCA-salt hypertensive rats compared with sham-operated controls. 5-hydroxytryptamine (5-HT) increased vascular contraction and phosphorylation of both MAPK isoforms; these were greater in DOCA-salt hypertensive rats than in sham-operated rats. ET-1 also increased the phosphorylation of caldesmon, an actin-binding protein, in sham-operated and DOCA-salt hypertensive rats. However, the increment was markedly lower in the strips from DOCA-salt hypertensive rats compared with sham-operated controls. The phosphorylation of MAPK isoforms and caldesmon elevated by ET-1 was inhibited by PD098059, an inhibitor of ERK1/2 kinase, and SB203580, an inhibitor of p38 MAPK, respectively. These results suggest that ET-1 and 5-HT induce contraction by activating the MAPK pathway in rat aortic smooth muscle and that the diminished responsiveness to ET-1 in the DOCA-salt hypertensive rat may be, in part, mediated by the decrease of caldesmon phosphorylation after the decreased activation of p38 MAPK.  相似文献   

5.
The abnormal proliferation of vascular smooth muscle cells (VSMCs) is closely related to vascular diseases. There is growing evidence that calcium antagonists inhibit VSMC growth/proliferation, yet their molecular mechanisms remain to be determined. Recent reports suggest that p42/p44 mitogen-activated protein kinases (MAPKs) play an important role in cell growth and proliferation induced by growth factors. This study was designed to determine whether these MAPKs are involved in VSMC proliferation induced by basic fibroblast growth factor (bFGF) and to examine the inhibitory effect of amlodipine. Human VSMCs were obtained from inner mammary artery. p42/p44 MAPKs activity was measured by immunoblotting assay using anti-p42/p44 phospho-MAPK antibody. 1) bFGF (20 ng/ml) significantly activated p42/p44 MAPKs with a peak time of 5-15 min, which was maintained for 3 h. PD98059 (100 nM-10 microM), a specific inhibitor of MAPK kinase, inhibited bFGF-induced p42/p44 MAPKs activation in a dose-dependent manner. 2) Amlodipine (1-100 nM) dose-dependently inhibited p42/p44 MAPKs activation by bFGF. 3) Amlodipine (10 nM) could inhibit both short-term and long-term p42/p44 MAPKs activation by bFGF. Our results indicate that bFGF could activate p42/p44 MAPKs. Amlodipine, which could inhibit bFGF-induced human VSMC proliferation, inhibited both short-term and sustained p42/p44 MAPKs activation by bFGF, suggesting that bFGF-induced VSMC proliferation may be related to p42/p44 MAPKs activation, and that the antiproliferative effect of amlodipine may be related to its inhibition of p42/p44 MAPKs activation.  相似文献   

6.
We studied whether bovine pituitary thyrotropin (bTSH) or human recombinant thyrotropin (rhTSH) stimulated p42/p44 mitogen-activated protein kinases (MAPKs) in Chinese hamster ovary cells expressing human thyrotropin receptor (CHO-hTSHR cells). We show that p42/p44 MAPK phosphorylation was induced by both TSH preparations at similar levels in CHO-hTSHR cells and in wild-type CHO cells. In contrast, cyclic adenosine monophosphate (cAMP) production was stimulated by TSH only in CHO-hTSHR cells, demonstrating that p42/p44 MAPK stimulation was independent of the TSH receptor. Moreover, similar results were obtained with two other cell lines: the FRTL-5 thyroid cell line and the CCL39 fibroblast cell line. Maximal stimulation of p42/p44 MAPK phosphorylation was observed after a 5- to 10-minute incubation with bTSH and rhTSH preparations. At this time, the phosphorylation of GST-Elk1 was also increased in a time- and concentration-dependent manner by bTSH preparations. The phosphorylation of p42/p44 MAPKs was abolished by PD 98059 and GF 109203X, indicating the involvement of MAPK kinases (MEK 1/2) and protein kinase C. In contrast, the activation of p42/p44 MAPKs was insensitive to H89, to cholera toxin and to pertussis toxin. These data suggest that the protein kinase A pathway was not implicated in p42/p44 MAPK activation by TSH preparations. Moreover, Gs or Gi/Go proteins do not appear to participate in p42/p44 MAPK activation. We also showed that these TSH preparations failed to induce activation of c-Jun NH2 terminal kinase. We therefore conclude that the commercial TSH preparations used in this study contained factor(s) responsible for the specific activation of p42/p44 MAPKs by a TSH receptor-independent mechanism.  相似文献   

7.
To study whether qualitative changes in high density lipoprotein (HDL) phospholipids mediate part of the advantageous effects of ethanol on atherosclerosis, we investigated whether HDL associated phosphatidylethanol (PEth) affects the secretion of vascular endothelial growth factor (VEGF) from cultured human smooth muscle cells. Serum-starved human umbilical vein HUVS-112D smooth muscle cells were incubated in the presence of PEth–HDL, HDL, or buffer. The phosphorylation of protein kinase C (PKC) and mitogen activated protein kinase (p44/42 MAPK) was determined by specific antibodies against phosphorylated and total proteins. VEGF concentrations were measured from cell culture medium of the cells. PEth increased the secretion of VEGF into the culture medium of HUVS cells. PEth–HDL increased the PKC phosphorylation by 2.1-fold and p44/42 MAPK phosphorylation by 3.3-fold compared with HDL, indicating that PEth-containing HDL particles influence vascular smooth muscle cells by PKC and p44/42 MAPK signalling. This may mediate the effects of ethanol on vascular wall by increasing the VEGF secretion from smooth muscle cells. The secreted VEGF may inhibit the formation of neointima and in doing so helps prevent atherosclerosis.  相似文献   

8.
Lovastatin has been proven to effectively lower circulating LDL cholesterol and to exert antiproliferative effects on various cell lines, the latter effect being only incompletely understood. We found that lovastatin modulates the signal transducing phosphorylation cascade in vascular smooth muscle cells in a mevalonate-independent manner. Lovastatin was found to distinctively increase total phosphotyrosine levels in smooth muscle cells, an effect which could not be restored by mevalonate. At a concentration of 5 μmol/L lovastatin had a highly specific effect on the mitogen-activated protein kinase pathway. The expression of p42/44 mitogen-activated protein kinase (MAPK) was clearly reduced, but could be restored by addition of mevalonate, while the phosphorylation of p44 was mildly suppressed and the phosphorylation of p42 MAPK was reduced to non-detectable levels. While the phosphorylation of p44 MAPK could partially be restored by addition of mevalonate, the reduced phosphorylation of p42 MAPK could not be restored by addition of excessive doses of mevalonate or stimulation of the cells with basic fibroblast growth factor. Concurrently the expression of the GTP-binding Ras protein was significantly elevated at 5 and 20 μmol/L lovastatin, this effect being attenuated by addition of mevalonate to cell cultures. The data indicate that lovastatin is capable of modulating cellular signaling independently of the cholesterol synthesis pathway. Received: 30 August 2000, Returned for 1. revision: 20 September 2000, 1. Revision received: 14 November 2000, Returned for 2. revision: 28 November 2000, 2. Revision received: 11 December 2000, Accepted: 12 December 2000  相似文献   

9.
Aims/hypothesis Proinsulin C-peptide is involved in several biological activities. However, the role of C-peptide in vascular smooth muscle cells is unclear. We therefore investigated its effects, in vascular smooth muscle cells in high-glucose conditions.Methods Rat aortic smooth muscle cells were cultured with 5.5 or 20 mmol/l glucose with or without C-peptide (1 to 100 nmol/l) for 3 weeks. Proliferation activities, the protein expression of platelet-derived growth factor (PDGF)-beta receptor, the phosphorylation of p42/p44 mitogen-activated protein (MAP) kinases, and glucose uptake were measured.Results The proliferation activities increased approximately three-fold under high-glucose conditions (p<0.05). C-peptide suppressed hyperproliferation activities that were induced by high glucose. This happened in a dose-dependent manner from 1 to 100 nmol/l of C-peptide. C-peptide (10 and 100 nmol/l) inhibited the increased protein expression of PDGF-beta receptor and the phosphorylation of p42/p44 MAP kinases that had been induced by high glucose (p<0.05). Furthermore, 100 nmol/l of C-peptide augmented the impaired glucose uptake in the high-glucose conditions.Conclusions/interpretation These observations suggest that C-peptide could prevent diabetic macroangiopathy by inhibiting smooth muscle cell growth and ameliorating glucose utilisation in smooth muscle cells. C-peptide may thus be a novel agent for treating diabetic macroangiopathy in patients with type 1 and type 2 diabetes.  相似文献   

10.
ObjectiveIn this study, we examined the synergistic effects of the two potent pathogenic factors, platelet-derived growth factor-BB (PDGF-BB) and endothelin-1 (ET-1) to induce vascular hyperplasia using ex vivo organ-culture system.Methods and resultsIn organ-cultured rat tail arteries, concomitant treatment with 100 ng/ml PDGF-BB and 300 nM ET-1 for 4 days induced medial hyperplasia with increased smooth muscle cell proliferation. Concomitant treatment with PDGF-BB (10–300 nM) and ET-1 (30 nM–1 μM) dose-dependently suppressed contractile responses to high K+ and norepinephrine. This dyscontractility was accompanied by decreased α-actin protein expression. In all series of experiments, concomitant treatment with PDGF-BB and ET-1 exhibited stronger effects than sole treatment with PDGF-BB (100 ng/ml) or ET-1 (300 nM). Western blot analysis revealed that concomitant treatment with PDGF-BB and ET-1 synergistically phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2), Akt, and a downstream target of mammalian target of rapamycin (mTOR), p70 ribosomal S6 kinase in cultured artery. Consistently, a MAPK/ERK kinase (MEK) inhibitor, PD98059 (30 μM), a phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, and an mTOR inhibitor, rapamycin (30 nM), partially restored PDGF-BB and ET-1-induced hyperplastic changes.ConclusionsWe evidenced for the first time at tissue level that PDGF-BB and ET-1 synergistically accelerate vascular smooth muscle hyperplastic changes and lose its contractility, at least partially through ERK1/2, Akt, and mTOR activation.  相似文献   

11.
H Iwasaki  S Eguchi  H Ueno  F Marumo  Y Hirata 《Endocrinology》1999,140(10):4659-4668
Endothelin-1 (ET-1), a potent endothelium-derived vasoconstrictor peptide, exerts a growth-promoting effect on vascular smooth muscle cells, implicating its pathogenic role in vascular remodeling. To gain insight into the cellular and molecular mechanism whereby ET-1 induces vascular growth, we studied whether transactivation of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, are required for activation of p42/p44 mitogen-activated protein (MAP) kinase and p70 S6 kinase (p70S6K), and subsequent growth-promotion by ET-1 in cultured rat vascular smooth muscle cells. Immunoblotting with antiphosphotyrosine antibody revealed that ET-1 rapidly (within 2 min) and transiently induced tyrosine phosphorylation of several proteins, among which 180-kDa protein was shown to be EGFR. ET-1 rapidly increased association of EGFR and Shc with glutathione-S-transferase-Grb2 fusion protein. The ET-1-induced activation of MAP kinase was reduced by an EGFR kinase inhibitor (AG1478) but not by a platelet-derived growth factor receptor kinase inhibitor (AG1296). AG1478 dose-dependently decreased ET-1-stimulated MAP kinase activity as well as [3H]leucine and [3H]thymidine uptake. The ET-1-induced tyrosine phosphorylation of EGFR, as well as MAP kinase activation, was inhibited by an ETA receptor antagonist and intracellular Ca2+ antagonists but not by an ETB receptor antagonist, pertussis toxin, or protein kinase C inhibitors. In addition, dominant negative mutant of H-Ras and a MAP kinase kinase (MEK-1) inhibitor (PD98059) completely blocked ET-1-induced MAP kinase activation as well as [3H]leucine and [3H]thymidine uptake. Both AG1478 and PD98059 inhibited ET-1-induced phosphorylation and activation of p70S6K. Furthermore, rapamycin, a selective inhibitor of mammalian target of rapamycin, completely blocked ET-1-stimulated [3H]leucine and [3H]thymidine uptake. These results suggest that ETA receptor-mediated vascular growth by ET-1 requires both MAP kinase and p70S6K cascades mediated partly via Ca2+-dependent EGFR transactivation.  相似文献   

12.
Randomized clinical trials have not provided conclusive data that hormone replacement therapy confers cardioprotection against coronary artery disease in postmenopausal women. However, other studies have shown that estrogens can induce beneficial effects on the vasculature. Nevertheless, the specific contribution of estrogen receptors (ERs) alpha and beta on vascular cells is not well characterized. Therefore, we used an antisense gene therapy approach to investigate the contribution of ERalpha and ERbeta on p38 and p42/44 mitogen-activated protein kinase (MAPK) activation and on vascular cell responsiveness. Treatment of porcine smooth muscle cells (PSMCs) with platelet-derived growth factor-BB induced p38 and p42/44 MAPK activation and their migration and proliferation. These effects were prevented by pretreatment with 17beta-estradiol (17betaE). The inhibitory effects of 17betaE on PSMCs were abrogated by the downregulation of ERbeta protein expression with selective ERbeta mRNA antisense oligomers, whereas the downregulation of ERalpha had no effect. However, treatment of porcine aortic endothelial cells with 17betaE promoted p38 and p42/44 MAPK phosphorylation and their migration and proliferation. These effects were ERalpha dependent, as defined by antisense gene therapy. These results suggest that in PSMCs, 17betaE reduces p42/44 and p38 MAPK activity through ERbeta stimulation, whereas in contrast, in porcine aortic endothelial cells, 17betaE induces p42/44 and p38 MAPK through ERalpha activation. 17betaE may contribute to the vascular healing process and to the prevention of restenosis by improving reendothelialization through ERalpha activation and by decreasing smooth muscle cell migration and proliferation through ERbeta stimulation.  相似文献   

13.
We investigated the effect between resistin and adiponectin on the proliferation of vascular smooth muscle cells (VSMCs). We confirmed that resistin significantly increases the number of rat VSMCs as well as thymidine incorporation with them, whereas adiponectin diminishes resistin-induced cell proliferation. Resistin significantly increased p42/44 mitogen-activated protein kinase (MAPK) phosphorylation within rat VSMCs, whereas adiponectin inhibited resistin-induced MAPK phosphorylation. Moreover, resistin significantly increased c-fos expression, whereas adiponectin suppressed resistin-induced c-fos expression. Cell cycle progression is a tightly controlled event that is negatively regulated by cyclin-dependent kinases inhibitors (CDKIs) such as p53, p21, and p27. Resistin significantly decreased the expression of these CDKIs, whereas adiponectin restored the resistin-induced decrease in CDKIs expression. These effects were abolished in the MAPK inhibitors.  相似文献   

14.
15.
Summary Insulin-induced glucose transport stimulation, which results from the translocation of glucose transporter 4 (GLUT 4)-containing vesicles, is completely blocked after prolonged insulin treatment of 3T3-L1 adipocytes. Since GLUT 4 expression was reduced by only 30%, we looked at the insulin signalling pathway in this insulin-resistant model. Insulin-induced tyrosine phosphorylation of the major insulin receptor substrate IRS 1 was reduced by 50±7%, while its expression was decreased by 70±4%. When cells were treated with wortmannin (a PI3-kinase inhibitor) together with insulin, the expression of IRS 1 diminished to a much lower extent. Associated with the decrease in IRS 1 expression and phosphorylation, the activation by insulin of antiphosphotyrosine immunoprecipitable PI3-kinase activity and of p44mapk and p42mapk activities was altered. However, the expression of these proteins was normal and p44mapk activity remained responsive to the tumour promoter TPA. Those results indicate that prolonged insulin treatment of 3T3-L1 adipocytes induces an insulin-resistant state with a reduced ability of insulin to stimulate the PI3-kinase and the MAP-kinases and a blockade of glucose transporter translocation.Abbreviations GLUT Glucose transporter - TPA tumour promoter - MAPK mitogen-activated protein kinase - IRS insulin receptor substrate - SH2 src homology 2 - GRB GRB: Growth factor Receptor bound protein - PVDF polyvinyliden difluoride - HDM/LDM high density/low density microsomes - MBP myelin basic protein - DMEM Dulbecco's modified Eagle's medium - PMSF phenylmethanesulphonyl fluoride - PI3-kinase phosphatidylinositol 3-kinase  相似文献   

16.
BACKGROUND: Mitogen activated protein kinases (MAPKs) play a central role in the regulation of both cell growth and differentiation. They are involved in signal transduction of oncogenes and growth factors. The role of MAPK in colonic carcinoma is unknown. AIMS: To establish whether the expression and activity of p42/44 MAPKs are altered in colorectal tumours as compared with normal mucosa. METHODS: The expression and activity of p42/p44 MAPK were investigated in 22 colorectal carcinomas, four adenomas, and the corresponding normal colorectal mucosa by the use of western blotting, immunoprecipitation, and in vitro kinase assays. RESULTS: After immunoprecipitation with an antibody specific for p42 MAPK, we found significant inactivation of p42 MAPK in colonic carcinomas as well as in adenomas, whereas most sample pairs showed only minor differences in p42 MAPK expression. Investigation of MAPK with an antibody capable of detecting both p42 and p44 MAPK showed a slight but significant decrease in p44 MAPK content in malignant tissues. With this antibody, only minor alterations in MAPK activity and no correlation with p42 MAPK activity were found. CONCLUSIONS: Inactivation of p42 MAPK could be associated with colonic carcinogenesis.  相似文献   

17.
18.
An early component of atherogenesis is abnormal vascular smooth muscle cell (VSMC) proliferation. The presence of Chlamydia pneumoniae in many atherosclerotic lesions raises the possibility that this organism plays a causal role in atherogenesis. In this study, C pneumoniae elementary bodies (EBs) rapidly activated p44/p42 mitogen-activated protein kinases (MAPKs) and stimulated proliferation of VSMCs in vitro. Exposure of VSMCs derived from human saphenous vein to C pneumoniae EBs (3x10(7) inclusion forming units/mL) enhanced bromodeoxyuridine (BrdU) incorporation 12+/-3-fold. UV- and heat-inactivated C pneumoniae EBs also stimulated VSMC proliferation, indicating a role of direct stimulation by chlamydial antigens. However, the mitogenic activity of C pneumoniae was heat-labile, thus excluding a role of lipopolysaccharide. Chlamydial hsp60 (25 microg/mL) replicated the effect of C pneumoniae, stimulating BrdU incorporation 7+/-3-fold. Exposure to C pneumoniae or chlamydial hsp60 rapidly activated p44/p42 MAPK, within 5 to 10 minutes of exposure. In addition, PD98059 and U0126, which are two distinct inhibitors of upstream MAPK kinase 1/2 (MEK1/2), abolished the mitogenic effect of C pneumoniae and chlamydial hsp60. Toll-like receptors (TLRs) act as sensors for microbial antigens and can signal via the p44/p42 MAPK pathway. Human VSMCs were shown to express TLR4 mRNA and protein, and a TLR4 antagonist abolished chlamydial hsp60-induced VSMC proliferation and attenuated C pneumoniae-induced MAPK activation and VSMC proliferation. Together these results indicate that C pneumoniae and chlamydial hsp60 are potent inducers of human VSMC proliferation and that these effects are mediated, at least in part, by rapid TLR4-mediated activation of p44/p42 MAPK.  相似文献   

19.
Airway smooth muscle (ASM) is a potential source of multiple proinflammatory cytokines during airway inflammation. In the present study, we examined a requirement for mitogen-activated protein (MAP) kinase activation for interleukin (IL)-1beta-stimulated GM-CSF, RANTES, and eotaxin release. IL-1beta induced concentration-dependent phosphorylation of p42/p44 extracellular signal-regulated kinases (ERKs), p38 MAP kinase, and c-Jun amino-terminal kinase (SAPK/JNK). p42/p44 ERK and p38 MAP kinase phosphorylation peaked at 15 min and remained elevated up to 4 h. SAPK/JNK phosphorylation also peaked at 15 min but fell to baseline within 60 min. SB 203580 selectively inhibited IL-1beta-stimulated activation of p38 MAP kinase; U 0126 was selective against p42/p44 ERK activity. SB 202474, an inactive analog, had no effect on p42/p44 ERK, p38 MAP kinase, or SAPK/JNK activation, or on eotaxin or RANTES release. Eotaxin release was inhibited by SB 203580 and U 0126, whereas RANTES release was prevented by U 0126 only. GM-CSF release was inhibited by U 0126 but enhanced by SB 203580. These data indicate that RANTES release is dependent on p42/p44 ERK activation but occurs independently of p38 MAP kinase activity. Eotaxin release, however, is dependent on both p38 MAP kinase- and p42/p44 ERK-dependent mechanisms. GM-CSF release is p42/p44 ERK dependent and is tonically suppressed by a mechanism that is partially dependent on p38 MAP kinase, though direct inhibition of cyclooxygenase (COX) activity due to poor inhibitor selectivity may also contribute.  相似文献   

20.
AIMS: Since mitogen-activated protein kinases (MAPKs) were found to be implicated in the signalling of ischaemic preconditioning (IPC), we tested the hypothesis of a contribution of these protein kinases to remote preconditioning (RPC). METHODS AND RESULTS: To determine the role of p38, ERK1/2, and JNK1/2 MAPKs in mediating cardiac protection, an in vivo model of myocardial infarction was applied in male Wistar rats. RPC or IPC was induced by occlusion of the superior mesenteric artery or the left coronary artery, respectively. Infarct size (IS) was determined based on 2,3,5-triphenyltetrazolium chloride staining. Phosphorylation of the various MAPKs was analysed by immunoblotting in samples of the small intestine and myocardium obtained after IPC or RPC procedures. The MAPK inhibitors SB203580 (p38), PD98059 (ERK1/2), and SP600125 (JNK1/2) were administered to assess the potential significance of MAPK signalling in RPC. Both preconditioning stimuli decreased myocardial IS significantly after a lethal period of ischaemia. Each of the applied MAPK inhibitors was capable of abrogating the RPC-induced cardioprotection. Western blot analysis of myocardial samples revealed an increase in phosphorylated amounts of ERK1/2 and JNK1 after IPC, whereas phosphorylation of p38 protein was decreased significantly. Likewise, RPC resulted in a considerable increase in phosphorylation of ERK1/2 and JNK1/2 proteins in the small intestine, whereas it did not alter the MAPK phosphorylation state in the myocardium. CONCLUSION: All investigated MAPK pathways appear to be involved in RPC-induced cardioprotection; however, they do not contribute to the alterations that define the preconditioned state of the myocardium prior to the infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号