首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Troglitazone (CS-045) is one of the thiazolidinediones that activate the peroxisome proliferator-activated receptor gamma (PPARgamma), which is expressed primarily in adipose tissues. To elucidate the mechanism by which troglitazone relieves insulin resistance in vivo, we studied its effects on the white adipose tissues of an obese animal model (obese Zucker rat). Administration of troglitazone for 15 d normalized mild hyperglycemia and marked hyperinsulinemia in these rats. Plasma triglyceride level was decreased by troglitazone in both obese and lean rats. Troglitazone did not change the total weight of white adipose tissues but increased the number of small adipocytes (< 2,500 micron2) approximately fourfold in both retroperitoneal and subcutaneous adipose tissues of obese rats. It also decreased the number of large adipocytes (> 5,000 micron2) by approximately 50%. In fact, the percentage of apoptotic nuclei was approximately 2.5-fold higher in the troglitazone-treated retroperitoneal white adipose tissue than control. Concomitantly, troglitazone normalized the expression levels of TNF-alpha which were elevated by 2- and 1.4-fold in the retroperitoneal and mesenteric white adipose tissues of the obese rats, respectively. Troglitazone also caused a dramatic decrease in the expression levels of leptin, which were increased by 4-10-fold in the white adipose tissues of obese rats. These results suggest that the primary action of troglitazone may be to increase the number of small adipocytes in white adipose tissues, presumably via PPARgamma. The increased number of small adipocytes and the decreased number of large adipocytes in white adipose tissues of troglitazone-treated obese rats appear to be an important mechanism by which increased expression levels of TNF-alpha and higher levels of plasma lipids are normalized, leading to alleviation of insulin resistance.  相似文献   

2.
The genetically obese Zucker rat (fa/fa) is characterized by a severe resistance to the action of insulin to stimulate skeletal muscle glucose transport. The goal of the present study was to identify whether the defect associated with this insulin resistance involves an alteration of transporter translocation and/or transporter activity. Various components of the muscle glucose transport system were investigated in plasma membranes isolated from basal or maximally insulin-treated skeletal muscle of lean and obese Zucker rats. Measurements of D- and L-glucose uptake by membrane vesicles under equilibrium exchange conditions indicated that insulin treatment resulted in a four-fold increase in the Vmax for carrier-mediated transport for lean animals [from 4.5 to 17.5 nmol/(mg.s)] but only a 2.5-fold increase for obese rats [from 3.6 to 9.1 nmol/(mg.s)]. In the lean animals, this increase in glucose transport function was associated with a 1.8-fold increase in the transporter number as indicated by cytochalasin B binding, a 1.4-fold increase in plasma membrane GLUT4 protein, and a doubling of the average carrier turnover number (intrinsic activity). In the obese animals, there was no change in plasma membrane transporter number measured by cytochalasin B binding, or in GLUT4 or GLUT1 protein. However, there was an increase in carrier turnover number similar to that seen in the lean litter mates. Measurements of GLUT4 mRNA in red gastrocnemius muscle showed no difference between lean and obese rats. We conclude that the insulin resistance of the obese rats involves the failure of translocation of transporters, while the action of insulin to increase the average carrier turnover number is normal.  相似文献   

3.
4.
A major portion of insulin-mediated glucose uptake occurs via the translocation of GLUT 4 glucose transporter proteins from an intracellular depot to the plasma membrane. We have examined gene expression for the GLUT 4 transporter isoform in subcutaneous adipocytes, a classic insulin target cell, to better understand molecular mechanisms causing insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) and obesity. In subgroups of lean (body mass index [BMI] = 24 +/- 1) and obese (BMI = 32 +/- 2) controls and in obese NIDDM (BMI = 35 +/- 2) patients, the number of GLUT 4 glucose transporters was measured in total postnuclear and subcellular membrane fractions using specific antibodies on Western blots. Relative to lean controls, the cellular content of GLUT 4 was decreased 40% in obesity and 85% in NIDDM in total cellular membranes. In obesity, cellular depletion of GLUT 4 primarily involved low density microsomes (LDM), leaving fewer transporters available for insulin-mediated recruitment to the plasma membrane (PM). In NIDDM, loss of GLUT 4 was profound in all membrane subfractions, PM, LDM, as well as high density microsomes. These observations corresponded with decrements in maximally stimulated glucose transport rates in intact cells. To assess mechanisms responsible for depletion of GLUT 4, we quantitated levels of mRNA specifically hybridizing with human GLUT 4 cDNA on Northern blots. In obesity, GLUT 4 mRNA was decreased 36% compared with lean controls, and the level was well correlated (r = + 0.77) with the cellular content of GLUT 4 protein over a wide spectrum of body weight. GLUT 4 mRNA in adipocytes from NIDDM patients was profoundly reduced by 86% compared with lean controls and by 78% relative to their weight-matched nondiabetic counterparts (whether expressed per RNA, per cell, or for the amount of CHO-B mRNA). Interestingly, GLUT 4 mRNA levels in patients with impaired glucose tolerance (BMI = 34 +/- 4) were decreased to the same level as in overt NIDDM. We conclude that, in obesity, insulin resistance in adipocytes is due to depletion of GLUT 4 glucose transporters, and that the cellular content of GLUT 4 is determined by the level of encoding mRNA over a wide range of body weight. In NIDDM, more profound insulin resistance is caused by a further reduction in GLUT 4 mRNA and protein than is attributable to obesity per se. Suppression of GLUT 4 mRNA is observed in patients with impaired glucose tolerance, and therefore, may occur early in the evolution of diabetes. Thus, pretranslational suppression of GLUT 4 transporter gene expression may be an important mechanism that produces and maintains cellular insulin resistance in NIDDM.  相似文献   

5.
We have studied the relationship between glucose uptake rate and Glut 1 and Glut 4 protein and mRNA levels per fat cell in lean (FA/FA) and obese (fa/fa) Zucker rats at 5, 10, and 20 wk of age, and after induction of acute diabetes with streptozotocin. 5 wk obese rats exhibit insulin hyperresponsive glucose uptake, whereas 20 wk obese rats show insulin resistant glucose uptake. The relative abundance of Glut 1 and Glut 4 mRNA and protein per equal amount of total RNA and total membrane protein, respectively, is lower in adipocytes from obese rats. However, at all ages the enlargement of fat cells from obese rats is accompanied by a severalfold increase in total RNA and total membrane protein per cell. Thus, on a cellular basis, mRNA and protein levels of Glut 4 increases in young obese rats and gradually declines as a function of age. Basal glucose uptake is increased severalfold in fat cells from obese rats, and in parallel Glut 1 expression per cell in obese rats is two- to threefold increased over lean rats at all ages. Acute diabetes in 20 wk obese rats causes a profound downregulation of glucose uptake and a concomitant reduction of both Glut 1 and Glut 4 protein levels. Thus, changes in Glut 4 expression are a major cause of alteration in insulin-stimulated glucose uptake of adipocytes during evolution of obesity and diabetes in Zucker rats.  相似文献   

6.
In the present study we examined mRNA and protein levels for the muscle/adipose tissue glucose transporter (GLUT-4) in various tissues of spontaneously obese mice (C57BL/KsJ, db/db) and their lean littermates (db/+). Obese (db/db) mice were studied at 5 wk of age, when they were rapidly gaining weight and were severely insulin resistant, evidenced by hyperglycemia (plasma glucose 683 +/- 60 vs. 169 +/- 4 mg/dl in db/+, P less than 0.05) and hyperinsulinemia (plasma insulin 14.9 +/- 0.53 vs. 1.52 +/- 0.08 ng/ml in db/+, P less than 0.05). The GLUT-4 mRNA was reduced in quadriceps muscle (67.5 +/- 8.5%, P = 0.02), but unaltered in adipose tissue (120 +/- 19%, NS), heart (95.7 +/- 6.1%, NS), or diaphragm (75.2 +/- 12.1%, NS) in obese (db/db) mice relative to levels in lean littermates. The GLUT-4 protein, measured by quantitative immunoblot analysis using two different GLUT-4 specific antibodies, was not different in five insulin-sensitive tissues including diaphragm, heart, red and white quadriceps muscle, and adipose tissue of obese (db/db) mice compared with tissue levels in lean littermates; these findings were consistent when measured relative to tissue DNA levels as an index of cell number. These data suggest that the marked defect in glucose utilization previously described in skeletal muscle of these young obese mice is not due to a decrease in the level of the major muscle glucose transporter. An alternate step in insulin-dependent activation of the glucose transport process is probably involved.  相似文献   

7.
Interaction of insulin and exercise on glucose transport in muscle.   总被引:8,自引:0,他引:8  
Glucose transport is the rate-limiting step for glucose utilization in muscle. In muscle and adipose tissue, glucose transport is acutely regulated by such factors as insulin and exercise. Translocation of glucose transporters (GLUT4) from an intracellular domain to the cell surface is the major mechanism for this regulation. Using immunocytochemistry, the intracellular distribution of GLUT4 under resting conditions is similar in adipocytes and myocytes. GLUT4 is concentrated in tubulovesicular structures either in the trans-Golgi region or in the cytosol, often close to the cell surface but not on the cell surface. After stimulation, cell surface GLUT4 labeling is increased by as much as 40-fold. GLUT4 is chronically regulated by altered gene expression. Neural and/or contractile activity regulates GLUT4 expression in muscle: 1) GLUT4 levels differ among muscles of different fiber type; 2) GLUT4 levels in muscle are increased with exercise training and decreased with denervation; and 3) cultured muscle cells, which lack an intact nerve supply, express very low levels of GLUT4. GLUT4 expression appears to be regulated in parallel with many oxidative enzymes in muscle, suggesting that there may be a unified developmental program that determines the overall metabolic properties of a particular muscle. Preliminary evidence suggests that impaired GLUT4 expression in muscle is not the primary defect associated with insulin resistance. Nevertheless, it is conceivable that the adaptive increase in muscle GLUT4 that is found with exercise training may have beneficial effects in insulin-resistant states such as non-insulin-dependent diabetes.  相似文献   

8.
Obesity is frequently associated with insulin resistance and abnormal glucose homeostasis. Recent studies in animal models have indicated that TNF-alpha plays an important role in mediating the insulin resistance of obesity through its overexpression in fat tissue. However, the mechanisms linking obesity to insulin resistance and diabetes in humans remain largely unknown. In this study we examined the expression pattern of TNF-alpha mRNA in adipose tissues from 18 control and 19 obese premenopausal women by Northern blot analysis. TNF-alpha protein concentrations in plasma and in conditioned medium of explanted adipose tissue were measured by ELISA. Furthermore, the effects of weight reduction by dietary treatment of obesity on the adipose expression of TNF-alpha mRNA were also analyzed in nine premenopausal obese women, before and after a controlled weight-reduction program. These studies demonstrated that obese individuals express 2.5-fold more TNF-alpha mRNA in fat tissue relative to the lean controls (P < 0.001). Similar increases were also observed in adipose production of TNF-alpha protein but circulating TNF-alpha levels were extremely low or undetectable. A strong positive correlation was observed between TNF-alpha mRNA expression levels in fat tissue and the level of hyperinsulinemia (P < 0.001), an indirect measure of insulin resistance. Finally, body weight reduction in obese subjects which resulted in improved insulin sensitivity was also associated with a decrease in TNF-alpha mRNA expression (45%, P < 0.001) in fat tissue. These results suggest a role for the abnormal regulation of this cytokine in the pathogenesis of obesity-related insulin resistance.  相似文献   

9.
This study was designed to determine whether altered glucose transporter expression is essential for the in vivo insulin-resistant glucose uptake characteristic of streptozocin-induced diabetes. Immunofluorescence in rat skeletal muscle colocalizes GLUT4 with dystrophin, both intrinsic to muscle fibers. In contrast, GLUT1 is extrinsic to muscle fibers, probably in perineurial sheath. Immunoblotting shows that levels of GLUT1 and GLUT4 protein per DNA in hindlimb muscle are unaltered from control levels at 7 d of diabetes but decrease to approximately 20% of control at 14 d of diabetes. This decrease is prevented by insulin treatment. In adipose cells of 7 d diabetic rats, GLUT4 levels are depressed. Thus, GLUT4 undergoes tissue-specific regulation in response to diabetes. GLUT4 and GLUT1 mRNA levels in muscle are decreased 62-70% at both 7 and 14 d of diabetes and are restored by insulin treatment. At 7 d of diabetes, when GLUT4 protein levels in muscle are unaltered, in vivo insulin-stimulated glucose uptake measured by euglycemic clamp is 54% of control. This reflects impairment in both glycogen synthesis and glycolysis and the substrate common to these two pathways, glucose-6-phosphate, is decreased approximately 30% in muscle of diabetic rats. These findings suggest a defect early in the pathway of glucose utilization, probably at the step of glucose transport. Because GLUT1 and GLUT4 levels are unaltered at 7 d of diabetes, reduced glucose uptake in muscle probably reflects impaired glucose transporter translocation or intrinsic activity. Later, at 14 d of diabetes, GLUT1 and GLUT4 protein levels are reduced, suggesting that sequential defects may contribute to the insulin-resistant glucose transport characteristic of diabetes.  相似文献   

10.
目的观察肥胖者网膜脂肪组织中叉头状转录因子O1(FOXO1)、葡萄糖转运体4(GLUT4)mRNA表达,探讨FOXO1在肥胖和胰岛素抵抗发生中的作用。方法聚集15例肥胖者和17例非肥胖者的网膜脂肪组织应用半定量反转录聚合酶链反应(RT—PCR)测定FOXO1、GLUT4mRNA表达,并测定其他临床指标,分析各指标之间的相关性及与胰岛素敏感性的关系。结果肥胖者FOXO1 mRNA的表达显著高于非肥胖对照组,(0.577±0.038VS0.359±0.023)(P〈0.01),GLUT4mRNA的表达明显低于非肥胖对照组,(0.386±0.037VS0.646±0.034)(P〈0.01);网膜脂肪组织FOXO1 mRNA的表达与体质量指数(BMI)、腰臀比(WHR)、空腹胰岛素(FINs)、胰岛素抵抗指数(HOMA—IR)、甘油三酯(TG)的表达呈正相关(r=0.963、0.939、0.974、0.924、0.600,均P〈0.01),与GLUT4 mRNA的表达呈负相关(r=0.866,P〈0.01),多元逐步回归分析示BMI、HOMA—IR、GLUT4mRNA为FOXO1mRNA的独立相关因素。结论肥胖者的网膜脂肪组织中的FOXO1表达明显增加,FOXO1可能是肥胖和胰岛素抵抗的联系者,可能是通过减少GLUT4的表达引起肥胖者胰岛素抵抗的。  相似文献   

11.
At least two genetically distinct glucose transporters (GTs) coexist in adipose cells, one cloned from human hepatoma cells and rat brain (HepG2/brain) and another from rat skeletal muscle, heart, and adipose cells (adipose cell/muscle). Here we demonstrate differential regulation of these two GTs in adipose cells of diabetic and insulin-treated diabetic rats and compare changes in the expression of each GT with marked alterations in insulin-stimulated glucose transport activity. Adipose cell/muscle GTs detected by immunoblotting with the monoclonal antiserum 1F8 (James, D. E., R. Brown, J. Navarro, and P. F. Pilch. 1988. Nature (Lond.). 333:183-185), which reacts with the protein product of the newly cloned adipose cell/muscle GT cDNA, decrease 87% with diabetes and increase to 8.5-fold diabetic levels with insulin treatment. These changes concur qualitatively with previous detection of GTs by cytochalasin B binding and with insulin-stimulated 3-O-methylglucose transport. Northern blotting reveals that the adipose/muscle GT mRNA decreases 50% with diabetes and increases to 6.8-fold control (13-fold diabetic) levels with insulin treatment. In contrast, GTs detected with antisera to the carboxyl terminus of the HepG2 GT or to the human erythrocyte GT show no significant change with diabetes or insulin treatment. The HepG2/brain GT mRNA is unchanged with diabetes and increases threefold with insulin treatment. These results suggest that (a) altered expression of the adipose cell/muscle GT forms the molecular basis for the dysregulated glucose transport response to insulin characteristic of diabetes, (b) the expression of two types of GTs in rat adipose cells is regulated independently, and (c) alterations in mRNA levels are only part of the mechanism for in vivo regulation of the expression of either GT species.  相似文献   

12.
The effects of chronic insulin administration on the metabolism of isolated adipose cells and muscle were studied. Adipose cells from 2 and 6 wk insulin-treated and control rats, fed either chow or chow plus sucrose, were prepared, and insulin binding, 3-O-methylglucose transport, glucose metabolism, and lipolysis were measured at various insulin concentrations. After 2 wk of treatment, adipose cell size and basal glucose transport and metabolism were unaltered, but insulin-stimulated transport and glucose metabolism were increased two- to threefold when cells were incubated in either 0.1 mM glucose (transport rate limiting) or 10 mM glucose (maximum glucose metabolism). Insulin binding was increased by 30%, but no shift in the insulin dose-response curve for transport or metabolism occurred. After 6 wk of treatment, the effects of hyperinsulinemia on insulin binding and glucose metabolism persisted and were superimposed on the changes in cell function that occurred with increasing cell size in aging rats. Hyperinsulinemia for 2 or 6 wk did not alter basal or epinephrine-stimulated lipolysis in adipose cells or the antilipolytic effect of insulin. In incubated soleus muscle strips, insulin-stimulated glucose metabolism was significantly increased after 2 wk of hyperinsulinemia, but these increases were not observed after 6 wk of treatment. We conclude that 2 wk of continuous hyperinsulinemia results in increased insulin-stimulated glucose metabolism in both adipose cells and soleus muscle. Despite increased insulin binding to adipose cells, no changes in insulin sensitivity were observed in adipose cells or muscle. In adipose cells, the increased glucose utilization resulted from both increased transport (2 wk only) and intracellular glucose metabolism (2 and 6 wk). In muscle, after 2 wk of treatment, both glycogen synthesis and total glucose metabolism were increased. These effects of hyperinsulinemia were lost in muscle after 6 wk of treatment, when compared with sucrose-supplemented controls.  相似文献   

13.
Glucose transporter type 4 (GLUT4) is insulin responsive and is expressed in striated muscle and adipose tissue. To investigate the impact of a partial deficiency in the level of GLUT4 on in vivo insulin action, we examined glucose disposal and hepatic glucose production (HGP) during hyperinsulinemic clamp studies in 4-5-mo-old conscious mice with one disrupted GLUT4 allele [GLUT4 (+/-)], compared with wild-type control mice [WT (+/+)]. GLUT4 (+/-) mice were studied before the onset of hyperglycemia and had normal plasma glucose levels and a 50% increase in the fasting (6 h) plasma insulin concentrations. GLUT4 protein in muscle was approximately 45% less in GLUT4 (+/-) than in WT (+/+). Euglycemic hyperinsulinemic clamp studies were performed in combination with [3-3H]glucose to measure the rate of appearance of glucose and HGP, with [U-14C]-2-deoxyglucose to estimate muscle glucose transport in vivo, and with [U-14C]lactate to assess hepatic glucose fluxes. During the clamp studies, the rates of glucose infusion, glucose disappearance, glycolysis, glycogen synthesis, and muscle glucose uptake were approximately 55% decreased in GLUT4 (+/-), compared with WT (+/+) mice. The decreased rate of in vivo glycogen synthesis was due to decreased stimulation of glucose transport since insulin's activation of muscle glycogen synthase was similar in GLUT4 (+/-) and in WT (+/+) mice. By contrast, the ability of hyperinsulinemia to inhibit HGP was unaffected in GLUT4 (+/-). The normal regulation of hepatic glucose metabolism in GLUT4 (+/-) mice was further supported by the similar intrahepatic distribution of liver glucose fluxes through glucose cycling, gluconeogenesis, and glycogenolysis. We conclude that the disruption of one allele of the GLUT4 gene leads to severe peripheral but not hepatic insulin resistance. Thus, varying levels of GLUT4 protein in striated muscle and adipose tissue can markedly alter whole body glucose disposal. These differences most likely account for the interindividual variations in peripheral insulin action.  相似文献   

14.
A critical defect in type 2 diabetes is impaired insulin-stimulated glucose transport and metabolism in muscle and adipocytes. To understand the metabolic adaptations this elicits, we generated mice with targeted disruption of the GLUT4 glucose transporter in both adipocytes and muscle (AMG4KO). In contrast to total body GLUT4-null mice, AMG4KO mice exhibit normal growth, development, adipose mass, and longevity. They develop fasting hyperglycemia and glucose intolerance and are at risk for greater insulin resistance than mice lacking GLUT4 in only one tissue. Hyperinsulinemic-euglycemic clamp studies showed a 75% decrease in glucose infusion rate and markedly reduced 2-deoxyglucose uptake into skeletal muscle (85-90%) and white adipose tissue (65%). However, AMG4KO mice adapt by preferentially utilizing lipid fuels, as evidenced by a lower respiratory quotient and increased clearance of lipids from serum after oral lipid gavage. While insulin action on hepatic glucose production and gluconeogenic enzymes is impaired, hepatic glucokinase expression, incorporation of 14C-glucose into lipids, and hepatic VLDL-triglyceride release are increased. The lipogenic activity may be mediated by increased hepatic expression of SREBP-1c and acetyl-CoA carboxylase. Thus, inter-tissue communication results in adaptations to impaired glucose transport in muscle and adipocytes that involve increased hepatic glucose uptake and lipid synthesis, while muscle adapts by preferentially utilizing lipid fuels. Genetic determinants limiting this "metabolic flexibility" may contribute to insulin resistance and type 2 diabetes in humans.  相似文献   

15.
A primary human skeletal muscle culture (HSMC) system, which retains cellular integrity and insulin responsiveness for glucose transport was employed to evaluate glucose transport regulation. As previously reported, cells cultured from non-insulin-dependent diabetic (NIDDM) subjects displayed significant reductions in both basal and acute insulin-stimulated transport compared to nondiabetic controls (NC). Fusion/differentiation of NC and NIDDM HSMC in elevated media insulin (from 22 pM to 30 microM) resulted in increased basal transport activities but reduced insulin-stimulated transport, so that cells were no longer insulin responsive. After fusion under hyperinsulinemic conditions, GLUT1 protein expression was elevated in both groups while GLUT4 protein level was unaltered. Fusion of HSMC under hyperglycemic conditions (10 and 20 mM) decreased glucose transport in NC cells only when combined with hyperinsulinemia. Hyperglycemia alone down-regulated transport in HSMC of NIDDM, while the combination of hyperglycemia and hyperinsulinemia had greater effects. In summary: (a) insulin resistance of glucose transport can be induced in HSMC of both NC and NIDDM by hyperinsulinemia and is accompanied by unaltered GLUT4 but increased GLUT1 levels; and (b) HSMC from NIDDM subjects demonstrate an increased sensitivity to impairment of glucose transport by hyperglycemia. These results indicate that insulin resistance in skeletal muscle can be acquired in NC and NIDDM from hyperinsulinemia alone but that NIDDM is uniquely sensitive to the additional influence of hyperglycemia.  相似文献   

16.
Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.  相似文献   

17.
Currently, glucose transporter 4 (GLUT4) has been considered as the key player for the insulin-stimulated glucose transport in the muscle and adipose tissues. The development of recombinant DNA techniques allows the creations of genetically knockout, knockdown and transgenic animals and cells for the study of GLUT4’s physiological functions. Here, we have used key words to search the PubMed and summarized the methods used in Slc2a4 gene knockout, GLUT4 knockdown and overexpression in the whole body and tissue specific manner. The whole body GLUT4-null mice have growth retardation, but normal glucose tolerance and basal glucose turnover rates. Compared with whole body Slc2a4 knockout mice, adipose and muscle double knockout mice have impaired insulin tolerance and glucose intolerance. The results of GLUT4 knockdown in 3T3-L1 adipocytes have shown that its expression is needed for lipogenesis after, but not during, differentiation. Transgenic mice with the whole body GLUT4 overexpression have normal body weight and lowered blood glucose level. The adipose tissue specific overexpression of GLUT4 leads to increases in mouse body weight and adipose tissue weight. The insulin-stimulated GLUT4 translocation in the skeletal muscle contributes to the regulation of glucose homeostasis. Data from both transgenic overexpression and tissue specific Slc2a4 knockout indicate that GLUT4 probably plays a role in the glucose uptake in the fasting state. More studies are warranted to use advanced molecular biology tools to decipher the roles of GLUT4 in the control of glucose homeostasis.  相似文献   

18.
19.
Uncoupling protein-2 and -3 (UCP2 and UCP3) are mitochondrial proteins that show high sequence homology with the brown adipocyte-specific UCP1. UCP1 induces heat production by uncoupling respiration from ATP synthesis. UCP2 is widely expressed in human tissues, whereas UCP3 expression seems restricted to skeletal muscle, an important site of thermogenesis in humans. We have investigated the regulation of UCP2 and UCP3 gene expression in skeletal muscle and adipose tissue from lean and obese humans. UCP2 and -3 mRNA levels were not correlated with body mass index (BMI) in skeletal muscle, but a positive correlation (r = 0.55, P < 0.01, n = 22) was found between UCP2 mRNA level in adipose tissue and BMI. The effect of fasting was investigated in eight lean and six obese subjects maintained on a hypocaloric diet (1,045 kJ/d) for 5 d. Calorie restriction induced a similar 2-2.5-fold increase in UCP2 and -3 mRNA levels in lean and obese subjects. To study the effect of insulin on UCP gene expression, six lean and five obese subjects underwent a 3-h euglycemic hyperinsulinemic clamp. Insulin infusion did not modify UCP2 and -3 mRNA levels. In conclusion, the similar induction of gene expression observed during fasting in lean and obese subjects shows that there is no major alteration of UCP2 and -3 gene regulation in adipose tissue and skeletal muscle of obese subjects. The increase in UCP2 and -3 mRNA levels suggests a role for these proteins in the metabolic adaptation to fasting.  相似文献   

20.
The mechanism for the increased glucose transport response to insulin in adipose cells from chronically hyperinsulinemic rats was examined. Rats were infused with insulin s.c. for 2 wk. Isolated adipose cells were incubated with and without insulin, 3-O-methylglucose transport was measured, and glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Adipose cells from insulin-treated rats showed no change in basal but a 55% increase in insulin-stimulated glucose transport activity compared with those from control rats (7.1 +/- 0.8 vs. 4.6 +/- 0.5 fmol/cell per min, mean +/- SEM) and a corresponding increase in the concentration of glucose transporters in the plasma membranes (44 +/- 5 vs. 32 +/- 6 pmol/mg of membrane protein). In the low-density microsomes, glucose transporter concentrations in both basal and insulin-stimulated states were the same, but the total numbers were greater in cells from the insulin-treated rats because of a 39% increase in low-density microsomal protein. Therefore, chronic experimental hyperinsulinemia in the rat enhances the stimulatory action of insulin on glucose transport in the adipose cell by increasing the concentration of glucose transporters in the plasma membranes. This results from an enlarged intracellular pool due to increased intracellular protein and enhanced glucose transporter translocation in response to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号