首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rats (N=11) were trained to discriminate SKF 38393 (8.0 mg/kg, IP), a D1 dopamine receptor agonist, from saline in a two-lever, food-reinforced (FR 30) drug discrimination paradigm. The discrimination was acquired by nine rats within an average of 77±6 (SEM) sessions. Subsequently, various doses of SKF 38393 as well as SKF 82526, a potent, selective D1 agonist that does not readily penetrate the blood-brain barrier, were injected prior to test sessions. SKF 38393 (2–16 mg/kg) produced a dose-related increase in the percent of responses that occurred on the drug lever during test sessions. On the other hand, SKF 82526 (0.125 and 1.0 mg/kg) induced no drugappropriate responding. This experiment establishes that SKF 38393 can serve as a discriminative stimulus in rats. Furthermore, the observation that SKF 82526 did not substitute for SKF 38393 in this paradigm makes it unlikely that this effect involves a peripheral site of action. The results suggest the existence of a functional, behaviorally relevant D1 dopamine receptor in the CNS of rats.  相似文献   

2.
RATIONALE: Cocaine dependence is a major health concern and there are no effective pharmacotherapies currently available. Although cocaine is an indirect DA agonist that binds to all three monoamine transporters, there is much evidence implicating a greater role for the dopamine (DAT) than norepinephrine (NET) and serotonin (SERT) transporters in the behavioral effects of cocaine. As such, several groups have developed compounds that exhibit high affinity and selectivity for the DAT. OBJECTIVE: The present investigation examined the cocaine-like discriminative stimulus effects in rats of novel cocaine analogs (RTI 12, 13, 15) and 3-phenyltropane analogs (RTI 111, 112, 113, 114, 117 120, 121, 123, 134 and 152) of which several exhibit high affinity (e.g., <7 nM) and selectivity for the DAT. RESULTS: During dose-effect testing all drugs produced 75-100% cocaine-lever responding. Analyses indicated that the potency of the compounds to produce cocaine-like discriminative stimulus effects was correlated with their affinity for the DAT and the NET but not SERT. Due to the extremely large concentrations (e.g., 10,000-31,024 nM) needed to occupy the NET in vitro, it is doubtful if the doses administered had meaningful NET activity. The selectivity at the DAT, relative to the other transporters, was not indicative of the potency with which these drugs substituted for cocaine. CONCLUSIONS: The cocaine-like discriminative stimulus of the RTI compounds tested appear to be mediated by the DAT, however the extent to which the NET is involved remains unclear. Additionally, several of the RTI compounds had properties consistent with those thought desirable in a pharmacotherapeutic for cocaine dependence.  相似文献   

3.
RATIONALE: The relative contributions of different dopamine receptor subtypes to the discriminative stimulus effects of cocaine may be influenced by the training dose of cocaine. Substitution tests with dopamine receptor agonists have suggested that the role of dopamine D2-like receptors is diminished relative to that of D1-like receptors at a training dose of 3 mg/kg cocaine compared with a training dose of 10 mg/kg. OBJECTIVES: To test whether dopamine D2-like receptor antagonists were differentially effective at attenuating cocaine's discriminative stimulus effects at different training doses, and to test for the first time an antagonist that is selective for the dopamine D2 receptor within the D2-like receptor subfamily. METHODS: Rats were trained to press one lever after receiving cocaine and another after receiving saline (maintaining >95% drug-appropriate responding). Three dopamine D2-like receptor antagonists (haloperidol, raclopride and L-741,626) were tested in rats trained at 3 mg/kg or 10 mg/kg cocaine. At the lower training dose, the D1-like receptor antagonist SCH 39166 was also tested. RESULTS: The antagonists were not differentially effective between training groups: they all produced parallel, rightward shifts in cocaine's dose-effect function, indicating surmountable antagonism. CONCLUSIONS: The results demonstrate that D2-like receptor antagonists with different affinities for the various D2-like receptors can antagonise the discriminative stimulus effects of cocaine at two training doses. Importantly, antagonism by L-741,626 implies that stimulation of D2 receptors alone (not D3 or D4 receptors) is sufficient to mediate cocaine's discriminative stimulus effects. Finally, the claim that D1-like receptors are preferentially involved at low training doses of cocaine is only consistent with the current findings if indirect stimulation of D2 receptors by low doses of cocaine remains necessary for the expression of the D1-like receptor-mediated effect.  相似文献   

4.
Previous studies have reported that the non-selective dopamine agonist, apomorphine, can serve effectively as a discriminative stimulus in experimental animals, and evidence has been presented that this effect is mediated by dopamine D2 receptors. More recently, it has been found that another dopamine agonist, 7-OH-DPAT, which has some selectivity for D3 receptors, also produces a discriminative cue in rats. The present study set out to make a direct comparison of the discriminative stimulus effects of these two compounds. Rats were trained to discriminate either apomorphine (0.05 mg/kg, SC) or 7-OH-DPAT (0.1 mg/kg, IP) from saline. Both discriminations were acquired but extended training was necessary. Cross generalisation occurred between the two compounds and both cues generalised to the dopamine agonists, quinpirole, quinelorane, PD 128207, and bromocriptine. When the potencies of these compounds to produce the apomorphine or 7-OH-DPAT cues were correlated with their potencies to produce D2 or D3 functional responses in vitro (mitogenesis in transfected cells–results taken from the literature) stronger correlations with D3 than with D2 responses were observed. Both the cueing and the response rate-decreasing effects of apomorphine and 7-OH-DPAT were antagonised by the autoreceptor selective dopamine antagonist amisulpride, and sulpiride also antagonised the cues but without affecting response rates. In contrast, haloperidol blocked the cues but potentiated the response rate decreases. These results suggest that, at the doses used, apomorphine and 7-OH-DPAT produce similar discriminative stimuli, which may be mediated by presynaptically located dopamine D3 receptors. Received: 5 October 1996 / Final version: 15 November 1996  相似文献   

5.
Bupropion is a novel, non-tricyclic antidepressant with a primary pharmacological action of monoamine uptake inhibition. The drug resembles a psychostimulant in terms of its neurochemical and behavioural profiles in vivo, but it does not reliably produce stimulant-like effects in humans at clinically prescribed doses. Bupropion binds with modest selectivity to the dopamine transporter, but its behavioural effects have often been attributed to its inhibition of norepinephrine uptake. This experiment examines monoaminergic involvement in the discriminative stimulus effects of bupropion. Rats were trained to press one lever when injected IP with bupropion (17.0 mg/kg), and another lever when injected with saline. In substitution tests, dose-response curves were obtained for several monoamine uptake inhibitors. Nine of ten dopamine uptake blockers fully substituted for bupropion; the exception, indatraline (LU 19-005), partially substituted (71% bupropion-appropriate responding). Serotonin and norepinephrine uptake blockers (zimelidine and nisoxetine, respectively) produced negligible or limited substitution, and the anti-muscarinic dopamine uptake blocker benztropine produced limited partial substitution. A series of dopamine D1-like and D2-like receptor agonists were also tested: only the D2-like agonist RU 24213 fully substituted; three other D2-like agonists and four D1-like agonists partially substituted (50% < drug responding < 80%). Antagonism of the discriminative effects of bupropion was obtained with a D1- and a D2-like dopamine antagonist. The results demonstrate strong similarities with those obtained using other dopamine uptake inhibitors as training drugs, and support the view that the behavioural effects of bupropion are primarily mediated by dopaminergic mechanisms. Received: 29 May 1997/Final version: 6 June 1997  相似文献   

6.
Rationale Identification of behaviors specifically mediated by the dopamine D2 and D3 receptors would allow for the determination of in vivo receptor selectivity and aide the development of novel therapeutics for dopamine-related diseases. Objectives These studies were aimed at evaluating the specific receptors involved in the mediation of D2/D3 agonist-induced yawning and hypothermia. Materials and methods The relative potencies of a series of D2-like agonists to produce yawning and hypothermia were determined. The ability of D3-selective and D2-selective antagonists to inhibit the induction of yawning and hypothermia were assessed and a series of D2/D3 antagonists were characterized with respect to their ability to alter yawning induced by a low and high dose of PD-128,907 and sumanirole-induced hypothermia. Results D3-preferring agonists induced yawning at lower doses than those required to induce hypothermia and the D2-preferring agonist, sumanirole, induced hypothermia at lower doses than were necessary to induce yawning. The rank order of D3 selectivity was pramipexole > PD-128,907 = 7-OH-DPAT = quinpirole = quinelorane > apomorphine = U91356A. Sumanirole had only D2 agonist effects. PG01037, SB-277011A, and U99194 were all D3-selective antagonists, whereas haloperidol and L-741,626 were D2-selective antagonists and nafadotride’s profile of action was more similar to the D2 antagonists than to the D3 antagonists. Conclusions D3 and D2 receptors have specific roles in the mediation of yawning and hypothermia, respectively, and the analysis of these effects allow inferences to be made regarding the selectivity of D2/D3 agonists and antagonists with respect to their actions at D2 and D3 receptors.  相似文献   

7.
Rationale Both dopamine (DA) and serotonin (5-HT) release are evoked by (+)-MDMA; however, little is known of the contribution of DA D1- and D2-like receptors (D1R and D2R, respectively) in the behavioral effects of (+)-MDMA.Objectives To test the hypothesis that a D1R or D2R antagonist would attenuate the hypermotive or discriminative stimulus effects of (+)-MDMA.Methods Male Sprague-Dawley rats (n=164) were pretreated with the D1R antagonist SCH 23390 (3.125–50 g/kg, SC) or the D2R antagonist eticlopride (12.5–50 g/kg, SC) prior to treatment with (+)-MDMA (3 mg/kg, SC) and locomotor activity was recorded using photobeam monitors. Twelve additional rats trained to discriminate (+)-MDMA (1 mg/kg, IP) from saline in a two-lever water-reinforced FR20 task were administered SCH 23390 (6.25 g/kg, IP) or eticlopride (12.5 g/kg, IP) prior to (+)-MDMA (0.375–1.0 mg/kg, IP). Rats were then placed in the drug discrimination chambers and the percent (+)-MDMA appropriate responding and response rate were measured.Results Both SCH 23390 and eticlopride blocked (+)-MDMA-evoked hyperactivity in a dose-related manner; the highest doses of the antagonists also effectively suppressed basal locomotor activity. In rats trained to discriminate (+)-MDMA from saline, SCH 23390 (6.25 g/kg), but not eticlopride (12.5 g/kg), blocked the stimulus effects of (+)-MDMA without altering response rate.Conclusion These data indicate that DA released indirectly by (+)-MDMA administration results in stimulation of D1R and D2R to enhance locomotor activity. Furthermore, the D1R appears to play a more prominent role than the D2R in the discriminative stimulus properties of (+)-MDMA.  相似文献   

8.
The involvement of dopamine (DA) receptor subtypes in the behavioral effects of CNS stimulants was studied in rats trained to discriminate occaine from saline. In substitution tests, the stimulus effects of 10mg/kg of this substance generalized tod-amphetamine (0.25–1.0 mg/kg) and the selective D2 against LY-171555 (0.05–0.25 mg/kg); but not to the D1 agonist SKF-38393 (5.0–15.0 mg/kg); in combination tests, the D1 antagonist Sch-23390 (0.0625–0.5 mg/kg) significantly blocked, and the D2 antagonist spiperone (0.25–0.5 mg/kg) partially blocked the cocaine cue. These data suggest that the involvement of DA systems in the behavioral effects of cocaine is more complex than either D1 or D2 receptor activation; for example, the stimulus properties of this substance might involve both D1 and D2 receptor activation.Some of these results were presented at the meeting of the Society for Neuroscience, Toronto, 1988  相似文献   

9.
RATIONALE: The dopamine (DA) D3/2 agonist 7-OH-DPAT has been shown to attenuate the behavioral effects of the mu agonist morphine as well as the development of morphine tolerance. OBJECTIVES: To evaluate the effects of DA D3/2 agonists [7-OH-DPAT, (+)-PD128,907, quinelorane, (-)-quinpirole], a D1 agonist (SKF38393), a D1 antagonist [(+)-SCH23390], a DA antagonist (spiperone), and an indirect DA agonist (cocaine) on the antinociceptive effects of kappa agonists (spiradoline, U69,593, bremazocine) as well as the effects of D3/2 agonists on the diuretic effects of spiradoline. METHODS: Antinociception was determined using a warm water (50-55 degrees C) tail-withdrawal procedure and urine output was collected over a 2-h interval. RESULTS: The antinociceptive effects produced by the kappa agonists varied with the intensity of the nociceptive stimulus (water), as maximal or near maximal effects were obtained with spiradoline at 55 degrees C, U69,593 at 52 degrees C, and bremazocine at 50 degrees C water. 7-OH-DPAT produced a dose-dependent attenuation of the antinociceptive effects of spiradoline, U69,593, and bremazocine. Spiperone completely reversed the effects of 7-OH-DPAT on spiradoline antinociception. (+)-PD128,907 and quinelorane, but not (-)-quinpirole or the other DAergic agents examined, attenuated the antinociceptive effects of spiradoline in a dose- and time-dependent manner. The diuretic effects of spiradoline were attenuated by 7-OH-DPAT, (+)-PD128,907, quinelorane, and (-)-quinpirole, and this attenuation was reversed by spiperone. CONCLUSIONS: The present study demonstrated that some D3/2 agonists can modulate both the antinociceptive and diuretic effects of kappa agonists. These modulatory actions are similar to those obtained against the effects of mu agonists.  相似文献   

10.
There is evidence that dopamine transmission is involved in reinforcement processes and the present study investigated the relative involvement of D3 versus D2 dopamine receptors in the effects of dopamine ligands on the reinforcing action of ethanol. Rats were trained to self-administer ethanol (10% v/v) orally in a free-choice two-lever operant task using a saccharin-fading procedure. When preference in responding for ethanol over water had developed the rats were tested with several dopamine agonists and antagonists. Pretreatment with the non-selective dopamine agonist, apomorphine (0.01–0.1 mg/kg), the preferential D2 agonist, bromocriptine (1–10 mg/kg) and the selective D3 agonists, 7-OH-DPAT (0.003–0.1 mg/kg), PD 128907 (0.1–3 mg/kg), (+)3PPP (0.3–3 mg/kg), quinelorane (0.0001–0.003 mg/kg) and quinpirole (0.003–0.03 mg/kg), resulted in dose-dependent decreases in responding for ethanol. The relative potencies of the dopamine agonists to decrease ethanol self-administration were highly correlated with their published potencies to produce in vitro functional D3 but not D2 responses. Active doses could be considered as those selectively stimulating receptors involved in the control of dopamine release, suggesting that reduction of dopamine transmission was associated with a decrease in ethanol-reinforced responding. This conclusion was further supported by the finding that pretreatment with the D2/D3 dopamine antagonists, haloperidol (0.1–0.4 mg/kg) and tiapride (10–60 mg/ kg), decreased responding for ethanol at doses which have been shown previously to block dopamine transmission. Received: 25 January 1998/Final version: 24 April 1998  相似文献   

11.
Abstract Rationale. LAAM (α-l-acetylmethadol) is a derivative of the synthetic mu-opiate agonist methadone and is one of the four isomers of acetylmethadol. Methadone and LAAM have similar pharmacological properties and both are approved medications for the treatment of heroin dependency disorders. Few studies have reported on the pharmacology of acetylmethadol's other isomers and most of these have focused on their potential analgesic activity. Objectives. The purpose of the present investigation was to examine the discriminative stimulus effects of LAAM, the other isomers of acetylmethadol, and methadone in rats trained to discriminate heroin from water, and to compare the duration of the discriminative stimulus effects of heroin, methadone, and LAAM. Methods. Long-Evans rats were trained to discriminate 0.3 mg/kg heroin from water under a fixed ratio 10 (FR10) schedule of food reinforcement. Dose-response functions for heroin, methadone, LAAM, three other isomers of acetylmethadol: α-d-acetylmethadol, β-d-acetylmethadol, β-l-acetylmethadol, and its precursor, β-l-methadol were examined. Additionally, the time course effects for heroin, methadone, and LAAM were examined. Results. LAAM and methadone dose-dependently occasioned heroin-like discriminative stimulus effects. Two of acetylmethadol's isomers, α-d-acetylmethadol and β-d-acetylmethadol, were more potent than LAAM in producing heroin-like effects. The β-l-methadol precursor and β-l-acetylmethadol did not fully substitute for heroin's discriminative stimulus. LAAM elicited heroin-like discriminative stimulus effects for at least 6 h and generated partial generalization up to 36 h following administration. Conclusions. Methadone, LAAM, β-d-acetylmethadol and α-d-acetylmethadol, but not β-l-acetylmethadol and β-l-methadol evoke heroin-like discriminative stimulus effects. Electronic Publication  相似文献   

12.
This experiment was designed to elucidate the neurotransmitter systems that mediate the discriminative stimulus effects of methamphetamine. Four pigeons were trained to peck one key following saline injections and a second key following methamphetamine injections (1.0 or 1.7 mg/kg, IM). Substitution tests revealed drug-appropriate responding following administration of the psychomotor stimulants methamphetamine, amphetamine and cocaine, the dopamine (DA) reuptake inhibitor bupropion, norepinephrine (NE) reuptake inhibitors imipramine and tomoxetine, and the serotonin (5-HT) releaser fenfluramine. Salinekey responding occurred following administration of the D1 agonist SKF-38393, the D1 antagonist SCH-23390, the α2 receptor agonist clonidine, the α1 antagonist prazosin, a nonselective β-antagonist propranolol and the selective 5-HT reuptake inhibitor fluoxetine. The D2/D3 agonist quinpirole produced drug-appropriate responding in two pigeons and partial substitution in the remaining two pigeons. The 5HT1A agonist 8-OH-DPAT produced drug-appropriate responding at higher doses (0.3–1.0 mg/kg), whereas much lower doses (0.003–0.1 mg/kg) antagonized the methamphetamine stimulus. The stimulus effects of methamphetamine were attenuated by pretreatment with prazosin, SCH-23390 and eticlopride, whereas pretreatment with propranolol and the 5-HT3 antagonist, MDL 72222, failed reliably to attenuate drug key responding. These results suggest that NE and DA reuptake inhibition and 5-HT release mediate the discriminative stimulus effects of methamphetamine as do the 5-HT1A and DA D1 and D2 receptors.  相似文献   

13.
Rationale. Previous work has demonstrated asymmetrical cross-generalization between the discriminative stimulus effects of nicotine and cocaine: nicotine fully substitutes for cocaine, whereas cocaine only partially substitutes for nicotine. The factors responsible for the similarities and differences between the two drugs remain unclear. Objective. The study tested the involvement of dopaminergic and/or cholinergic mechanisms in the discriminative stimulus effects of nicotine and cocaine. Methods. One set of rats was trained to discriminate cocaine (8.9 mg/kg) from saline, and two other sets of rats were trained to discriminate nicotine (0.1 mg/kg) from saline. Results. In cocaine-trained rats, among the cholinergic agonists studied only nicotine (0.01–0.56 mg/kg) produced full, dose-related substitution; nornicotine (1–5.6 mg/kg) substituted only partially, and lobeline (2.71–15.34 mg/kg) and pilocarpine (0.26–2.55 mg/kg) failed to engender any cocaine-appropriate responding. The nicotinic antagonist mecamylamine (1–5.6 mg/kg) failed to block cocaine's discriminative stimulus effects. The dopamine antagonist cis-flupentixol (0.48 mg/kg) blocked the substitution of nicotine for cocaine. In nicotine-trained rats, the dopamine uptake blockers cocaine, bupropion and nomifensine (0.2–26.1 mg/kg) each substituted only partially for nicotine, and cis-flupentixol (0.48–0.86 mg/kg) antagonized the discriminative stimulus effects of nicotine. Conclusions. Nicotine fully substitutes for cocaine because of its effects on dopamine transmission, and not because the discriminative stimulus effects of cocaine incorporate a cholinergic component. Substitution of nicotine for cocaine may depend more on nicotine-induced dopamine release than does the nicotine-trained discriminative stimulus; there may be differential dopaminergic involvement after acute and repeated treatment with nicotine or cocaine. Electronic Publication  相似文献   

14.
RATIONALE: Dopamine (DA) D2-like antagonists block several effects of cocaine, including its locomotor stimulant and interoceptive discriminative-stimulus effects. Because these compounds generally lack selectivity among the D2-like DA receptors, the specific roles of the subtypes remain unclear. OBJECTIVES: DA D2 receptor knockout (DA D2R KO), heterozygous (HET), and wild-type (WT) mice were used to study the role of D2 DA receptors in the effects of cocaine. Some effects of the relatively selective DA D2-like antagonist raclopride were also studied to further assess the role of D2 receptors. METHODS: DA D2R KO, HET, and WT mice were treated with cocaine (1-10 mg/kg) or vehicle, and their horizontal locomotor activity was assessed. The mice were also trained to discriminate i.p. injections of saline from cocaine (10 mg/kg) using a two-response key, fixed-ratio-20 response, food-reinforcement procedure. A range of doses of cocaine (1.0-17 mg/kg) was administered before 15-min test sessions. RESULTS: Both DA D2R KO and HET mice showed reduced levels of horizontal activity relative to WT mice. Cocaine dose dependently stimulated activity in each genotype, with the highest level of activity induced in the DA D2R WT mice. All three genotypes acquired the discrimination of 10 mg/kg cocaine; tested doses of 1.0-10.0 mg/kg produced dose-related increases in the number of cocaine-appropriate responses. Raclopride, at inactive to fully active doses (0.1-1.0 mg/kg), did not fully substitute for cocaine. Raclopride dose dependently shifted the cocaine dose-effect curve to the right in DA D2R WT and HET mice. However, in DA D2R KO mice, raclopride was inactive as an antagonist. CONCLUSIONS: The present data indicate an involvement of D2 DA receptors in the locomotor-stimulating effects and the interoceptive discriminative-stimulus effects of cocaine in WT subjects. However, the D2 receptor is not necessary for the effects, suggesting redundant dopaminergic mechanisms for the discriminative-stimulus interoceptive effects of cocaine.  相似文献   

15.
Dopamine agonists and fenfluramine were used as pharmacological probes to investigate the possible difference in sensitivity and time course of drug action in genetically obese Zucker rats and their lean littermates. All rats were trained to discriminate between the stimulus properties of 0.6 mg/kg d-amphetamine and its vehicle in a two-lever, food-motivated operant task. Once trained, both groups of rats showed a dose-related decrease in discriminative performance with lower amphetamine doses. Analysis of the dose-response curves indicated an ED50 for the obese rats of 0.17 mg/kg and for the lean group of 0.14 mg/kg. Administration of 0.3-1.2 mg/kg l-amphetamine and 2.5-10.0 mg/kg cocaine produced a pattern of responding similar to that observed with d-amphetamine. In contrast, 0.08-mg/kg apomorphine produced saline-appropriate responding and 1.5-2.5 mg/kg fenfluramine produced intermediate results in both groups. Time-course experiments indicated that the lean rats maintain errorless discriminative performance through 90 min post-injection, whereas the obese rats discriminate d-amphetamine significantly less at that post-administration time. The results suggest a similar sensitivity to d-amphetamine and other dopaminergic agonists in obese and lean rats with a difference in the time-course of d-amphetamine's action between these two groups.  相似文献   

16.
The effects of microinjection of phencyclidine (PCP) and dizocilpine, non-competitive NMDA receptor antagonists, and dopamine into the nucleus accumbens were examined in rats trained to discriminate PCP (1.5 mg/kg i.p.) from saline under a two-lever fixed ratio 20 schedule of food reinforcement. Microinjection of PCP (2-40 microg) and dizocilpine (2-12 microg) into the bilateral nucleus accumbens produced a dose-dependent increase in PCP-appropriate responding and fully substituted for systemically administered PCP, whereas microinjection of dopamine (1-4 microg) did not produce PCP-like discriminative stimulus effects. The performance of PCP discrimination was assessed after bilateral destruction of the dopaminergic nerve neurons in the nucleus accumbens with dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA, 4 microg/1 microl/side). The destruction of dopaminergic nerve neurons in the nucleus accumbens failed to prevent the performance of PCP discrimination. There was no difference in the average percentages of PCP-appropriate responding between vehicle and 6-OHDA-treated rats in the dose-response tests. These results suggest that the dopaminergic system in the nucleus accumbens does not play a critical role in the discriminative stimulus effects of PCP.  相似文献   

17.
Testosterone and other anabolic-androgenic steroids (AAS) are reinforcing in animals, as determined by conditioned place preference or self-administration. Most drugs of abuse produce subjective effects on mood and perception that initiate and maintain drug taking. Whether AAS have similar effects is not known. Food-restricted male Sprague-Dawley rats (n = 9) were tested for their ability to discriminate an injection of testosterone from the β-cyclodextrin vehicle using a standard two-lever operant paradigm. In drug discrimination, animals use the subjective effects of drug or vehicle to select the appropriate lever to obtain food pellets under an FR10 schedule of reinforcement. All rats demonstrated vigorous responding for food (1415.1 ± 76.1 responses/20 min) with 94.9% of responses on the active lever. For the first 30 days, rats received 1 mg/kg testosterone sc 30 min before testing. On Day 14, one rat achieved the discrimination criteria of 9/10 consecutive days with > 90% responses on the active lever and ≤ 5 responses on the inactive lever before the first reinforcement. Subsequently, rats were tested with testosterone at different doses (2, 7.5, 15 mg/kg at 30 min before testing) and times (2 mg/kg at 30 or 60 min before testing), each for 20 days. One additional rat demonstrated successful discrimination at Day 54 with 2 mg/kg testosterone 60 min before testing. The remaining 7 rats failed to discriminate testosterone within 110 days. When analyzed according to less-stringent standards, 4 additional rats met criteria for testosterone discrimination. However, continued performance was not stable. Thus, testosterone was unable to consistently support drug discrimination. We conclude that testosterone does not produce rapid interoceptive effects (NIH DA12843 to RIW).  相似文献   

18.
The discriminative stimulus effects of direct and indirect-acting GABAergic drugs were investigated in rats trained to discriminate 5 mg/kg pentobarbital (PB) from saline under a two-lever fixed ratio (FR) 32 schedule of food reinforcement. PB and diazepam produced dose-dependent substitution for the training dose of PB with response rate reduction only at doses above those producing full substitution. Muscimol, thiomuscimol and 4,5,6,7-tetrahydroisoxazolo [5,4-c]-pyridin-3-ol (THIP) produced intermediate levels of pentobarbital-lever responding (40–60%), accompanied by dose-dependent decreases in rates of responding following THIP and muscimol administration. The GABAA agonist progabide and its metabolite 4-{[(4-chlorophenyl) (5-fluoro-2-hydroxyphenyl)methylene]amino}] butyric acid (SL 75102) also partially substituted for PB, producing means of 39–73% PB-lever responding. The GABAB agonist, baclofen, completely failed to substitute for PB even at doses that decreased rates of responding. These results show that the discriminative stimulus effects of indirect GABAA agonists, PB and diazepam, although similar to one another, differ from those of direct GABAA receptor agonists, which produced only partial substitution for PB. The GABAB agonist, baclofen, can be distinguished by lacking any ability to substitute for PB. These results contribute to a further understanding of the similarities and differences in the behavioral effects of different types of GABA agonists.  相似文献   

19.
RATIONALE: The neurobiological systems that mediate the discriminative stimulus effects of self-administered drugs are largely unknown. The present study examined the discriminative stimulus effects of self-administered ethanol. METHODS: Rats were trained to discriminate ethanol (1 g/kg, IP) from saline on a two-lever drug discrimination task with sucrose (10% w/v) reinforcement. Test sessions were conducted with ethanol (0 or 10% v/v) added to the sucrose reinforcement to determine if self-administered ethanol would interact with the discriminative stimulus effects of investigator-administered ethanol, or with the ethanol-like discriminative stimulus effects of the GABAA-positive modulator pentobarbital or the non-competitive NMDA antagonist MK-801. RESULTS: During a saline test session, ethanol (10% v/v) was added to the sucrose reinforcement. Responding by all animals began accurately on the saline-appropriate lever and then switched to the ethanol-appropriate lever after rats self-administered a mean dose of 1.2 +/- 0.14 g/kg ethanol. During cumulative self-administration trials, responding initially occurred on the saline lever and then switched to the ethanol-appropriate lever after ethanol (0.68 +/- 0.13 g/kg) was self-administered. Investigator-administered MK-801 (0.01-1.0 mg/kg, cumulative IP) and pentobarbital (0.3-10.0 mg/kg, cumulative IP) dose-dependently substituted for ethanol. When ethanol (10% v/v) was added to the sucrose reinforcer, MK-801 and pentobarbital dose-response curves were shifted significantly to the left. CONCLUSIONS: Self-administered ethanol substituted for and potentiated the stimulus effects of investigator-administered ethanol, suggesting that the discriminative stimulus effects of self-administered ethanol are similar to those produced by investigator-administered ethanol. Self-administered ethanol enhanced the ethanol-like discriminative stimulus effects of MK-801 and pentobarbital, which suggests that the discriminative stimulus effects of self-administered ethanol are mediated by NMDA and GABAA receptors.  相似文献   

20.
A drug discrimination procedure was used to examine the neuropharmacology of (−)-ephedrine (5 mg/kg), a sympathomimetic amine found in a variety of dietary supplements. (−)-Ephedrine has caused concern because of its use as a precursor in the manufacture of street drugs (e.g. methamphetamine) and its potential for abuse and toxicity. In the present study, the catecholamine reuptake inhibitors mazindol and nomifensine, the norepinephrine (NE) reuptake inhibitor desipramine, and the dopamine D2-like (e.g. D2, D3 and D4) agonist quinpirole substituted for (−)-ephedrine (80% (−)-ephedrine-lever responding). The NE reuptake inhibitor nisoxetine, the D1-like (e.g. D1 and D5) agonists (±)-SKF 38393 and SKF 82958, and the mixed D1-/D2-like agonist apomorphine occasioned intermediate levels of responding (50–79% (−)-ephedrine-lever responding). The (−)-ephedrine cue was antagonized by the D1-like antagonist SCH 23390 and the 1-adrenoceptor antagonist prazosin as well as the D2-like antagonists (−)-eticlopride and haloperidol, although only at doses that disrupted responding in some rats. The discriminative stimulus effects of a small dose of (−)-ephedrine (1.25 mg/kg) were enhanced by the 2-adrenoceptor antagonist idazoxan and to a lesser extent by the β-adrenoceptor antagonist (−)-propranolol. However, the 2-adrenoceptor agonist clonidine (0.04 mg/kg) did not attenuate the (−)-ephedrine stimulus. These results suggest that D1-, D2-like, and 1-adrenergic receptors mediate the discriminative stimulus effects of (−)-ephedrine. Substitution of desipramine for (−)-ephedrine and not for some other stimulants suggests that NE transmission is a prominent feature of the (−)-ephedrine discriminative stimulus, and that NE underlies therapeutic and abuse-related effects of (−)-ephedrine that diverge from those of other stimulants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号