首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IFN-beta promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1-deficient mice showed severe defects in both RIG-I- and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus-induced interferon regulatory factor-3 and nuclear factor kappaB activation was also impaired in IPS-1-deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.  相似文献   

2.
Viral infections have more severe consequences in patients who have been exposed to cigarette smoke (CS) than in those not exposed to CS. For example, in chronic obstructive pulmonary disease (COPD), viruses cause more severe disease exacerbation, heightened inflammation, and accelerated loss of lung function compared with other causes of disease exacerbation. Symptomatology and mortality in influenza-infected smokers is also enhanced. To test the hypothesis that these outcomes are caused by CS-induced alterations in innate immunity, we defined the effects of CS on pathogen-associated molecular pattern-induced (PAMP-induced) pulmonary inflammation and remodeling in mice. CS was found to enhance parenchymal and airway inflammation and apoptosis induced by the viral PAMP poly(I:C). CS and poly(I:C) also induced accelerated emphysema and airway fibrosis. The effects of a combination of CS and poly(I:C) were associated with early induction of type I IFN and IL-18, later induction of IL-12/IL-23 p40 and IFN-gamma, and the activation of double-stranded RNA-dependent protein kinase (PKR) and eukaryotic initiation factor-2alpha (eIF2alpha). Further analysis using mice lacking specific proteins indicated a role for TLR3-dependent and -independent pathways as well as a pathway or pathways that are dependent on mitochondrial antiviral signaling protein (MAVS), IL-18Ralpha, IFN-gamma, and PKR. Importantly, CS enhanced the effects of influenza but not other agonists of innate immunity in a similar fashion. These studies demonstrate that CS selectively augments the airway and alveolar inflammatory and remodeling responses induced in the murine lung by viral PAMPs and viruses.  相似文献   

3.
4.
5.
Microbes activate pattern recognition receptors to initiate adaptive immunity. T cells affect early innate inflammatory responses to viral infection, but both activation and suppression have been demonstrated. We identify a novel role for B cells in the early innate immune response during bacterial sepsis. We demonstrate that Rag1(-/-) mice display deficient early inflammatory responses and reduced survival during sepsis. Interestingly, B cell-deficient or anti-CD20 B cell-depleted mice, but not α/β T cell-deficient mice, display decreased inflammatory cytokine and chemokine production and reduced survival after sepsis. Both treatment of B cell-deficient mice with serum from wild-type (WT) mice and repletion of Rag1(-/-) mice with B cells improves sepsis survival, suggesting antibody-independent and antibody-dependent roles for B cells in the outcome to sepsis. During sepsis, marginal zone and follicular B cells are activated through type I interferon (IFN-I) receptor (IFN-α/β receptor [IFNAR]), and repleting Rag1(-/-) mice with WT, but not IFNAR(-/-), B cells improves IFN-I-dependent and -independent early cytokine responses. Repleting B cell-deficient mice with the IFN-I-dependent chemokine, CXCL10 was also sufficient to improve sepsis survival. This study identifies a novel role for IFN-I-activated B cells in protective early innate immune responses during bacterial sepsis.  相似文献   

6.
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.  相似文献   

7.
Influenza virus infection is recognized by the innate immune system through Toll like receptor (TLR) 7 and retinoic acid inducible gene I. These two recognition pathways lead to the activation of type I interferons and resistance to infection. In addition, TLR signals are required for the CD4 T cell and IgG2a, but not cytotoxic T lymphocyte, responses to influenza virus infection. In contrast, the role of NOD-like receptors (NLRs) in viral recognition and induction of adaptive immunity to influenza virus is unknown. We demonstrate that respiratory infection with influenza virus results in the activation of NLR inflammasomes in the lung. Although NLRP3 was required for inflammasome activation in certain cell types, CD4 and CD8 T cell responses, as well as mucosal IgA secretion and systemic IgG responses, required ASC and caspase-1 but not NLRP3. Consequently, ASC, caspase-1, and IL-1R, but not NLRP3, were required for protective immunity against flu challenge. Furthermore, we show that caspase-1 inflammasome activation in the hematopoietic, but not stromal, compartment was required to induce protective antiviral immunity. These results demonstrate that in addition to the TLR pathways, ASC inflammasomes play a central role in adaptive immunity to influenza virus.  相似文献   

8.
9.
Innate immunity protects juvenile and adult vertebrates and invertebrates against potential pathogens; however, it is unknown when developing embryos become immune competent and just how they are guarded from infection. To address these questions, we studied the effect of immune challenge on early stage eggs of the tobacco hornworm, Manduca sexta. We detected many immune-related proteins and mRNAs in naive eggs. Upon immune challenge, antimicrobial protein genes were up-regulated, and antibacterial activity increased. Antimicrobial protein mRNAs and lysozyme were present in the extra-embryonic tissues of immune-challenged eggs; in addition, melanization in response to bacteria occurred in the yolk but not embryonic tissues. We conclude that the extra-embryonic tissues of early stage M. sexta eggs are immune competent and likely protect the developing embryo from infection. We suggest that innate immune responses of extra-embryonic tissues may be a common mechanism for protecting early embryos.  相似文献   

10.
Inflammation-associated lung injury is a major cause of morbidity and mortality for patients in intensive care units. Although the cellular and molecular events that initiate lung inflammation are now well understood, the mechanisms that promote its resolution remain poorly defined. In this issue of the JCI, D’Alessio et al. show in a mouse model that recovery from acute lung injury is not simply a passive process, but involves Tregs in an active resolution program (see the related article beginning on page 2898).  相似文献   

11.
Septic shock is a leading cause of morbidity and mortality. However, genetic factors predisposing to septic shock are not fully understood. Excessive production of proinflammatory cytokines, particularly tumor necrosis factor (TNF)-alpha, and the resultant severe hypotension play a central role in the pathophysiological process. Mitogen-activated protein (MAP) kinase cascades are crucial in the biosynthesis of proinflammatory cytokines. MAP kinase phosphatase (MKP)-1 is an archetypal member of the dual specificity protein phosphatase family that dephosphorylates MAP kinase. Thus, we hypothesize that knockout of the Mkp-1 gene results in prolonged MAP kinase activation, augmented cytokine production, and increased susceptibility to endotoxic shock. Here, we show that knockout of Mkp-1 substantially sensitizes mice to endotoxic shock induced by lipopolysaccharide (LPS) challenge. We demonstrate that upon LPS challenge, Mkp-1-/- cells exhibit prolonged p38 and c-Jun NH2-terminal kinase activation as well as enhanced TNF-alpha and interleukin (IL)-6 production compared with wild-type cells. After LPS challenge, Mkp-1 knockout mice produce dramatically more TNF-alpha, IL-6, and IL-10 than do wild-type mice. Consequently, Mkp-1 knockout mice develop severe hypotension and multiple organ failure, and exhibit a remarkable increase in mortality. Our studies demonstrate that MKP-1 is a pivotal feedback control regulator of the innate immune responses and plays a critical role in suppressing endotoxin shock.  相似文献   

12.
13.
Intercellular communication among immune cells is vital for the coordination of proper immune responses. Extracellular vesicles and particles (EVPs) act as messengers in intercellular communication, with important consequences for target cell and organ physiology in both health and disease. Under normal physiological conditions, immune cell–derived EVPs participate in immune responses by regulating innate and adaptive immune responses. EVPs play a major role in antigen presentation and immune activation. On the other hand, immune cell–derived EVPs exert immunosuppressive and regulatory effects. Consequently, EVPs may contribute to pathological conditions, such as autoimmune and inflammatory diseases, graft rejection, and cancer progression and metastasis. Here, we provide an overview of the role of EVPs in immune homeostasis and pathophysiology, with a particular focus on their contribution to innate and adaptive immunity and their potential use for immunotherapies.  相似文献   

14.
Gram-negative bacteria-binding proteins (GNBPs) are pattern recognition receptors which contribute to the defensive response against Plasmodium infection in Anopheles . We have characterized the GNBP gene family in Anopheles gambiae at the molecular level, and show that they are functionally diverse components of the A. gambiae innate immune system. GNBPB4 is a major factor in the defence against a broad range of pathogens, while the other GNBP s have narrower defence specificities. GNBPB4 is associated with the regulation of immune signalling pathways and was found to interact with the Gram-negative Escherichia coli and weakly co-localized with Plasmodium berghei ookinetes in the mosquito midgut epithelium.  相似文献   

15.
Mammals mount a rapid inflammatory response to gram-negative bacteria by recognizing lipopolysaccharide (LPS, endotoxin). LPS binds to CD14, and the resulting LPS-CD14 complex induces synthesis of cytokines and up-regulation of adhesion molecules in a variety of cell types. Gram- positive bacteria provoke a very similar inflammatory response, but the molecules that provoke innate responses to these bacteria have not been defined. Here we show that protein-free, phenol extracts of Staphylococcus aureus contain a minor component that stimulates adhesion of neutrophils and cytokine production in monocytes and in the astrocytoma cell line, U373. Responses to this component do not absolutely require CD14, but addition of soluble CD14 enhances sensitivity of U373 cells by up to 100-fold, and blocking CD14 on monocytes decreases sensitivity nearly 1,000-fold. Deletion of residues 57-64 of CD14, which are required for responses to LPS, also eliminates CD14-dependent responses to S. aureus molecules. The stimulatory component of S. aureus binds CD14 and blocks binding of radioactive LPS. Unlike LPS, the activity of S. aureus molecules was neither enhanced by LPS binding protein nor inhibited by bactericidal/permeability increasing protein. The active factor in extracts of S. aureus is also structurally and functionally distinct from the abundant species known as lipoteichoic acid (LTA). Cell- stimulating activity fractionates differently from LTA on a reverse- phase column, pure LTA fails to stimulate cells, and LTA antagonizes the action of LPS in assays of IL-6 production. These studies suggest that mammals may use CD14 in innate responses to both gram-negative and gram-positive bacteria, and that gram-positive bacteria may contain an apparently unique, CD14-binding species that initiates cellular responses.  相似文献   

16.
17.
18.
Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung.  相似文献   

19.
We show that the mesenchymal cells that surround the 12-d mouse embryo thymus are necessary for T cell differentiation. Thus, epithelial lobes with attached mesenchyme generate all T cell populations in vitro, whereas lobes from which mesenchyme has been removed show poor lymphopoiesis with few cells progressing beyond the CD4(-)CD8(-) stage of development. Interestingly, thymic mesenchyme is derived from neural crest cells, and extirpation of the region of the neural crest involved results in impaired thymic development and craniofacial abnormalities similar to the group of clinical defects found in the DiGeorge syndrome.Previous studies have suggested an inductive effect of mesenchyme on thymic epithelial morphogenesis. However, we have found that mesenchyme-derived fibroblasts are still required for early T cell development in the presence of mature epithelial cells, and hence mesenchyme might have a direct role in lymphopoiesis. We provide an anatomical basis for the role of mesenchyme by showing that mesenchymal cells migrate into the epithelial thymus to establish a network of fibroblasts and associated extracellular matrix. We propose that the latter might be important for T cell development through integrin and/or cytokine interactions with immature thymocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号