首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bothropstoxin-I (BthTX-I), the principal myotoxin of Bothrops jararacussu venom, is devoid of phospholipase A(2) (PLA(2)) activity but capable of blocking neuromuscular transmission in mouse nerve-muscle preparations. In this study, the ability of crotoxin antiserum and heparin in preventing the neurotoxic and myotoxic effects of BthTX-I was investigated. Phrenic nerve-diaphragm preparations (PND) stimulated indirectly with supramaximal stimuli (0.2 ms, 0.1 Hz) were incubated with BthTX-I (20 microg/ml) alone or with BthTX-I preincubated with antiserum or heparin for 30 min at 37 degrees C prior to testing. Control preparations were incubated with Tyrode solution, antiserum or heparin alone. BthTX-I (20 microg/ml) produced 50% neuromuscular blockade in the PND preparations in 31+/-4min, with complete blockade occurring in 120 min. The antiserum and heparin significantly prevented the neuromuscular blockade caused by BthTX-I (84 +/- 4% and 100% protection, respectively). Light microscopy examination of the muscles at the end of the 120 min incubation showed that BthTX-I damaged 48 +/- 6% of the fibers. Preincubating the toxin with antivenom significantly reduced the extent of this damage (only 15 +/- 4% of fibers affected, corresponding to 69% protection, P<0.01) whereas heparin offered no protection (34 +/- 7% of fibers affected, not significantly different from that seen with toxin alone). These results show that the antivenom was more effective in neutralizing the myotoxic effects of BthTX-I than was heparin.  相似文献   

2.
We have previously demonstrated that rabbit antisera raised against crotoxin from Crotalus durissus cascavella venom (cdc-crotoxin) and its PLA2 (cdc-PLA2) neutralized the neurotoxicity of this venom and its crotoxin. In this study, we examined the ability of these antisera to neutralize the neurotoxicity of Crotalus durissus terrificus and Bothrops jararacussu venoms and their major toxins, cdt-crotoxin and bothropstoxin-I (BthTX-I), respectively, in mouse isolated phrenic nerve-diaphragm preparations. Immunoblotting showed that antiserum to cdc-crotoxin recognized cdt-crotoxin and BthTX-I, while antiserum to cdc-PLA2 recognized cdt-PLA2 and BthTX-I. ELISA corroborated this cross-reactivity. Antiserum to cdc-crotoxin prevented the neuromuscular blockade caused by C. d. terrificus venom and its crotoxin at a venom/crotoxin:antiserum ratio of 1:3. Antiserum to cdc-PLA2 also neutralized the neuromuscular blockade caused by C. d. terrificus venom or its crotoxin at venom or toxin:antiserum ratios of 1:3 and 1:1, respectively. The neuromuscular blockade caused by B. jararacussu venom and BthTX-I was also neutralized by the antisera to cdc-crotoxin and cdc-PLA2 at a venom/toxin:antiserum ratio of 1:10 for both. Commercial equine antivenom raised against C. d. terrificus venom was effective in preventing the neuromuscular blockade typical of B. jararacussu venom (venom:antivenom ratio of 1:2), whereas for BthTX-I the ratio was 1:10. These results show that antiserum produced against PLA2, the major toxin in C. durissus cascavella venom, efficiently neutralized the neurotoxicity of C. d. terrificus and B. jararacussu venoms and their PLA2 toxins.  相似文献   

3.
Crotoxin from Crotalus durissus cascavella venom was purified by a combination of molecular exclusion chromatography (Superdex 75 column) and HPLC molecular exclusion (Protein Pack 300SW column). Neurotoxic and myotoxic effects from C. durissus cascavella whole venom and its main fraction, the crotoxin-like, were studied in the chick biventer cervicis (CBC) nerve-muscle preparation. Both venom and its crotoxin showed significant (p < 0.05) blockade of neuromuscular transmission at concentrations as low as 0.2-1, 5 and 25 microg/ml, but no significant effect has been shown with a concentration of 0.04 microg/ml (n = 5 each). The time required to produce 50% neuromuscular blockade with the venom and its crotoxin was 53.6+/-8.2 and 65.9+/-4.9 min (0.2 microg/ml), 29.7+/-1.9 and 34.3+/-1.9 min (1 microg/ml), 24.8+/-1.6 and 21.1+/-1.5 min (5 microg/ml), 20.9+/-3.7 and 20.1+/-1.4 min (25 microg/ml), respectively. The addition to the incubation bath of acetylcholine (55 and 110 microM) or KCl (20.1 mM), either before or after the venom or the crotoxin induced contracture in the presence of a total blockade, in all the concentrations used. Morphological analysis showed that the damage caused by C. durissus cascavella venom is stronger than that caused by crotoxin. The myonecrotic picture was more marked at higher venom and crotoxin doses (1, 5 or 25 microg/ml). Only at 25 microg/ml concentrations of the venom and crotoxin, marked muscle fiber changes were detected. We concluded that the crotoxin-like and the whole venom from C. durissus cascavella possess a preponderant and quite potent neurotoxic action in this preparation, and a myotoxic action which is observed only at higher doses.  相似文献   

4.
An indirect haemolytic assay for assessing antivenoms   总被引:1,自引:1,他引:0  
I H al-Abdulla  A M Sidki  J Landon 《Toxicon》1991,29(8):1043-1046
Dilutions of antivenom, venom, human erythrocytes and a phosphatidylcholine suspension, were incubated for 30 min at 37 degrees C. After centrifugation, the liberated haemoglobin was measured spectrophotometrically. The assay was used to assess an ovine antivenom against the venom from the South American rattlesnake, Crotalus durissus terrificus, and an equine Wyeth antivenin (Crotalidae, polyvalent). The ovine antivenom was more than five times as effective as the equine product. It also neutralized venoms from the Western diamondback rattlesnake, Crotalus atrox, and the fer-de-lance, Bothrops atrox. However, antivenoms raised against venoms from other Crotalus and Bothrops species provided little protection against the haemolytic activity of C. d. terrificus venom.  相似文献   

5.
Crotoxin, the principal neurotoxin in venom of the South American rattlesnakes Crotalus durissus terrificus and Crotalus durissus cascavella, contains a basic phospholipase A2 (PLA2) and an acidic protein, crotapotin. In this work, we examined the ability of rabbit anti-sera against crotoxin and its PLA2 subunit to neutralize the neurotoxicity of venom and crotoxin from C. d. cascavella in mouse phrenic nerve-diaphragm and chick biventer cervicis preparations. Immunoblotting showed that the anti-sera recognized C. d. cascavella crotoxin and PLA2. This was confirmed by ELISA, with both anti-sera having end-point dilutions of 3 x 10(-6). Anti-crotoxin serum neutralized the neuromuscular blockade in phrenic nerve-diaphragm muscle preparations at venom or crotoxin:anti-serum ratios of 1:2 and 1:3, respectively. Anti-PLA2 serum also neutralized this neuromuscular activity at a venom or crotoxin:anti-serum ratio of 1:1. In biventer cervicis preparations, the corresponding ratio for anti-crotoxin serum was 1:3 for venom and crotoxin, and 1:1 and 1:2 for anti-PLA2 serum. The neutralizing capacity of the sera in mouse preparations was comparable to that of commercial anti-serum raised against C. d. terrificus venom. These results show that anti-sera against crotoxin and PLA2 from C. d. cascavella venom neutralized the neuromuscular blockade induced by venom and crotoxin in both nerve-muscle preparations, with the anti-serum against crotoxin being slightly less potent than that against crotoxin.  相似文献   

6.
Whereas the presynaptic action of Crotalus durissus terrificus venom is well-established, Bothrops venoms have historically been considered to have only postsynaptic and muscular effects. However, some studies have also suggested a presynaptic action for these venoms. In this work, we used chick biventer cervicis preparations to compare the presynaptic actions of two Bothrops venoms (B. insularis and B. neuwiedi) with that of C. d. terrificus venom. At 10 microg/ml, all venoms produced irreversible blockade of the twitch tension responses, with no reduction in acetylcholine (ACh)-induced contractures and only a slight decrease in potassium induced-contractures. The times (in min) required to produce 50% neuromuscular blockade (C. d. terrificus: 16.3+/-0.7, n = 8; B. insularis: 30.0+/-1.9, n = 5; B. neuwiedi: 42.0+/-2.0, n = 8; mean +/- SEM) were significantly different among the venoms (p < 0.01). Lowering the temperature at which the experiments were done (from 37 to 24 degrees C) prevented neuromuscular blockade by the three venoms, indicating that enzyme activity may be involved in this response. At concentrations capable of causing complete neuromuscular blockade, creatine kinase release remained close to levels seen in control preparations incubated with Krebs solution alone (500-1200 IU/l). Commercial crotalic antivenom, but not bothropic antivenom, protected against the neuromuscular blockade caused by B. insularis and B. neuwiedi venoms. These observations indicate that bothropic venoms may contain components which act presynaptically in a manner similar to C. d. terrificus venom, and that at low venom concentrations a direct action on skeletal muscle does not contribute to this presynaptic neurotoxicity.  相似文献   

7.
The whole venom of Lachesis muta muta is preponderantly neurotoxic but moderately myotoxic on the chick biventer cervicis preparation (BCp). We have now examined these toxic activities of a basic phospholipase A(2), LmTX-I, isolated from the whole venom. LmTX-I caused a significant concentration-dependent neuromuscular blockade in the BCp. The time to produce 50% neuromuscular blockade was 14.7+/-0.75 min (30 microg/ml), 23.6+/-0.9 min (10 microg/ml), 34+/-1.7 min (2.5 microg/ml) and 39.2+/-3.6 min (1 microg/ml), (n=5/concentration; p<0.05). Complete blockade with all tested concentrations was not accompanied by inhibition of the response to ACh. At the highest concentration, LmTX-I (30 microg/ml) significantly reduced contractures elicited by exogenous KCl (20mM), increased the release of creatine kinase (1542.5+/-183.9 IU/L vs 442.7+/-39.8 IU/L for controls after 120 min, p<0.05), and induced the appearance of degenerating muscle fibers ( approximately 15%). Quantification of myonecrosis indicated 14.8+/-0.8 and 2.0+/-0.4%, with 30 and 10 microg/mlvenom concentration, respectively, against 1.07+/-0.4% for control preparations. The findings indicate that the basic PLA(2) present on venom from L. m. muta (LmTX-I) possesses a dominant neurotoxic action on isolated chick nerve-muscle preparations, whereas myotoxicity was mainly observed at the highest concentration used (30 microg/ml). These effects of LmTX-I closely reproduce the effects of the whole venom of L. m. muta in chick neuromuscular preparations.  相似文献   

8.
The venoms of coral snakes (mainly Micrurus species) have pre- and/or postsynaptic actions, but only a few of these have been studied in detail. We have investigated the effects of Micrurus dumerilii carinicauda coral snake venom on neurotransmission in rat isolated phrenic nerve-diaphragm muscle and chick biventer cervicis preparations stimulated directly or indirectly. M. d. carinicauda venom (5 or 10 microg/ml) produced neuromuscular blockade in rat (85-90% in 291.8+/-7.3 min and 108.3+/-13.8, respectively; n=5) and avian (95.0+/-2.0 min; 5 microg/ml, n=5) preparations. Neostigmine (5.8 microM) and 3,4-diaminopyridine (230 microM) partially reversed the venom-induced neuromuscular blockade in rat nerve-muscle preparations. In neither preparation did the venom depress the twitch response elicited by direct muscle stimulation. The contractures induced by acetylcholine in chick preparations were inhibited by the venom (95-100%; n=4; p<0.05). In rat preparations, the venom produced a progressive decrease in the amplitude of miniature end-plate potentials (m.e.p.ps control frequency=69.3+/-5.0/min and control amplitude=0.4+/-0.2 mV) until these were abolished. Neostigmine (5.8 microM) and 3,4-diaminopyridine (230 microM) partially antagonized this blockade of m.e.p.ps. The resting membrane potential was not altered with the venom (10 microg/ml). M. d. carinicauda venom produced dose-dependent morphological changes in indirectly stimulated mammal preparations. Twenty-five per cent of muscle fibers were affected by a venom concentration of 5 microg/ml, whilst 60.7% were damaged by 10 microg of venom/ml. In biventer cervicis preparations, the morphological changes were slower in onset and were generally characterized by undulating fibers and, to a lesser extent, by zones of disintegrating myofibrils. A venom concentration of 5 microg/ml damaged 52.2% of the fibers. These findings indicate that M. d. carinicauda venom has neurotoxic and myotoxic effects and that the neuromuscular blockade involves mainly a postsynaptic action.  相似文献   

9.
In Brazil, the Crotalus durissus terrificus subspecie is the most studied, particularly concerning its crotoxin. Crotoxin is the major toxic component of the South American rattlesnake Crotalus durissus venom. It is composed of two different subunits, CA called crotapotin and CB weakly toxic phospholipase A2 with high enzymatic activity. In this paper, we decided to make a study of the main toxic characteristics of crotoxin (CTX) and CB fraction from the other subspecies, Crotalus durissus cascavella and of Crotalus durissus collilineatus, in comparison with those of C. d. terrificus. Ours results have shown that the venoms presented similar chromatographic profiles and the purified fractions were free of contaminants. Regarding the toxic activities, the DL50 of the crotoxins showed no significant differences between the subspecies. The smaller toxicity of CB indicated that the toxicity of the crotoxin complex depends on the interaction between CA and CB. CTX and fraction CB of the three species of Crotalus showed negligible proteolytic activity. C. d. terrificus CTX presented higher PLA2 activity when compared with the others two subspecies. The oedema induced by CB developed later than the CTX and reached its peak 3 h after the injection. The myotoxic activity was determined by assaying serum CK levels. Mice injected with CTX of C. d. terrificus presented greater myotoxic activity compared to the others. The myotoxic activity of CB from the three subspecies was lower than the activity of the crotoxin, reinforcing the idea that the fraction CA increases the toxicity of CB.  相似文献   

10.
Polyanionic substances are known to inhibit the myotoxic effects of some crotalide snake venoms. Bothropstoxin-I (BthTX-I), a basic Lys49 phospholipase (PLA2) homologue from Bothrops jararacussu venom, besides inducing muscle damage, also promotes the blockade of both directly and indirectly evoked contractions in mouse neuromuscular preparation. In this work, we evaluated the ability of suramin, a polysulfonated naphtylurea derivative, to antagonize the myotoxic and the paralyzing activities of BthTX-I on mice neuromuscular junction in vitro. Myotoxicity was assessed by light and electronic microscopic analysis of extensor digitorum longus (EDL) muscles; paralyzing activity was evaluated through the recording of both directly and indirectly evoked contractions of phrenic-diaphragm (PD) preparations. BthTX-I (1 microM) alone, or pre-incubated with suramin (10 microM) at 37 degrees C for 15 min was added to the preparations for 120 min. BthTX-I induced histological alterations typical of myonecrosis in 14.6 +/- 1.0% of EDL muscle fibers. In addition, BthTX-I blocked 50% of both directly and indirectly evoked contractions in PD preparations in 72.1 +/- 9.1 and 21.1 +/- 2.0 min, respectively. Pre-incubation with suramin abolished both the muscle-damaging and muscle-paralyzing activities of BthTX-I. Since suramin is a polyanionic substance, we suggested that its effects result from the formation of inactive acid-base complexes with BthTX-I.  相似文献   

11.
The venoms of some Bothrops species produce neuromuscular blockade in avian and mammalian nerve-muscle preparations in vitro. In this study, we compared the neuromuscular activities (myotoxicity and neurotoxicity) of venoms from several Brazilian species of Bothrops (B. jararaca, B. jararacussu, B. moojeni, B. erythromelas and B. neuwiedi) in chick isolated biventer cervicis muscle preparations and examined their neutralization by commercial antivenom. All of the venoms (50-200 microg/ml, n = 3 - 7 each) induced long-lasting, concentration-dependent muscle contracture and twitch-tension blockade, and also inhibited the muscle responses to acetylcholine and KCl. Preincubation of the venoms (200 microg/ml) with bothropic antivenom (0.2 ml) for 30 min at 37 degrees C prevented the twitch-tension blockade to different extents, with the protection varying from 0.5% (B. neuwiedi) to 88% (B. moojeni). Complete protection against the neuromuscular action of B. neuwiedi venom was observed only with a mixture of bothropic and crotalic antivenoms. The venoms caused either high (B. jararacussu, B. neuwiedi and B. moojeni) or low (B. jararaca and B. erythromelas) creatine kinase release. Morphologically, myonecrosis was greatest with B. jararacussu venom (98-100% of fibers damaged) and least with B. jararaca venom (74% damage). The extent of neutralization by bothropic antivenom was B. jararaca (93%)>B. erythromelas (65.8%)>B. moojeni (30.7%)>B. neuwiedi (20%)>B. jararacussu (no neutralization). Despite this variation in neutralization, enzyme-linked immunosorbent assays indicated similar immunoreactivities for the venoms, although immunoblots revealed quantitative variations in the bands detected. These results show that Bothrops venoms produce varying degrees of neuromuscular blockade in chick nerve-muscle preparations. The variable protection by antivenom against neuromuscular activity indicates that the components responsible for the neuromuscular action may differ among the venoms.  相似文献   

12.
The common (A. antarcticus), northern (A. praelongus) and desert (A. pyrrhus) death adders are species belonging to the Acanthophis genus. The present study compared some pharmacological aspects of the venoms of these species and examined the in vitro efficacy of death adder antivenom. Neurotoxicity was determined by the time to produce 90% inhibition (t(90)) of indirect (0.1 Hz, 0.2 ms, supramaximal voltage) twitches in the chick biventer cervicis nerve-muscle (3-10 microg/ml) and mouse phrenic nerve-diaphragm (10 microg/ml) preparations. A. praelongus venom was significantly less neurotoxic than A. antarcticus venom but was not significantly different from A. pyrrhus venom. In the biventer muscle, all three venoms (3-10 microg/ml) abolished responses to exogenous ACh (1 mM) and carbachol (20 microM), but not KCl (40 mM), indicating activity at post-synaptic nicotinic receptors. All venoms (30 microg/ml) failed to produce significant inhibition of direct twitches (0.1 Hz, 2.0 ms, supramaximal voltage) in the chick biventer cervicis nerve-muscle preparation. However, A. praelongus (30 microg/ml) venom initiated a significant direct contracture of muscle, indicative of some myotoxic activity. The prior (10 min) administration of death adder antivenom (1 unit/ml), which is raised against A. antarcticus venom, markedly attenuated the twitch blockade produced by all venoms (10 microg/ml). Administration of antivenom (1.5 units/ml) at t(90) markedly reversed, over a period of 4 h, the inhibition of twitches produced by A. praelongus (3 microg/ml, 72+/-6% recovery) and A. pyrrhus (3 microg/ml, 51+/-9% recovery) but was less effective against A. antarcticus venom (3 microg/ml, 22+/-7% recovery). These results suggest that all three venoms contain postsynaptic neurotoxins. Death adder antivenom displayed differing efficacy against the in vitro neurotoxicity of the three venoms.  相似文献   

13.
The toxicity of crotoxin, the major toxin of Crotalus durissus terrificus (South American rattlesnake) venom, is mediated by its basic phospholipase A(2) (PLA(2)) subunit. This PLA(2) is non-covalently associated with crotapotin, an acidic, enzymatically inactive subunit of the crotoxin complex. In this work, rabbit antiserum raised against crotapotin purified from Crotalus durissus cascavella venom was tested for its ability to neutralize the neurotoxicity of this venom and its crotoxin in vitro. The ability of this antiserum to inhibit the enzymatic activity of the crotoxin complex and PLA(2) alone was also assessed, and its potency in preventing myotoxicity was compared with that of antisera raised against crotoxin and PLA(2). Antiserum to crotapotin partially neutralized the neuromuscular blockade caused by venom and crotoxin in electrically stimulated mouse phrenic nerve-hemidiaphragm preparations and prevented the venom-induced myotoxicity, but did not inhibit the enzymatic activity of crotoxin and purified PLA(2). In contrast, previous findings showed that antisera against crotoxin and PLA(2) from C. d. cascavella effectively neutralized the neuromuscular blockade and PLA(2) activity of this venom and its crotoxin. The partial neutralization of crotoxin-mediated neurotoxicity by antiserum to crotapotin probably reduced the binding of crotoxin to its receptor following interaction of the antiserum with the crotapotin moiety of the complex.  相似文献   

14.
1. Tiger snake antivenom, raised against Notechis scutatus venom, is indicated not only for the treatment of envenomation by this snake, but also that of the copperhead (Austrelaps superbus) and Stephen's banded snake (Hoplocephalus stephensi). The present study compared the neuromuscular pharmacology of venom from these snakes and the in vitro efficacy of tiger snake antivenom. 2. In chick biventer cervicis muscle and mouse phrenic nerve diaphragm preparations, all venoms (3-10 microg/mL) produced inhibition of indirect twitches. In the biventer muscle, venoms (10 micro g/mL) inhibited responses to acetylcholine (1 mmol/L) and carbachol (20 micromol/L), but not KCl (40 mmol/L). The prior (10 min) administration of 1 unit/mL antivenom markedly attenuated the neurotoxic effects of A. superbus and N. scutatus venoms (10 microg/mL), but was less effective against H. stephensi venom (10 microg/mL); 5 units/mL antivenom attenuated the neurotoxic activity of all venoms. 3. Administration of 5 units/mL antivenom at t90 partially reversed, over a period of 3 h, the inhibition of twitches produced by N. scutatus (10 microg/mL; 41% recovery), A. superbus (10 microg/mL; 25% recovery) and H. stephensi (10 microg/mL; 50% recovery) venoms. All venoms (10-100 microg/mL) also displayed signs of in vitro myotoxicity. 4. The results of the present study indicate that all three venoms contain neurotoxic activity that is effectively attenuated by tiger snake antivenom.  相似文献   

15.
Cardiovascular and haematological effects of venom of the small-eyed Snake (Micropechis ikaheka) were examined in ventilated anaesthetised piglets. Neurotoxic effects were examined in chick biventer cervicis nerve-muscle preparations. Immunoreactivity of venom was tested against the monovalent antivenom components in a CSL Ltd Venom Detection Kit. Neutralisation was tested in vivo and in vitro with CSL Ltd polyvalent snake and Black Snake (Pseudechis australis) antivenoms. Venom in 0.1% bovine serum albumin in saline was infused into piglets in doses 1-2000 microg/kg. Pulmonary hypertension (P= 0.0007) and depression of cardiac output (P= 0.002) were observed up to 3 h after 150-160 microg/kg. The concentration of plasma free-haemoglobin increased more than 50-fold, indicating haemolysis. Neither coagulopathy nor thrombocytopenia occurred. Creatine phosphokinase and serum potassium levels did not increase suggesting absence of acute rhabdomyolysis. The venom caused post-synaptic neurotoxicty. Immunoreactivity of venom with Black Snake antivenom was observed at very high venom concentrations. Cardiovascular effects were absent and haemolysis was less after venom was pre-incubated at 37 degrees C for 30 min with polyvalent antivenom. Neutralisation by Black Snake antivenom was less effective. The neurotoxicity was neutralised by polyvalent or Black Snake antivenoms. Human envenomation may be treated with CSL Ltd polyvalent snake antivenom.  相似文献   

16.
Crotoxin is a heterodimeric protein composed of an acidic and basic subunit from the venom of Crotalus durissus terrificus and is representative of a number of presynaptically acting neurotoxins found in the venom of rattlesnakes. Four different monoclonal antibodies, typed as IgG1 subclass, were raised against the basic subunit of this toxin. One was a potent neutralizing antibody of intact crotoxin, which could neutralize approximately 1.6 moles of purified crotoxin per mole of antibody. The monoclonal antibody enhanced the neutralizing ability of commercial polyvalent crotalid antivenom against the lethality of crude C. d. terrificus venom four-fold. Paradoxically, this monoclonal antibody by itself was ineffective against the lethality of crude C. d. terrificus venom. Using an enzyme-linked immunosorbent assay, we tested various proteins for competitive inhibition of binding of biotinylated-crotoxin to plates coated with the four individual monoclonal antibodies. Concolor toxin, vegrandis toxin, intact crotoxin, Mojave toxin, and the basic subunit of crotoxin showed increasing effectiveness as displacers of crotoxin from the neutralizing monoclonal antibody. None of the monoclonal antibodies reacted with purified phospholipase A2 enzymes from Crotalus atrox or Crotalus adamanteus, nor any of the components present in the crude venoms from four different elapids known to contain presynaptically acting neurotoxins, which show some sequence identity to crotoxin.  相似文献   

17.
A comparative study was performed with the venoms of newborn Crotalus durissus durissus, adult Crotalus durissus terrificus and adult Crotalus durissus durissus snakes. Venom of newborn specimens of C.d. durissus is very similar to that of adult specimens of C.d. terrificus, since they have strong lethal and myotoxic activities, and weak proteolytic, hemorrhagic and edema-forming effects, in contrast to venom of adult specimens of C.d. durissus. In addition, the two former venoms have high amounts of the neurotoxic complex crotoxin, whereas venom from adult C.d. durissus has a low concentration of crotoxin. Electrophoretic analysis corroborates the strong similarities between the former two venoms. It is concluded that venom of newborn C.d. durissus contains high concentrations of crotoxin and low amounts of hemorrhagic and proteolytic components, and that a drastic ontogenetic change takes place in the venom composition of this subspecies.  相似文献   

18.
Daboia siamensis (Russell’s viper) is a highly venomous and medically important snake in China, as well as much of Asia. There is minimal information on the pharmacological activity of the venom of the Chinese species, and currently no commercially available specific antivenom in China. This has led to the use of non-specific antivenoms to treat D. siamensis envenomation. In this study, the in vitro neurotoxicity and myotoxicity of D. siamensis venom was examined and the efficacy of four antivenoms was investigated, including the recently developed Chinese D. siamensis monovalent antivenom (C-DsMAV) and three commercially available antivenoms (Thai D. siamensis (Thai-DsMAV) monovalent antivenom, Deinagkistrodon acutus monovalent antivenom (DaAV), and Gloydius brevicaudus monovalent antivenom (GbAV). D. siamensis venom (10–30 µg/mL) caused the concentration-dependent inhibition of indirect twitches in the chick biventer cervicis nerve muscle preparation, without abolishing contractile responses to exogenous agonists ACh or CCh, indicating pre-synaptic neurotoxicity. Myotoxicity was also evident at these concentrations with inhibition of direct twitches, an increase in baseline tension, and the partial inhibition of ACh, CCh, and KCl responses. The prior addition of C-DsMAV or Thai-DsMAV prevented the neurotoxic and myotoxic activity of D. siamensis venom (10 µg/mL). The addition of non-specific antivenoms (GbAV and DaAV) partially prevented the neurotoxic activity of venom (10 µg/mL) but failed to neutralize the myotoxic effects. We have shown that D. siamensis venom exhibits in vitro weak presynaptic neurotoxicity and myotoxicity, which can be prevented by the pre-addition of the Chinese and Thai Russell’s viper antivenoms. Non-specific antivenoms were poorly efficacious. There should be further development of a monospecific antivenom against D. siamensis envenomation in China.  相似文献   

19.
Lachesis genus is one of the less studied among others from Viperidae's genera, mainly due to difficulties in obtaining the venom. Accidents by Lachesis snakes cause severe envenoming syndrome, eventually leading victims to shock. This work is part of a comprehensive study aimed at studying the venom and its effects. Herein the neurotoxicity and myotoxicity of L. muta muta venom were investigated on mouse phrenic nerve-diaphragm (PNDp) and chick biventer cervicis (BCp) preparations. For both preparations the time required to venom produces 50% neuromuscular blockade was indirectly concentration-dependent, being for PNDp: 117.6+/-6.5 min (20 microg/ml), 70.1+/-8.6 min (50 microg/ml) and 43.6+/-3.8 min (100 microg/ml), and for BCp: 28+/-1.8 min (50 microg/ml), 30.4+/-2.3 min (10 microg/ml), 50.4+/-4.3 min (5 microg/ml) and 75.2+/-0.7 min (2 microg/ml), (n=5/dose). In BCp, a venom dose of 50 microg/ml significantly reduced contractures elicited by exogenous acetylcholine (55 microM) and KCl (20 mM), as well as increased the release of creatine kinase (442.7+/-39.8 IU/l in controls vs 4322.6+/-395.2 IU/l, after 120 min of venom incubation (P<0.05). Quantification of myonecrosis in BCp indicated the doses 50 and 10 microg/ml as significantly myotoxic affecting 59.7+/-6.2%, and 20.8+/-1.2% of fibers, respectively, whereas 5 and 2 microg/ml that affected 13.5+/-0.8% and 5.4+/-0.6% of fibers, were considered weakly- and non-myotoxic, respectively. We concluded that there are neurotoxins present in the venom, the concentration of which governs its pre- (if low) or postsynaptic (if high) activity. Since myotoxicity in the avian preparation is negligible at lower venom doses, but not neurotoxicity, we suggest that this effect may contribute minimum to the venom neurotoxic effect. The BCp is more sensible than PNDp to Lachesis m. muta venom.  相似文献   

20.
The influence of temperature upon the effects of crotoxin (CTX), from Crotalus durissus terrificus venom, and gamma-irradiated (60Co, 2000 Gy) crotoxin (iCTX) was studied in rat neuromuscular transmission 'in vitro'. Indirect twitches were evoked in the phrenic-diaphragm preparation by supramaximal strength pulses with a duration of 0.5 ms and frequency of 0.5 Hz. The phospholipase A(2) (PLA(2)) enzymatic activity of CTX and iCTX was assayed against phosphadityl choline in Triton X-100. At 27 degrees C, CTX (14 microg/ml) did not affect the amplitude of indirectly evoked twitches. However, at 37 degrees C, CTX induced a time-dependent blockade of the neuromuscular transmission that started at 90 min and was completed within 240 min. iCTX (14 microg/ml) was inneffective on the neuromuscular transmission either at 27 or 37 degrees C. The PLA(2) enzymatic activity of CTX at 37 degrees C was 84 and that at 27 degrees C was 27 micromol fatty acid released/min/mg protein, and that of the iCTX at 37 degrees C was 39 micromol fatty acid released/min/mg protein. Thus, it was concluded that the mechanism of detoxification of CTX by gamma radiation at the neuromuscular level relies on the loss of its PLA(2) enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号