首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
Previous studies have demonstrated that acute ethanol exposure induces activation of delta protein kinase C (deltaPKC) and epsilonPKC, and mimics ischemic preconditioning via epsilonPKC activation. However, the role of deltaPKC isozyme in ischemia and reperfusion is still controversial. Here, we investigated the role of deltaPKC in ethanol-induced cardioprotection using a selective deltaPKC activator (psideltaRACK), or inhibitor (deltaV1-1), and a selective epsilonPKC inhibitor (epsilonV1-2) in isolated mouse hearts. Mice were injected intraperitoneally or by gavage with ethanol, regulators of delta and epsilonPKC or an adenosine A1 receptor blocker (DPCPX). Isolated perfused mouse hearts were subjected to a 30-min global ischemia and a 120-min reperfusion, ex vivo. Injection of 0.5 g/kg ethanol 1 h, but not 10 min, before ischemia reduced infarct size and CPK release. Pretreatment with epsilonV1-2 abolished this ethanol-induced cardioprotection. Pretreatment with deltaV1-1 induced cardioprotection when injected with ethanol (0.5 g/kg) 10 min before ischemia, but deltaV1-1 partly inhibited ethanol-induced cardioprotection when injected with ethanol 1-h before the onset of ischemia. psideltaRACK injection 1 h, but not 10 min, before ischemia induced cardioprotection and translocation of epsilonPKC from the cytosol to the particulate fraction. Pretreatment with DPCPX or epsilonV1-2 inhibited psideltaRACK-induced cardioprotection and translocation of epsilonPKC. Therefore, activation of deltaPKC-induced by ethanol or by the deltaPKC activator is cardioprotective, provided that sufficient time passes to allow deltaPKC-induced activation of epsilonPKC, an A1 adenosine receptor-dependent process.  相似文献   

2.
目的研究β1-AR持久兴奋通过CaMKIIδ内质网应激(ERS)凋亡通路导致心力衰竭的机制。方法30只SD大鼠随机分成三组,正常对照组(Control)、异丙肾上腺组(Iso)和、异丙肾上腺+美托洛尔组(Iso+Meto),每组10只,所有动物均自由进食进水。(1)Iso组大鼠背部皮下注射Iso5mg/(kg·d),连续10d;Control组背部皮下注射相同体积的生理盐水;Iso+Meto组大鼠背部皮下注射Iso5mg/(kg·d),连续10d,在背部皮下注射Iso前一天开始Meto 10mg/(kg·d)灌胃,连续4周;(2)所有大鼠饲养4周后,采用美国Millar公司P—V Loop导管经颈动脉插管至左心室,使用Pow—erlab生理记录系统测量血流动力学相关指标;统计各组大鼠心脏重量和心脏重量/体重比值;(3)TUNEL法和Caspase-3活性检测心肌细胞凋亡;(4)Western blot分析CaMKIIδERS相关基因(GRP78、CHOP和caspase-12)和凋亡相关基因Bcl-2/Bax的表达水平。结果30只SD大鼠实验过程精神状态好,进食进水正常。(1)与Control组比较,Iso组SD大鼠心脏重塑和血流动力学指标有显著性差异(P〈0.05);而Iso+Meto组心脏重塑和血流动力学指标与Iso组相比明显改善(P〈0.05);(2)TUNEL法原位检测各组大鼠心肌细胞凋亡示与Control组比较,Iso组TUNEL阳性细胞数明显增高(P〈0.05);而Iso+Met组明显低于Iso组(P〈0.05)。心肌细胞Caspase-3活性和TUNEL凋亡阳性细胞核指数各组变化一致。Western blot检测心肌细胞凋亡相关基因bcl-2/Bax蛋白表达。与Control组相比,Iso组bcl-2蛋白表达明显降低和Bax蛋白表达明显增加(P〈0.05);而Iso+Met组与Iso组相比,bcl-2明显增高和Bax明显降低(P〈0.05);(3)Western blot分析CaMKIIδp-CaMKIIδ白表达显示,与Control组比较,Iso组CAMKII活性和p-CaMKIIδ蛋白表达明显增加;而Iso+Meto组与Iso组相比,CAMKII活性和p-  相似文献   

3.
目的 研究褪黑素(melatonin,Mel)对大鼠心肌缺血/再灌注(MI/R)损伤的预防作用与心肌内质网应激(endoplasmic reticulum stress,ER stress)水平变化情况。方法 90只体质量180~220 g雄性SD大鼠,随机分为3个组:假手术(Sham)组、溶剂对照(MI/R+V)组、Mel预防(MI/R+Mel)组。结扎大鼠左冠状动脉前降支30min后松开结扎线恢复血流灌注,建立MI/R损伤模型,再灌注4 h后Western blot法检测ER stress水平标志分子葡萄糖调节蛋白78(glucose regulated protein78,GRP78)及CCAAT/增强子结合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein,CHOP)和凋亡相关蛋白表达情况;再灌6 h后ELISA法检测血清酶学指标,TUNEL法检测心肌细胞凋亡率,Evans blue-TTC双染法测定梗死面积;再灌注24 h后检测各大鼠超声心动图。结果 Mel预防性治疗4周可提高左室射血分数(LVEF)及左室短轴缩短率(LVFS),降低血清乳酸脱氢酶(LDH)及血清肌酸激酶(CK)水平,下调心肌细胞凋亡率及梗死面积,降低ER stress标志蛋白GGRP78及CHOP,降低凋亡通路蛋白(均P<0.01)。结论 Mel预防性治疗显著减轻心肌缺血再灌注损伤,其机制可能与抑制ER stress相关。  相似文献   

4.
Cardiac ischemia and reperfusion are associated with loss in the activity of the mitochondrial enzyme pyruvate dehydrogenase (PDH). Pharmacological stimulation of PDH activity improves recovery in contractile function during reperfusion. Signaling mechanisms that control inhibition and reactivation of PDH during reperfusion were therefore investigated. Using an isolated rat heart model, we observed ischemia-induced PDH inhibition with only partial recovery evident on reperfusion. Translocation of the redox-sensitive delta-isoform of protein kinase C (PKC) to the mitochondria occurred during reperfusion. Inhibition of this process resulted in full recovery of PDH activity. Infusion of the deltaPKC activator H2O2 during normoxic perfusion, to mimic one aspect of cardiac reperfusion, resulted in loss in PDH activity that was largely attributable to translocation of deltaPKC to the mitochondria. Evidence indicates that reperfusion-induced translocation of deltaPKC is associated with phosphorylation of the alphaE1 subunit of PDH. A potential mechanism is provided by in vitro data demonstrating that deltaPKC specifically interacts with and phosphorylates pyruvate dehydrogenase kinase (PDK)2. Importantly, this results in activation of PDK2, an enzyme capable of phosphorylating and inhibiting PDH. Thus, translocation of deltaPKC to the mitochondria during reperfusion likely results in activation of PDK2 and phosphorylation-dependent inhibition of PDH.  相似文献   

5.
To delineate the in vivo cardiac functions requiring normal delta protein kinase C (PKC) activity, we pursued loss-of-function through transgenic expression of a deltaPKC-specific translocation inhibitor protein fragment, deltaV1, in mouse hearts. Initial results using the mouse alpha-myosin heavy chain (alphaMHC) promoter resulted in a lethal heart failure phenotype. Viable deltaV1 mice were therefore obtained using novel attenuated mutant alphaMHC promoters lacking one or the other thyroid response element (TRE-1 and -2). In transgenic mouse hearts, deltaV1 decorated cytoskeletal elements and inhibited ischemia-induced deltaPKC translocation. At high levels, deltaV1 expression was uniformly lethal, with depressed cardiac contractile function, increased expression of fetal cardiac genes, and formation of intracardiomyocyte protein aggregates. Ultrastructural and immunoconfocal analyses of these aggregates revealed focal cytoskeletal disruptions and localized concentrations of desmin and alphaB-crystallin. In individual cardiomyocytes, cytoskeletal abnormalities correlated with impaired contractile function. Whereas desmin and alphaB-crystallin protein were increased approximately 4-fold in deltaV1 hearts, combined overexpression of these proteins at these levels was not sufficient to cause any detectable cardiac pathology. At low levels, deltaV1 expression conferred striking resistance to postischemic dysfunction, with no measurable effects on basal cardiac structure, function, or gene expression. Intermediate expression of deltaV1 conferred modest basal contractile depression with less ischemic protection, associated with abnormal cardiac gene expression, and a histological picture of infrequent cardiomyocyte cytoskeletal deformities. These results validate an approach of deltaPKC inhibition to protect against myocardial ischemia, but indicate that there is a threshold level of deltaPKC activation that is necessary to maintain normal cardiomyocyte cytoskeletal integrity.  相似文献   

6.
Ischemia/reperfusion injury (IRI) associated with liver transplantation plays an important role in the induction of graft injury. Prolonged cold storage remains a risk factor for liver graft outcome, especially when steatosis is present. Steatotic livers exhibit exacerbated endoplasmic reticulum (ER) stress that occurs in response to cold IRI. In addition, a defective liver autophagy correlates well with liver damage. Here, we evaluated the combined effect of melatonin and trimetazidine as additives to IGL‐1 solution in the modulation of ER stress and autophagy in steatotic liver grafts through activation of AMPK. Steatotic livers were preserved for 24 hr (4°C) in UW or IGL‐1 solutions with or without MEL + TMZ and subjected to 2‐hr reperfusion (37°C). We assessed hepatic injury (ALT and AST) and function (bile production). We evaluated ER stress (GRP78, PERK, and CHOP) and autophagy (beclin‐1, ATG7, LC3B, and P62). Steatotic livers preserved in IGL‐1 + MEL + TMZ showed lower injury and better function as compared to those preserved in IGL‐1 alone. IGL‐1 + MEL + TMZ induced a significant decrease in GRP78, pPERK, and CHOP activation after reperfusion. This was consistent with a major activation of autophagic parameters (beclin‐1, ATG7, and LC3B) and AMPK phosphorylation. The inhibition of AMPK induced an increase in ER stress and a significant reduction in autophagy. These data confirm the close relationship between AMPK activation and ER stress and autophagy after cold IRI. The addition of melatonin and TMZ to IGL‐1 solution improved steatotic liver graft preservation through AMPK activation, which reduces ER stress and increases autophagy.  相似文献   

7.
8.
9.
姜黄素对大鼠脑缺血再灌注损伤的保护作用   总被引:3,自引:0,他引:3  
武静茹  张励才  李军  曹红 《山东医药》2007,47(16):24-25
目的探讨姜黄素对大鼠脑缺血再灌注损伤的保护作用。方法将32只SD大鼠均分为假手术组(sham组)、缺血再灌注组、姜黄素组和对照组各8只。用焦油紫染色法检测其大脑海马CA 1区的细胞数量,免疫印迹法分析c-Jun氨基端激酶(JNK)的激活情况。结果姜黄素组海马CA1区存活细胞数量显著高于缺血再灌注组及对照组(P<0.05),JNK磷酸化程度显著低于对照组(P<0.05)。结论姜黄素对大鼠脑缺血再灌注损伤具有保护作用,此作用可能与抑制JNK激活有关。  相似文献   

10.
OBJECTIVE: To improve myocardial flow during reperfusion after acute myocardial infarction and to elucidate the molecular and cellular basis that impedes it. According to the AHA/ACC recommendation, an ideal reperfusion treatment in patients with acute myocardial infarction (AMI) should not only focus on restoring flow in the occluded artery, but should aim to reduce microvascular damage to improve blood flow in the infarcted myocardium. METHODS: Transgenic mouse hearts expressing the deltaPKC (protein kinase C) inhibitor, deltaV1-1, in their myocytes only were treated with or without the deltaPKC inhibitor after ischemia in an ex vivo AMI model. deltaV1-1 or vehicle was also delivered at reperfusion in an in vivo porcine model of AMI. Microvascular dysfunction was assessed by physiological and histological measurements. RESULTS: deltaPKC inhibition in the endothelial cells improved myocardial perfusion in the transgenic mice. In the porcine in vivo AMI model, coronary flow reserve (CFR), which is impaired for 6 days following infarction, was improved immediately following a one-minute treatment at the end of the ischemic period with the deltaPKC-selective inhibitor, deltaV1-1 ( approximately 250 ng/kg), and was completely corrected by 24 h. Myocardial contrast echocardiography, electron microscopy studies, and TUNEL staining demonstrated deltaPKC-mediated microvascular damage. epsilonPKC-induced preconditioning, which also reduces infarct size by >60%, did not improve microvascular function. CONCLUSIONS: These data suggest that deltaPKC activation in the microvasculature impairs blood flow in the infarcted tissue after restoring flow in the occluded artery and that AMI patients with no-reflow may therefore benefit from treatment with a deltaPKC inhibitor given in conjunction with removal of the coronary occlusion.  相似文献   

11.
Protein kinase activation and myocardial ischemia/reperfusion injury   总被引:14,自引:0,他引:14  
Myocardial ischemia and ischemia/reperfusion activate several protein kinase pathways. Protein kinase activation potentially regulates the onset of myocardial cell injury and the reduction of this injury by ischemic and pharmacologic preconditioning. The primary protein kinase pathways that are potentially activated by myocardial ischemia/reperfusion include: the MAP kinases, ERK 1/2, JNK 1/2, p38 MAPKalpha/beta; the cell survival kinase, Akt; and the sodium-hydrogen exchanger (NHE) kinase, p90RSK. The literature does not support a role for ischemia/reperfusion in the activation of the tyrosine kinases, Src and Lck, or the translocation and activation of PKC. This review will detail the role of these protein kinases in the onset of myocardial cell death by necrosis and apoptosis and the reduction of this injury by preconditioning.  相似文献   

12.
JNK mediates hepatic ischemia reperfusion injury   总被引:7,自引:0,他引:7  
BACKGROUND/AIMS: Hepatic ischemia followed by reperfusion (I/R) is a major clinical problem during transplantation, liver resection for tumor, and circulatory shock, producing apoptosis and necrosis. Although several intracellular signal molecules are induced following I/R including NF-kappaB and c-Jun N terminal kinase (JNK), their roles in I/R injury are largely unknown. The aim of this study is to assess the role of JNK during warm I/R injury using novel selective JNK inhibitors. METHODS: Male Wistar rats (200+/-25 g) are pretreated with vehicle or with one of three compounds (CC0209766, CC0223105, and CC-401), which are reversible, highly selective, ATP-competitive inhibitors of JNK. In the first study, rats are assessed for survival using a model of ischemia to 70% of the liver for 90 min followed by 30% hepatectomy of the non-ischemic lobes and then reperfusion. In the second study, rats are assessed for liver injury resulting from 60 or 90 min of ischemia followed by reperfusion with analysis over time of hepatic histology, serum ALT, hepatic caspase-3 activation, cytochrome c release, and lipid peroxidation. RESULTS: In the I/R survival model, vehicle-treated rats have a 7-day survival of 20-40%, while rats treated with the three different JNK inhibitors have survival rates of 60-100% (P<0.05). The decrease in mortality correlates with improved hepatic histology and serum ALT levels. Vehicle treated rats have pericentral necrosis, neutrophil infiltration, and some apoptosis in both hepatocytes and sinusoidal endothelial cells, while JNK inhibitors significantly decrease both types of cell death. JNK inhibitors decrease caspase-3 activation, cytochrome c release from mitochondria, and lipid peroxidation. JNK inhibition transiently blocks phosphorylation of c-Jun at an early time point after reperfusion, and AP-1 activation is also substantially blocked. JNK inhibition blocks the upregulation of the pro-apoptotic Bak protein and the degradation of Bid. CONCLUSIONS: Thus, JNK inhibitors decrease both necrosis and apoptosis, suggesting that JNK activity induces cell death by both pathways.  相似文献   

13.
Background AngiotensinⅡ(AngⅡ) plays a critical role in the pathophysiology of cardiovascular diseases. Recently,studies have shown that Endoplasmic Reticulum (ER) stress was activated in failure hearts.This study was designed to examine whether ER stress participates in the pathologic process of AngⅡ-induced cardiomyocytes apoptosis. Methods Neonatal rat cardiomyocytes were incubated with concentrations of AngⅡ(0,1,10,100 nmol/L) for 24 hours.Confocal fluorescence microscopy with double staining of TUNEL and CHOP detected the percentage of apoptotic cells.Levels of GRP78,JNK,p-JNK,CHOP and caspase-12 were analyzed by western blot.Telmisartan(10- ~6mol/L) was used to test the effects of ATI receptor on AngⅡ- induced cell apoptosis,ER stress chaperones and signaling molecules.Results Treatment with AngⅡat 1,10, and 100 nmol/L for 24 hours stimulated GRP78,JNK,p-JNK and CHOP protein production,and increased apoptosis of myocytes.The protein expression and the number of apoptotic cells were depedent on AngⅡconcentration.About 60%of apoptotic cells were CHOP positive at 10 and 100nmol/L AngⅡtreatment,while no CHOP positive apoptotic cells were found at myocytes under physiological condition and 1 nmo/L AngⅡtreatment.Telmisartan decreased signaling molecules expression and abolished ER stress-mediated apoptosis induced by 100 nmol/L AngⅡ.Conclusions These results indicate that ER stress may be involved in the mechanisms of AngⅡ-induced cardiomyocytes apoptosis.JNK, caspase12 and CHOP all participate in the pathologic process.  相似文献   

14.
Activation of death receptors and mitochondrial damage are well-described common apoptotic pathways. Recently, a novel pathway via endoplasmic reticulum (ER) stress has been reported. We assessed the role of tauroursodeoxycholic acid (TUDCA) in inhibition of caspase-12 activation and its effect on calcium homeostasis in an ER stress-induced model of apoptosis. The human liver-derived cell line, Huh7, was treated with thapsigargin (TG) to induce ER stress. Typical morphologic changes of ER stress preceded development of apoptotic changes, including DNA fragmentation and cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP), as well as activation of caspase-3 and -7. Elevation of intracellular calcium levels without loss of mitochondrial membrane potential (MMP) was shown using Fluo-3/Fura-red labeling and flow cytometry, and confirmed by induction of Bip/GRP78, a calcium-dependent chaperon of ER lumen. These changes were accompanied by procaspase-12 processing. TUDCA abolished TG-induced markers of ER stress; reduced calcium efflux, induction of Bip/GRP78, and caspase-12 activation; and subsequently inhibited activation of effector caspases and apoptosis. In conclusion, we propose that mitochondria play a secondary role in ER-mediated apoptosis and that TUDCA prevents apoptosis by blocking a calcium-mediated apoptotic pathway as well as caspase-12 activation. This novel mechanism of TUDCA action suggests new intervention methods for ER stress-induced liver disease.  相似文献   

15.
Apoptosis signal-regulating kinase 1 (ASK1) mediates cytokines and oxidative stress (ROS)-induced apoptosis in a mitochondria-dependent pathway. However, the underlying mechanism has not been defined. In this study, we show that ASK1 is localized in both cytoplasm and mitochondria of endothelial cells (ECs) where it binds to cytosolic (Trx1) and mitochondrial thioredoxin (Trx2), respectively. Cys-250 and Cys-30 in the N-terminal domain of ASK1 are critical for binding of Trx1 and Trx2, respectively. Mutation of ASK1 at C250 enhanced ASK1-induced JNK activation and apoptosis, whereas mutation of ASK1 at C30 specifically increased ASK1-induced apoptosis without effects on JNK activation. We further show that a JNK-specific inhibitor SP600125 completely blocks TNF induced JNK activation, Bid cleavage, and Bax mitochondrial translocation, but only partially inhibits cytochrome c release and EC death, suggesting that TNF induces both JNK-dependent and JNK-independent apoptotic pathways in EC. Mitochondria-specific expression of a constitutively active ASK1 strongly induces EC apoptosis without JNK activation, Bid cleavage, and Bax mitochondrial translocation. These data suggest that mitochondrial ASK1 mediates a JNK-independent apoptotic pathway induced by TNF. To determine the role of Trx2 in regulation of mitochondrial ASK1 activity, we show that overexpression of Trx2 inhibits ASK1-induced apoptosis without effects on ASK1-induced JNK activation. Moreover, specific knockdown of Trx2 in EC increases TNF/ASK1-induced cytochrome c release and cell death without increase in JNK activation, Bid cleavage, and Bax translocation. Our data suggest that ASK1 in cytoplasm and mitochondria mediate distinct apoptotic pathways induced by TNF, and Trx1 and Trx2 cooperatively inhibit ASK1 activities.  相似文献   

16.

Objective

To investigate the effect of lectin-like ox-LDL receptor-1 (LOX-1) on oxidized low-density lipoprotein (ox-LDL)-induced apoptosis and the involvement of the endoplasmic reticulum (ER) stress response pathway.

Methods and results

Human umbilical vein endothelial cells were treated with 50, 100, or 200 μg/ml ox-LDL and cultured for 12, 24, or 48 h for concentration- and time-dependent studies. Cells were transfected with LOX-1 or Nox-4 shRNAs, and target proteins were inhibited with the corresponding antibodies for mechanistic studies. Active proteins and mRNAs were analyzed by Western blotting and RT-PCR, respectively. Cell apoptosis was analyzed by Annexin and Hoechst staining assays. Ox-LDL induced both apoptosis and protein expression of LOX-1 and Nox-4 through activation of ER stress sensors IRE1 and PERK, and nuclear translocation of ATF6 and their subsequent pathways were indicated by JNK, eukaryotic initiation factor 2 phosphorylation, XBP-1, and chaperone GRP78 expression; up-regulation of proapoptotic proteins CHOP and Bcl-2; and caspase-12 activity. LOX-1 gene silencing and treatment with an anti-LOX-1 antibody attenuated the effects of ox-LDL. Pretreatment with irestatin 9389, salubrinal, or AEBSF also blocked ox-LDL-induced expression of CHOP and Bcl-2 and activation of caspase-12 activity, leading to an attenuation of endothelial cell apoptosis. Furthermore, Nox-4 siRNA attenuated the up-regulated expression of GRP78, PERK, IRE1, and XBP-1 to reduce ox-LDL-induced endothelial cell apoptosis.

Conclusions

LOX-1 plays a critical role in ox-LDL-induced endothelial cell apoptosis via the ER stress pathway.  相似文献   

17.
18.
The molecular mechanisms of hepatic ischemia/reperfusion (I/R) damage are incompletely understood. We investigated the role of ceramide in a murine model of warm hepatic I/R injury. This sphingolipid induces cell death and participates in tumor necrosis factor (TNF) signaling. Hepatic ceramide levels transiently increased after the reperfusion phase of the ischemic liver in mice, because of an early activation of acidic sphingomyelinase (ASMase) followed by acid ceramidase stimulation. In vivo administration of an ASMase inhibitor, imipramine, or ASMase knockdown by siRNA decreased ceramide generation during I/R, and attenuated serum ALT levels, hepatocellular necrosis, cytochrome c release, and caspase-3 activation. ASMase-induced ceramide generation activated JNK resulting in BimL phosphorylation and translocation to mitochondria, as the inhibition of ASMase by imipramine prevented these events. In contrast, blockade of ceramide catabolism by N-oleyolethanolamine (NOE), a ceramidase inhibitor, enhanced ceramide levels and potentiated I/R injury compared with vehicle-treated mice. Pentoxifylline treatment prevented TNF upregulation and ASMase activation. Furthermore, 9 of 11 mice treated with imipramine survived 7 days after total liver ischemia, compared with 4 of 12 vehicle-treated mice, whereas 8 of 8 NOE-treated mice died within 2 days of total liver ischemia. In conclusion, ceramide generated from ASMase plays a key role in I/R-induced liver damage, and its modulation may be of therapeutic relevance.  相似文献   

19.
20.
The danger model of immunity and tolerance holds that antigen-presenting cells (APCs), activated by stress, injury, or necrosis, but not by physiological (apoptotic) cell death, initiate adaptive immune responses. APC activation is fundamentally associated with binding of CD40 to its ligand CD154. Platelets express CD154 upon activation and are thus potential primal danger signals linking the homeostatic response to trauma to activation of the acquired immune system. Previously, we showed that platelets can undergo gradient-driven migration, or chemotaxis, toward supernatants from cells injured by repeated freeze/thaws, UV light, or ischemia/reperfusion. Herein, we demonstrate that platelet-derived CD154 induces immature dendritic cell maturation with upregulation of costimulatory molecules and IL-12p40 production. Overall, these results provide a mechanism for platelet activation of APC facilitating the induction of adaptive immunity in environments of cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号