首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In sensory systems, the thalamus has historically been considered a relay station. Neural representations of temporal modulations in the auditory system undergo considerable changes as they pass from the inferior colliculus (IC) to the auditory cortex. We sought to determine in awake primates the extent to which auditory thalamic neurons contribute to these transformations. We tested the temporal processing capabilities of medial geniculate body (MGB) neurons in awake marmoset monkeys using repetitive click stimuli. MGB neurons were able to synchronize to periodic clicks at repetition rates significantly higher than auditory cortex neurons. Unlike responses in the MGB of anesthetized animals, >40% of MGB neurons in awake marmosets displayed nonsynchronized discharges when stimulated by high click rates (short interclick intervals). Such nonsynchronized MGB responses typically occurred at higher repetition rates than those observed in auditory cortex. In contrast to auditory cortex neurons, many MGB neurons exhibited both synchronized and nonsynchronized discharge patterns. In both MGB and auditory cortex, synchronized and nonsynchronized responses represented complementary ranges of interclick intervals (1/click rate). Furthermore, the temporal processing abilities of some MGB neurons were sensitive to the spectrotemporal parameters of the click stimuli used. Together, these findings suggest that MGB neurons participate in active transformations of the neural representations of temporal modulations from IC to auditory cortex. In particular, the MGB appears to be the first station in the auditory ascending pathway in which substantial nonsynchronized responses emerge.  相似文献   

2.
Afferents from the reticular complex of the thalamus (RE) to the subdivisions of the medial geniculate body (MGB) in the cat were studied by retrograde axonal transport of horseradish peroxidase injected in sites where single unit responses to tones had been characterized. All MGB subdivisions studied received afferents from the same region of RE corresponding to its ventral posterior third, characterized by large neurons. No obvious differences were seen in the localization of labelled neurons within RE according to which MGB subdivision was injected, except that pars lateralis afferents seemed to originate from somewhat more limited portions of RE.  相似文献   

3.
He J  Hu B 《Journal of neurophysiology》2002,88(4):2152-2156
The medial geniculate body (MGB) of the auditory thalamus comprises lemniscal and nonlemniscal neurons that project to the primary auditory cortex and limbic structures, respectively. Here we show that in anesthetized guinea pigs, MGB responses to a noise-burst stimulus exhibit distinct and synaptic pathway-specific firing patterns. The majority of nonlemniscal MGB cells exhibited bursting responses, whereas lemniscal neurons discharged mainly single or spike doublets. The burst firing is delayed in nonlemniscal neurons and exhibited several features that are characteristics of those mediated by low-threshold Ca(2+) spikes. Such a synaptic pathway-specific allocation of bursting and single-spike firing patterns is consistent with the notion of parallel processing of auditory information in thalamocortical system.  相似文献   

4.
In the auditory brain, some populations of neurons exhibit stimulus-specific adaptation (SSA), whereby they adapt to frequently occurring stimuli but retain sensitivity to stimuli that are rare. SA has been observed in auditory structures from the midbrain to the primary auditory cortex (A1) and has been proposed to be a precursor to the generation of deviance detection. SSA is strongly expressed in non-lemniscal regions of the medial geniculate body (MGB), the principal nucleus of the auditory thalamus. In this account we review the state of the art of SSA research in the MGB, highlighting the importance of this auditory centre in detecting sounds that may be relevant for survival.  相似文献   

5.
The auditory cortex in echolocating bats is one of the best studied in mammals, yet the projections of the thalamus to the different auditory cortical fields have not been systematically analyzed in any bat species. The data of the present study were collected as part of a combined investigation of physiological properties, neuroarchitecture, and chemoarchitecture as well as connectivity of cortical fields in Rhinolophus in order to establish a neuroanatomically and functionally coherent view of the auditory cortex in the horseshoe bat. This paper first describes the neuroanatomic parcellation of the medial geniculate body and then concentrates on the afferent thalamic connections with auditory cortical fields of the temporal region. Deposits of horseradish peroxidase and wheatgerm-agglutinated horseradish peroxidase were made into neurophysiologically characterized locations of temporal auditory cortical fields; i.e., the tonotopically organized primary auditory cortex, a ventral field, and a temporal subdivision of a posterior dorsal field. A clear topographic relationship between thalamic subdivisions and specific cortical areas is demonstrated. The primary auditory cortex receives topographically organized input from the central ventral medial geniculate body. The projection patterns to the temporal subdivision of the posterior dorsal field suggest that it is a "core" field, similar to the posterior fields in the cat. Projections to the ventral field arise primarily from border regions of the ventral medial geniculate body. On the whole, the organization of the medial geniculate body projections to the temporal auditory cortex is quite similar to that described in other mammals, including cat and monkey.  相似文献   

6.
Zhang Z  Yu YQ  Liu CH  Chan YS  He J 《Neuroscience》2008,151(1):293-302
We investigated the firing pattern and frequency tuning properties of medial geniculate body (MGB) neurons, through in vivo intracellular recordings in anesthetized guinea pigs. Twenty-two of the 25 physiological characterized neurons were anatomically identified. Ten neurons were located in the ventral division of the medial geniculate body (MGv) (seven in pars ovoidea (OV) and three in the pars lateralis (LV)). Eight were located in the dorsal division (MGd), and four in the medial division (MGm). OV neurons showed a uniform, phasic ON response with high frequency selectivity. Functionally, they are interpreted as relaying spectral information with high reliability. LV neurons exhibited various patterns: phasic, tonic and excitatory postsynaptic potentials (EPSP) with a spike train. These high magnitude EPSPs are proposed to convey temporal information of the auditory signals with more encoding power. MGd neurons had relatively low best frequencies while MGm neurons had high intensity threshold, broader frequency selectivity, and a tonic response pattern. Tonic firing is likely to impose a strong impact onto wide cortical area and amygdala. When hyperpolarized with current injection, MGB neurons evoked low-threshold calcium spikes. Distinct change in these spike numbers was observed among MGv and MGd neurons as compared with MGm neurons, implying their differential roles. MGm neurons are more modulatory in nature, while the long lasting bursts of low-threshold calcium spikes observed in MGv and MGd neurons probably participate in propagating the sleep oscillations.  相似文献   

7.
Zhang Z  Yu YQ  Liu CH  Chan YS  He J 《Neuroscience》2008,154(1):273-282
We investigated the firing pattern and frequency tuning properties of medial geniculate body (MGB) neurons, through in vivo intracellular recordings in anesthetized guinea pigs. Twenty-two of the 25 physiological characterized neurons were anatomically identified. Ten neurons were located in the ventral division of the medial geniculate body (MGv) (seven in pars ovoidea (OV) and three in the pars lateralis (LV)). Eight were located in the dorsal division (MGd), and four in the medial division (MGm). OV neurons showed a uniform, phasic ON response with high frequency selectivity. Functionally, they are interpreted as relaying spectral information with high reliability. LV neurons exhibited various patterns: phasic, tonic and excitatory postsynaptic potentials (EPSP) with a spike train. These high magnitude EPSPs are proposed to convey temporal information of the auditory signals with more encoding power. MGd neurons had relatively low best frequencies while MGm neurons had high intensity threshold, broader frequency selectivity, and a tonic response pattern. Tonic firing is likely to impose a strong impact onto wide cortical area and amygdala. When hyperpolarized with current injection, MGB neurons evoked low-threshold calcium spikes. Distinct change in these spike numbers was observed among MGv and MGd neurons as compared with MGm neurons, implying their differential roles. MGm neurons are more modulatory in nature, while the long lasting bursts of low-threshold calcium spikes observed in MGv and MGd neurons probably participate in propagating the sleep oscillations.  相似文献   

8.
The auditory cortex in echolocating bats is one of the best studied in mammals, yet the projections of the thalamus to the different auditory cortical fields have not been systematically analyzed in any bat species. The data of the present study were collected as part of a combined investigation of physiological properties, neuroarchitecture, and chemoarchitecture as well as connectivity of cortical fields in Rhinolophus in order to establish a neuroanatomically and functionally coherent view of the auditory cortex in the horseshoe bat. This paper first describes the neuroanatomic parcellation of the medial geniculate body and then concentrates on the afferent thalamic connections with auditory cortical fields of the temporal region. Deposits of horseradish peroxidase and wheatgerm-agglutinated horseradish peroxidase were made into neurophysiologically characterized locations of temporal auditory cortical fields; i.e., the tonotopically organized primary auditory cortex, a ventral field, and a temporal subdivision of a posterior dorsal field. A clear topographic relationship between thalamic subdivisions and specific cortical areas is demonstrated. The primary auditory cortex receives topographically organized input from the central ventral medial geniculate body. The projection patterns to the temporal subdivision of the posterior dorsal field suggest that it is a “core” field, similar to the posterior fields in the cat. Projections to the ventral field arise primarily from border regions of the ventral medial geniculate body. On the whole, the organization of the medial geniculate body projections to the temporal auditory cortex is quite similar to that described in other mammals, including cat and monkey.  相似文献   

9.
While sensory corticotectal connections have received considerable attention, relatively little is known about the nature of superior colliculus neurons that receive input from the cortical frontal eye fields. The present experiments used microstimulation of indwelling electrodes in the frontal eye fields and single-unit recording in the superior colliculus to demonstrate that frontal afferents preferentially terminate on multisensory neurons in the colliculus. Furthermore, the medial and lateral subdivisions of the cat frontal eye fields access physiologically distinct populations of multisensory collicular neurons. Specifically, the medial subdivision preferentially activates neurons with visual and auditory sensory responses located medial within the colliculus, while the lateral subdivision preferentially activates collicular neurons with visual and somatosensory responses found more laterally. These data support reports distinguishing the medial and lateral subdivisions of the frontal eye fields in the cat and suggest that signals from each may route separately through the colliculus to induce or coordinate different components of gaze control. Received: 17 November 1998 / Accepted: 04 May 1999  相似文献   

10.
In the present study, we investigated the point-to-point modulatory effects from the auditory cortex to the thalamus in the guinea pig. Corticofugal modulation on thalamic neurons was studied by electrical activation of the auditory cortex. The modulation effect was sampled along the frontal or sagittal planes of the auditory thalamus, focusing on the ventral division (MGv) of the medial geniculate body (MGB). Electrical activation was targeted at the anterior and dorsocaudal auditory fields, to which the MGv projects and from which it assumptively receives reciprocal projections. Of the 101 MGv neurons examined by activation of the auditory cortex through passing pulse trains of 100-200 microA current into one after another of the three implanted electrodes (101 neurons x 3 stimulation sites = 303 cases), 208 cases showed a facilitatory effect, 85 showed no effect, and only 10 cases (7 neurons) showed an inhibitory effect. Among the cases of facilitation, 63 cases showed a facilitatory effect >100%, and 145 cases showed a facilitatory effect from 20-100%. The corticofugal modulatory effect on the MGv of the guinea pig showed a widespread, strong facilitatory effect and very little inhibitory effect. The MGv neurons showed the greatest facilitations to stimulation by the cortical sites, with the closest correspondence in BF. Six of seven neurons showed an elevation of the rate-frequency functions when the auditory cortex was activated. The comparative results of the corticofugal modulatory effects on the MGv of the guinea pig and the cat, together with anatomical findings, hint that the strong facilitatory effect is generated through the strong corticothalamic direct connection and that the weak inhibitory effect might be mainly generated via the interneurons of the MGv. The temporal firing pattern of neuronal response to auditory stimulus was also modulated by cortical stimulation. The mean first-spike latency increased significantly from 15.7 +/- 5.3 ms with only noise-burst stimulus to 18.3 +/- 4.9 ms (n = 5, P < 0.01, paired t-test), while the auditory cortex was activated with a train of 10 pulses. Taking these results together with those of previous experiments conducted on the cat, we speculate that the relatively weaker inhibitory effect compared with that in the cat could be due to the smaller number of interneurons in the guinea pig MGB. The corticofugal modulation of the firing pattern of the thalamic neurons might enable single neurons to encode more auditory information using not only the firing rate but also the firing pattern.  相似文献   

11.
The purpose of this study was to advance our understanding of the anatomical organization of sensory projections to the amygdala, and specifically to identify potential interactions within the amygdala between thalamic and cortical sensory projections of a single sensory modality. Thus, interconnections between the amygdala and acoustic processing areas of the thalamus and cortex were examined in the rat using WGA-HRP as an anterograde and a retrograde axonal tracer. Injections placed in medial aspects of the medial geniculate body (MGB) produced anterograde transport to the lateral nucleus of the amygdala and to adjacent areas of the striatum. Injections of primary auditory cortex (TE1) produced no transport to amygdala. In contrast, injections ventral to TE1 involving TE3 and perirhinal periallocortex (PRh) produced anterograde transport in the subcortical forebrain that was indistinguishable from that produced by the MGB injections. The TE3 and PRh injections also resulted in retrograde transport to primary auditory cortex and to MGB, thus confirming the involvement of these ventral cortical areas in auditory functions. Injections of the lateral nucleus of the amygdala resulted in retrograde transport back to the medial areas of MGB and to temporal cortical areas PRh, TE3, and the ventral most part of TE1. Thus, auditory processing regions of the thalamus and cortex give rise to overlapping (possibly convergent) projections to the lateral nucleus of the amygdala. These projections may allow diverse auditory signals to act on common ensembles of amygdaloid neurons and may therefore play a role in the integration of sensory messages leading to emotional reactions.  相似文献   

12.
Fudge JL  Haber SN 《Neuroscience》2000,97(3):479-494
The dopamine system plays a major role in responses to potentially rewarding stimuli. An important input to the dopamine neurons is derived from the central nucleus of the amygdala. The central nucleus is a complex structure consisting of several subdivisions with distinct histochemical, morphologic, and connectional features. The central nucleus subdivisions are therefore likely to have specific inputs to the dopamine neurons. The midbrain dopamine cells are divided into dorsal and ventral subpopulations. We determined the organization of inputs from the central nucleus subdivisions to the dopamine subpopulations in monkeys. The dorsal tier neurons receive relatively greater central nucleus input compared to the ventral tier. Within the ventral tier, the central nucleus projects to the densocellular region, but not the cell columns. Furthermore, the midbrain subpopulations receive a differential projection from specific central nucleus subterritories. The medial subdivision of the central nucleus has the greatest input to the dopamine system, and projects throughout the dorsal tier and densocellular regions. This indicates that the medial subdivision influences not only the ventral striatum but also more dorsal striatal areas, through its inputs to these dopamine subpopulations. In contrast, the capsular subdivision of the lateral central nucleus and the amygdalostriatal area project preferentially to the dorsal tier, which selectively modulates the ventral striatum and cortex. The central core of the lateral central nucleus is unique in its restricted projection to the lateral substantia nigra in the region of the nigrotectal pathway.Taken as a whole, the central nucleus-nigral pathway provides a route for affectively significant stimuli to modulate the DA system, influencing the initiation of behavioral responses.  相似文献   

13.
Single unit activity was recorded from rat auditory cortex (AC), medial geniculate body (MGB), and inferior colliculus (IC) during performance of a continuous nonmatching-to-sample task. The rats made go and no-go responses to indicate whether the current tone was the same as (match) or different from (nonmatch) the preceding tone. Between 31% and 55% of the units from AC, MGB, and IC showed sensory correlates (differences in activity to the two types of tones), indicating an involvement in sensory discrimination. Twenty percent of the units from AC and MGB had delay correlates (sustained differential activity during the delay immediately after the tones), indicating an involvement in retention. Most of the units with delay correlates also had sensory correlates. These results suggest that the auditory system, especially AC and MGB, discriminates and retains auditory stimuli in an auditory working memory.  相似文献   

14.
Corticofugal modulation on both ON and OFF responses in various nuclei in the medial geniculate body (MGB) was examined by locally activating the auditory cortex and looking for effects on the neuronal responses to acoustic stimuli. In contrast with a major corticofugal facilitatory effect on the ON neurons in the lemniscal nucleus of the MGB of the guinea pigs, of 132 ON neurons tested in three conditions with cortical activation through each of three implanted electrodes, the majority of the tested conditions (319/396) that were sampled from the nonlemniscal nuclei of the MGB received inhibitory modulation from the activated cortex. This inhibitory effect was >50% for 99 cases while the auditory cortex was activated. Most of the OFF and ON-OFF MGB neurons (44/54) showed a facilitatory effect of 111.4 +/- 99.9%, and three showed a small inhibitory effect of 25.7 +/- 5.8% on their OFF responses. Thirty neurons in the border region between the lemniscal and nonlemniscal MGB showed mainly facilitatory corticofugal effects on both ON and OFF responses. Meanwhile, cortical stimulation induced almost exclusive inhibitory effects on the ON response and facilitatory effects on the OFF response in the MGcm. It is suggested that the OFF response is produced as a disinhibition from the inhibitory input of the auditory stimulus. The present results provide a possible explanation for selective gating of the auditory information through the lemniscal MGB while switching off other unwanted sensory signals and the interference from the limbic system, leaving the other auditory cortex prepared to process only the auditory signal.  相似文献   

15.
The responses to free-field acoustic stimuli of 157 units in the auditory thalamus of anesthetized cats were studied in relation to the localization of pure tone stimuli in the azimuthal plane. Units were classified as 'directional' if their firing rates at sound levels in excess of 20 dB above threshold varied by more than 50% as a function of azimuth. Sixty-five % of the units in the nucleus of the brachium of the inferior colliculus and 30% in the ventral division of the medial geniculate body were found to be directional, suggesting different processing channels for sound localization between colliculus and cortex.  相似文献   

16.
The superior paraolivary nucleus (SPON) is a prominent nucleus of the superior olivary complex. In rats, this nucleus is composed of a morphologically homogeneous population of GABAergic neurons that receive excitatory input from the contralateral cochlear nucleus and inhibitory input from the ipsilateral medial nucleus of the trapezoid body. SPON neurons provide a dense projection to the ipsilateral inferior colliculus and are thereby capable of exerting profound modulatory influence on collicular neurons. Despite recent interest in the structural and connectional features of SPON, little is presently known concerning the physiological response properties of this cell group or its functional role in auditory processing. We utilized extracellular, in vivo recording methods to study responses of SPON neurons to broad band noise, pure tone, and amplitude-modulated pure tone stimuli. Localization of recording sites within the SPON provides evidence for a medial (high frequency) to lateral (low frequency) tonotopic representation of frequencies within the nucleus. Best frequencies of SPON neurons spanned the audible range of the rat and receptive fields were narrow with V-shaped regions near threshold. Nearly all SPON neurons responded at the offset of broad band noise and pure tone stimuli. The vast majority of SPON neurons displayed very low rates of spontaneous activity and only responded to stimuli presented to the contralateral ear, although a small population showed binaural facilitation. Most SPON neurons also generated spike activity that was synchronized to sinusoidally amplitude-modulated tones. Taken together, these data suggest that SPON neurons may serve to encode temporal features of complex sounds, such as those contained in species-specific vocalizations.  相似文献   

17.
Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Presently little is known about what basic synaptic and cellular mechanisms are employed by thalamocortical neurons in the two main divisions of the auditory thalamus to elicit their distinct responses to sound. Using intracellular recording and labeling methods, we characterized anatomic features, membrane properties, and synaptic inputs of thalamocortical neurons in the dorsal (MGD) and ventral (MGV) divisions in brain slices of rat medial geniculate body. Quantitative analysis of dendritic morphology demonstrated that tufted neurons in both divisions had shorter dendrites, smaller dendritic tree areas, more profuse branching, and a greater dendritic polarization compared with stellate neurons, which were only found in MGD. Tufted neuron dendritic polarization was not as strong or consistent as earlier Golgi studies suggested. MGV and MGD cells had similar intrinsic properties except for an increased prevalence of a depolarizing sag potential in MGV neurons. The sag was the only intrinsic property correlated with cell morphology, seen only in tufted neurons in either division. Many MGV and MGD neurons received excitatory and inhibitory inferior colliculus (IC) inputs (designated IN/EX or EX/IN depending on excitation/inhibition sequence). However, a significant number only received excitatory inputs (EX/O) and a few only inhibitory (IN/O). Both MGV and MGD cells displayed similar proportions of response combinations, but suprathreshold EX/O responses only were observed in tufted neurons. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) had multiple distinguishable amplitude levels implying convergence. Excitatory inputs activated alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors the relative contributions of which were variable. For IN/EX cells with suprathreshold inputs, first-spike timing was independent of membrane potential unlike that of EX/O cells. Stimulation of corticothalamic (CT) and thalamic reticular nucleus (TRN) axons evoked a GABAA IPSP, EPSP, GABAB IPSP sequence in most neurons with both morphologies in both divisions. TRN IPSPs and CT EPSPs were graded in amplitude, again suggesting convergence. CT inputs activated AMPA and NMDA receptors. The NMDA component of both IC and CT inputs had an unusual voltage dependence with a detectable DL-2-amino-5-phosphonovaleric acid-sensitive component even below -70 mV. First-spike latencies of CT evoked action potentials were sensitive to membrane potential regardless of whether the TRN IPSP was present. Overall, our in vitro data indicate that reported regional differences in the in vivo responses of MGV and MGD cells to auditory stimuli are not well correlated with major differences in intrinsic membrane features or synaptic responses between cell types.  相似文献   

18.
Accurate temporal coding of low-frequency tones by spikes that are locked to a particular phase of the sine wave (phase-locking), occurs among certain groups of neurons at various processing levels in the brain. Phase-locked responses have previously been studied in the inferior colliculus and neocortex of the guinea pig and we now describe the responses in the auditory thalamus. Recordings were made from 241 single units, 32 (13%) of which showed phase-locked responses. Units with phase-locked responses were mainly (82%) located in the ventral division of the medial geniculate body (MGB), and also the medial division (18%), but were not found in the dorsal or shell divisions. The upper limiting frequency of phase-locking varied greatly between units (60-1,100 Hz) and between anatomical divisions. The upper limit in the ventral division was 520 Hz and in the medial was 1,100 Hz. The range of steady-state delays calculated from phase plots also varied: ventral division, 8.6-14 ms (mean 11.1 ms; SD 1.56); medial division, 7.5-11 ms (mean 9.3 ms; SD 1.5). Taken together, these measurements are consistent with the medial division receiving a phase-locked input directly from the brain stem, without an obligatory relay in the inferior colliculus. Cells in both the ventral and medial divisions of the MGB showed a response that phase-locked to the fundamental frequency of a guinea pig purr and may be involved in analyzing communication calls.  相似文献   

19.
Summary Response properties of 142 medial geniculate (MGB) cells were investigated in the awake and undrugged squirrel monkey (Saimiri sciureus). Using Jordan's (1973) parcellation of this complex nucleus, cells were assigned to 3 major subdivisions a, b and c MGB and compared for their general characteristics and response properties, b MBG cells had significantly higher rates of spontaneous firing and longer latency periods than a and c MGB cells. With regard to responsiveness to various auditory stimuli, response patterns, and tuning characteristics, cells in all 3 subdivisions were statistically similar and were thus treated as one cell population. About 95% of the cells responded to broadband white noise, steady tone bursts and frequency modulated (FM) tones. Click activated only 69% of the responding cells. Various through-stimulus responses comprised about 80% of the responses. Among the tonesensitive cells, 90% responded with complex patterns, out of which 50% were frequency-dependent. About 62% of the cells (for which tuning properties were determined) were quite broadly tuned (Q10dB <2) and had either single or multi-peaked response areas. The other 38% were quite narrowly tuned (Q10dB > 2) and had single-peaked, symmetrical or tailed response areas. Different inhibitory and excitatory response components of individual cells had different characteristic frequencies and response thresholds. The c MGB, which is tonotopically organized in a latero-medial orientation, appears to be homologous to the cat pars lateralis of the ventral MGB. The tonotopical organization of the b MGB, which is probably homologous to the cat's medial or magnocellular subdivision, is less clear. Most of the cells which were activated by FM tones disclosed direction sensitivity with different degrees of pattern complexity. It is suggested that pitch resolution in the MGB is based on spatio-temporal mechanisms.This study was supported by a research grant to Z. Wollberg from the Israel National Academy of Sciences and Humanities, The Commission for Basic ResearchPart of a Ph.D. thesis carried out under the supervision of the third author and submitted to the Tel Aviv University  相似文献   

20.
Summary The interconnections of the auditory cortex with the parahippocampal and cingulate cortices were studied in the cat. Injections of the anterograde and retrograde tracer WGA-HRP were performed, in different cats (n = 9), in electrophysiologically identified auditory cortical fields. Injections in the posterior zone of the auditory cortex (PAF or at the PAF/AI border) labeled neurons and axonal terminal fields in the cingulate gyrus, mainly in the ventral bank of the splenial sulcus (a region that can be considered as an extension of the cytoarchitectonic area Cg), and posteriorly in the retrosplenial area. Labeling was also present in area 35 of the perirhinal cortex, but it was sparser than in the cingulate gyrus. Following WGA-HRP injection in All, no labeling was found in the cingulate gyrus, but a few neurons and terminals were labeled in area 35. In contrast, no or very sparse labeling was observed in the cingulate and perirhinal cortices after WGA-HRP injections in the anterior zone of the auditory cortex (AI or AAF). A WGA-HRP injection in the cingulate gyrus labeled neurons in the posterior zone of the auditory cortex, between the posterior ectosylvian and the posterior suprasylvian sulci, but none was found more anteriorly in regions corresponding to AI, AAF and AII. The present data indicate the existence of preferential interconnections between the posterior auditory cortex and the limbic system (cingulate and parahippocampal cortices). This specialization of posterior auditory cortical areas can be related to previous observations indicating that the anterior and posterior regions of the auditory cortex differ from each other by their response properties to sounds and their pattern of connectivity with the auditory thalamus and the claustrum.Abbreviations AAF anterior auditory cortical field - aes anterior ectosylvian sulcus - AI primary auditory cortical field - AII secondary auditory cortical field - ALLS anterior-lateral lateral suprasylvian visual area - BF best frequency - C cerebral cortex - CC corpus callosum - CIN cingulate cortex - CL claustrum - DLS dorsal lateral suprasylvian visual area - DP dorsoposterior auditory area - E entorhinal cortex - IC inferior colliculus - LGN lateral geniculate nucleus - LV pars lateralis of the ventral division of the MGB - LVe lateral ventricule - MGB medial geniculate body - OT optic tract - OV pars ovoidea of the ventral division of the MGB - PAF posterior auditory cortical field - pes posterior ectosylvian sulcus - PLLS posterior-lateral lateral suprasylvian visual area - PS posterior suprasylvian visual area - PU putamen - RE reticular complex of thalamus - rs rhinal sulcus - SC superior colliculus - SS suprasylvian sulcus - T temporal auditory cortical field - TMB tetramethylbenzidine - VBX ventrobasal complex of thalamus, external nucleus - VL pars ventrolateralis of the ventral division of the MGB - VLS ventrolateral suprasylvian visual area - VPAF ventroposterior auditory cortical field - WGA-HRP wheat germ agglutinin labeled with horseradish peroxidase - wm white matter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号