首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computers in imaging and health care: Now and in the future   总被引:6,自引:0,他引:6  
Early picture archiving and communication systems (PACS) were characterized by the use of very expensive hardware devices, cumbersome display stations, duplication of database content, lack of interfaces to other clinical information systems, and immaturity in their understanding of the folder manager concepts and workflow reengineering. They were implemented historically at large academic medical centers by biomedical engineers and imaging informaticists. PACS were nonstandard, home-grown projects with mixed clinical acceptance. However, they clearly showed the great potential for PACS and filmless medical imaging. Filmless radiology is a reality today. The advent of efficient softcopy display of images provides a means for dealing with the ever-increasing number of studies and number of images per study. Computer power has increased, and archival storage cost has decreased to the extent that the economics of PACS is justifiable with respect to film. Network bandwidths have increased to allow large studies of many megabytes to arrive at display stations within seconds of examination completion. PACS vendors have recognized the need for efficient workflow and have built systems with intelligence in the management of patient data. Close integration with the hospital information system (HIS)-radiology information system (RIS) is critical for system functionality. Successful implementation of PACS requires integration or interoperation with hospital and radiology information systems. Besides the economic advantages, secure rapid access to all clinical information on patients, including imaging studies, anytime and anywhere, enhances the quality of patient care, although it is difficult to quantify. Medical image management systems are maturing, providing access outside of the radiology department to images and clinical information throughout the hospital or the enterprise via the Internet. Small and medium-sized community hospitals, private practices, and outpatient centers in rural areas will begin realizing the benefits of PACS already realized by the large tertiary care academic medical centers and research institutions. Hand-held devices and the Worldwide Web are going to change the way people communicate and do business. The impact on health care will be huge, including radiology. Computer-aided diagnosis, decision support tools, virtual imaging, and guidance systems will transform our practice as value-added applications utilizing the technologies pushed by PACS development efforts. Outcomes data and the electronic medical record (EMR) will drive our interactions with referring physicians and we expect the radiologist to become the informaticist, a new version of the medical management consultant.  相似文献   

2.
The purpose of this literature review is to present the concepts surrounding the issue of communication between imaging systems and information systems in radiology and the literature about them. Picture archiving and communication systems (PACS) were developed to combine viewing of modality images, archiving, and distribution of images. When PACS is integrated/interfaced with radiology information systems (RIS) or hospital information systems (HIS), it can merge patient demographics, medical records, and images. To address several issues surrounding communication between PACS and HIS/RIS and to make interface development easier and faster, various organizations have developed standards for the formatting and transfer of clinical data. Additional work continues to better handle these issues. Communication protocol Health Level 7 (HL7) is a standard application protocol used for electronic text data exchange in health care by most HIS/RIS. The imaging communication protocol for PACS is the Digital Imaging and Communications in Medicine (DICOM) standard specification protocol that describes the means of formatting and exchanging images and associated information.  相似文献   

3.
Communication between clinicians, technologists, and radi ologists has become more complex, with Picture Archiving and Communication Systems (PACS) now allowing the radiologist to be removed from the physical location of the patients and the site of imaging. With these changes, effective communication becomes an ongoing challenge. Efficient communication of study interpretations has also become a priority for radiologists as they struggle to maintain relevance and provide added value to patient care when clinicians have ready access to radiology images. The purpose of this paper is to share our experience in developing and implementing the Collaborative Notification System (CNS), a communication tool used to inform referring clinicians of urgent findings—a.k.a. “wet reads.” The system utilizes a system of web pages integrated into PACS for the sending and receiving of succinct messages to provide clinical information at the point of need. A second system of pager alerts provides notification of the need for such communication through a relatively unintrusive, one-way, acknowledged alert system. The CNS provides asynchronous, integrated communication for the reporting of urgent and emergent radiology findings in a complex, geographically distributed medical environment.  相似文献   

4.
The fragmentation of the electronic patient record among hospital information systems (HIS), radiology information systems (RIS), and picture archiving and communication systems (PACS) makes the viewing of the complete medical patient record inconvenient. The purpose of this report is to describe the system architecture, development tools, and implementation issues related to providing transparent access to HIS, RIS, and PACS information. A client-mediator-server architecture was implemented to facilitate the gathering and visualization of electronic medical records from these independent heterogeneous information systems. The architecture features intelligent data access agents, run-time determination of data access strategies, and an active patient cache. The development and management of the agents were facilitated by data integration CASE (computer-assisted software engineering) tools. HIS, RIS, and PACS data access and translation agents were successfully developed. All pathology, radiology, medical, laboratory, admissions, and radiology reports for a patient are available for review from a single integrated workstation interface. A data caching system provides fast access to active patient data. New network architectures are evolving that support the integration of heterogeneous software subsystems. Commercial tools are available to assist in the integration procedure.  相似文献   

5.
Unknown to most radiology professionals, the Veterans Administration (VA) is implementing an automated radiology information system as an integrated component of its Decentralized Hospital Computer Program. The basic design has been evaluated and refined over the past 5 years. It is now becoming available in all 172 VA medical facilities. Radiology services are provided in a complex management and fiscal environment. The primary purpose of the information system is to improve the efficient processing, performance, and reporting of requests for radiologic consultations and procedures. The automatic capturing of demographic and medical statistics will provide local and national managers more complete data with which to plan future financial, equipment, and personnel requirements. The VA radiology module has the potential to influence the shape of all future systems, commercial and public. This report describes the development of this radiology information system, its current status, and its potential impact on the largest health care system in the country. The module serves as an example of what can or should be expected from the radiology portion of a comprehensive medical information management system.  相似文献   

6.
DICOM Modality Worklist: An essential component in a PACS environment   总被引:1,自引:0,他引:1  
The development and acceptance of the digital communication in medicine (DICOM) standard has become a basic requirement for the implementation of electronic imaging in radiology. DICOM is now evolving to provide a standard for electronic communication between radiology and other parts of the hospital enterprise. In a completely integrated filmless radiology department, there are 3 core computer systems, the picture archiving and communication system (PACS), the hospital or radiology information system (HIS, RIS), and the acquisition modality. Ideally, each would have bidirectional communication with the other 2 systems. At a minimum, a PACS must be able to receive and acknowledge receipt of image and demographic data from the modalities. Similarly, the modalities must be able to send images and demographic data to the PACS. Now that basic DICOM communication protocols for query or retrieval, storage, and print classes have become established through both conformance statements and intervendor testing, there has been an increase in interest in enhancing the functionality of communication between the 3 computers. Historically, demographic data passed to the PACS have been generated manually at the modality despite the existence of the same data on the HIS or RIS. In more current sophisticated implementations, acquisition modalities are able to receive patient and study-related data from the HIS or RIS. DICOM Modality Worklist is the missing electronic link that transfers this critical information between the acquisition modalities and the HIS or RIS. This report describes the concepts, issues, and impact of DICOM Modality Worklist implementation in a PACS environment.  相似文献   

7.
A Mobile Phone Integrated Health Care Delivery System of Medical Images   总被引:1,自引:0,他引:1  
With the growing computing capability of mobile phones, a handy mobile controller is developed for accessing the picture archiving and communication system (PACS) to enhance image management for clinicians with nearly no restriction in time and location using various wireless communication modes. The PACS is an integrated system for the distribution and archival of medical images that are acquired by different imaging modalities such as CT (computed tomography) scanners, CR (computed radiography) units, DR (digital radiography) units, US (ultrasonography) scanners, and MR (magnetic resonance) scanners. The mobile controller allows image management of the PACS including display, worklisting, query and retrieval of medical images in DICOM format. In this mobile system, a server program is developed in a PACS Web server which serves as an interface for client programs in the mobile phone and the enterprise PACS for image distribution in hospitals. The application processing is performed on the server side to reduce computational loading in the mobile device. The communication method of mobile phones can be adapted to multiple wireless environments in Hong Kong. This allows greater feasibility to accommodate the rapidly changing communication technology. No complicated computer hardware or software is necessary. Using a mobile phone embedded with the mobile controller client program, this system would serve as a tool for heath care and medical professionals to improve the efficiency of the health care services by speedy delivery of image information. This is particularly important in case of urgent consultation, and it allows health care workers better use of the time for patient care.  相似文献   

8.
Picture Archiving and Communications System (PACS) was originally developed for radiology services over 20 years ago to capture medical images electronically. Medical diagnosis methods are based on images such as clinical radiographs, ultrasounds, CT scans, MRIs, or other imaging modalities. Information obtained from these images is correlated with patient information. So with regards to the important role of PACS in hospitals, we aimed to evaluate the PACS and survey the information security needed in the Radiological Information system. First, we surveyed the different aspects of PACS that should be in any health organizations based on Department of Health standards and prepared checklists for assessing the PACS in different hospitals. Second, we surveyed the security controls that should be implemented in PACS. Checklists reliability is affirmed by professors of Tehran Science University. Then, the final data are inputted in SPSS software and analyzed. The results indicate that PACS in hospitals can transfer patient demographic information but they do not show route of information. These systems are not open source. They don’t use XML-based standard and HL7 standard for exchanging the data. They do not use DS digital signature. They use passwords and the user can correct or change the medical information. PACS can detect alternation rendered. The survey of results demonstrates that PACS in all hospitals has the same features. These systems have the patient demographic data but they do not have suitable flexibility to interface network or taking reports. For the privacy of PACS in all hospitals, there were passwords for users and the system could show the changes that have been made; but there was no water making or digital signature for the users.  相似文献   

9.
10.
Today, all types of data are used in various ways to provide useful information. PACS Audit data have not been typically used as a data source although it includes information that can be used for various purposes such as process improvement (PI). In a typical radiology workflow, examinations do not show up on a radiologist’s unread worklist until the examination has been verified. An issue with clinical access to radiology reports was determined to be partly due to delays in the verification step. A PI goal was created to reduce this wait time. PACS audit data were mined using an in-house application to provide workflow time span information, and the particular span from arrived to verified was measured. The report also allowed specific examinations and users to be identified, and these data were used as a PI educational tool. The end result was a dramatic reduction in examinations taking longer than 1 h to be verified which reduced the time for report production and enhanced patient care.  相似文献   

11.
A challenge for many clinical users is that a patient may receive a diagnostic imaging (DI) service at a number of hospitals or private imaging clinics. The DI services that patients receive at other locations could be clinically relevant to current treatments, but typically, there is no seamless method for a clinical user to access longitudinal DI results for their patient. Radiologists, and other specialists that are intensive users of image data, require seamless ingestion of foreign exams into the picture archiving and communication system (PACS) to achieve full clinical value. Most commonly, a clinical user will depend on the patient to bring in a CD that contains imaging from another location. However, a number of issues can arise when using this type of solution. Firstly, a CD will not provide the clinical user with the full longitudinal record of the patient. Secondly, a CD often will not contain the report associated with the images. Finally, a CD is not seamless, due to the need to manually import the contents of the CD into the local PACS. In order to overcome these limitations, and provide clinical users with a greater benefit related to a patient’s longitudinal DI history, the implementation of foreign exam management (FEM) at the local site level is required. This paper presents the experiences of FEM in practice. By leveraging industry standards and edge devices to support FEM, multiple sites with disparate PACS and radiology information system (RIS) vendors are able to seamlessly ingest foreign exams within their local PACS as if they are local exams.  相似文献   

12.
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal–Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.  相似文献   

13.
With the introduction of digital imaging in radiology, CD-Rs are increasingly used to distribute patient materials. This study investigates the application of a new software package and work protocol to integrate out-hospital data into the local PACS (picture archive and communication system) archive, which is hampered by differences in patient numbers. A one-month trial was started to import CD-Rs from two departments (radiotherapy and radiology). Seventy CD-Rs were collected from 20 different hospitals holding data of eight different modality types and published by eight different software packages from different vendors. All CD-Rs were successfully transferred into the PACS. The new software and work protocol provide an easy way of introducing the out-hospital data into the PACS. CD-Rs can be destroyed after transfer to PACS, eliminating physical storage. Furthermore, all data can now be viewed and reported using the default viewers of the hospital and no additional training of staff is required.  相似文献   

14.
Data security is a critical issue in an organization; a proper information security management (ISM) is an ongoing process that seeks to build and maintain programs, policies, and controls for protecting information. A hospital is one of the most complex organizations, where patient information has not only legal and economic implications but, more importantly, an impact on the patient’s health. Imaging studies include medical images, patient identification data, and proprietary information of the study; these data are contained in the storage device of a PACS. This system must preserve the confidentiality, integrity, and availability of patient information. There are techniques such as firewalls, encryption, and data encapsulation that contribute to the protection of information. In addition, the Digital Imaging and Communications in Medicine (DICOM) standard and the requirements of the Health Insurance Portability and Accountability Act (HIPAA) regulations are also used to protect the patient clinical data. However, these techniques are not systematically applied to the picture and archiving and communication system (PACS) in most cases and are not sufficient to ensure the integrity of the images and associated data during transmission. The ISO/IEC 27001:2013 standard has been developed to improve the ISM. Currently, health institutions lack effective ISM processes that enable reliable interorganizational activities. In this paper, we present a business model that accomplishes the controls of ISO/IEC 27002:2013 standard and criteria of security and privacy from DICOM and HIPAA to improve the ISM of a large-scale PACS. The methodology associated with the model can monitor the flow of data in a PACS, facilitating the detection of unauthorized access to images and other abnormal activities.  相似文献   

15.
The integration of images with existing and new health care information systems poses a number of challenges in a multi-facility network: image distribution to clinicians; making DICOM image headers consistent across information systems; and integration of teleradiology into PACS. A novel, Web-based enterprise PACS architecture introduced at Massachusetts General Hospital provides a solution. Four AMICAS Web/Intranet Image Servers were installed as the default DICOM destination of 10 digital modalities. A fifth AMICAS receives teleradiology studies via the Internet. Each AMICAS includes: a Java-based interface to the IDXrad radiology information system (RIS), a DICOM autorouter to tape-library archives and to the Agfa PACS, a wavelet image compressor/decompressor that preserves compatibility with DICOM workstations, a Web server to distribute images throughout the enterprise, and an extensible interface which permits links between other HIS and AMICAS. Using wavelet compression and Internet standards as its native formats, AMICAS creates a bridge to the DICOM networks of remote imaging centers via the Internet. This teleradiology capability is integrated into the DICOM network and the PACS thereby eliminating the need for special teleradiology workstations. AMICAS has been installed at MGH since March of 1997. During that time, it has been a reliable component of the evolving digital image distribution system. As a result, the recently renovated neurosurgical ICU will be filmless and use only AMICAS workstations for mission-critical patient care.  相似文献   

16.
Since its inception in 1990, the Hospital Authority (HA) has strongly supported the development and implementation of information systems both to improve the delivery of care and to make better information available to managers. This paper summarizes the progress to date and discusses current and future developments. Following the first two phases of the HA information technology strategy the basic infrastructural elements were laid in place. These included the foundation administrative and financial systems and databases; establishment of a wide area network linking all hospitals and clinics together; laboratory, radiology and pharmacy systems with access to results in the ward. A major push into clinical systems began in 1994 with the clinical management system (CMS), which established a clinical workstation for use in both ward and ambulatory settings. The CMS is now running at all major hospitals, and provides single logon access to almost all the electronically collected clinical data in the HA. The next phase of development is focussed on further support for clinical activities in the CMS. Key elements include the longitudinal electronic patient record (ePR), clinical order entry, generic support for clinical reports, broadening the scope to include allied health and the rehabilitative phase, clinical decision support, an improved clinical documentation framework, sharing of clinical information with other health care providers and a comprehensive data repository for analysis and reporting purposes.  相似文献   

17.
In this report we present an integrated picture archiving and communication system (PACS)-radiology information system (RIS) which runs as part of the daily routine in the Department of Radiology at the University of Graz. Although the PACS and the RIS have been developed independently, the two systems are interfaced to ensure a unified and consistent long-term archive. The configuration connects four computer tomography scanners (one of them situated at a distance of 1 km), a magnetic resonance imaging scanner, a digital subtraction angiography unit, an evaluation console, a diagnostic console, an image display console, an archive with two optical disk drives, and several RIS terminals. The configuration allows the routine archiving of all examinations on optical disks independent of reporting. The management of the optical disks is performed by the RIS. Images can be selected for retrieval via the RIS by using patient identification or medical criteria. A special software process (PACS-MONITOR) enables the user to survey and manage image communication, archiving, and retrieval as well as to get information about the status of the system at any time and handle the different procedures in the PACS. The system is active 24 hours a day. To make the PACS operation as independent as possible from the permanent presence of a system manager (electronic data processing expert), a rule-based expert system (OPERAS; OPERating ASsistant) is in use to localize and eliminate malfunctions that occur during routine work. The PACS-RIS reduces labor and speeds access to images within radiology and clinical departments.  相似文献   

18.
Digital radiography (DR) has recently emerged as an attractive alternative to computed radiography (CR) for the acquisition of general radiographic studies in a digital environment. It offers the possibility of improved spatial and contrast resoltuion, decreased radiation dose due to improved effieincy of detection of x-ray photons, and perhaps most improtantly, holds out the promise of increased technologist productivity. To achieve maximum efficiency, DR must be completely integrated into existing information systems, including the hospital and radiology information systems (HIS/RIS) and, when present, the picture archival and communication system (PACS). The early experience with the integration of DR at the Baltimore Veterans Affairs Medical Center (VAMC) has identified several challenges that exist to the successful integration of DR. DR has only recently been defined as a separate Digital Imaging and Communications in Medicine (DICOM) modality and images obtained will, at first, be listed under the category of CR. Matrix sizes with some DR products on the market exceed the current size limitations of some PACS. The patient throughput may be substantially greater with DR than with CR, and this in combination with the larger size of image files may result in greater demands for network and computer performance in the process of communication with the HIS/RIS and PACS. Additionally, in a hybrid department using both CR and DR, new rules must be defined for prefetching and display of general radiographic studies to permit these examinations to be retrieved and compared together. Advanced features that are planned for DR systems, such as dualenergy subtraction, tomosynthesis, and temporal subtraction, will likely require additional workstation tools beyond those currently available for CR.  相似文献   

19.
20.
Large PACS (Picture Archiving and Communication Systems) installations do not yet exist in Sweden, but some hospitals have had experience with limited PACS activities. At present there are four mini PACS installations in radiology departments and about 12 teleradiology systems in use in Sweden. A couple of small Swedish enterprises work in the market segment of digital imaging including PACS and teleradiology, although the radiology market is dominated by the large international companies. Interest in PACS and teleradiology in Sweden has increased during the last few years, along with advancements in technology and international experience. However, radiology is organized very differently in the United States, Japan, Southern Europe, and Scandinavia. Because of this, PACS will be introduced in different ways, and experience with PACS gained in one health care system may differ from that gained from other health care systems. This article reviews the status of PACS and related developments in Sweden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号