首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. Both neuronal and non-neuronal CLR immunopositive cells were present in our model. High affinity, specific [(125)I]-AM binding sites (K(d) 79 +/- 9 pM and B(max) 571 +/- 34 fmol mg(-1) protein) were more abundant than specific [(125)I]-CGRP binding sites (K(d) 12 +/- 0.7 pM and B(max) 32 +/- 2 fmol mg(-1) protein) in embryonic spinal cord cells. Specific [(125)I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM > hAM(22-52) > rCGRPalpha > CGRP(8-37) > [r-(r(*),s(*))]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). Specific [(125)I]-CGRP binding was competed by rCGRPalpha > rAM > or = CGRP(8-37) > or = BIBN4096BS > hAM(22-52). Cellular levels of cAMP were increased by AM (pEC(50) 10.2 +/- 0.2) and less potently by rCGRPalpha (pEC(50) 8.9 +/- 0.4). rCGRPalpha-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA(2) 7.63 +/- 0.44) and hAM(22-52) (pA(2) 6.18 +/- 0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA(2) 7.41+/- 0.15) and AM(22-52) (pA(2) 7.26 +/- 0.18). BIBN4096BS only antagonized the effects of CGRP (pA(2) 8.40 +/- 0.30) on cAMP accumulation. These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP(1) (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM(1) (CLR/RAMP2) receptor subtype.  相似文献   

2.
In isolated rat uterine strips, adrenomedullin (AM) inhibited the spontaneous periodic contraction in a concentration-dependent manner (IC(50)=22.3+/-0.7 nM). The inhibitory effect of AM was prevented by either AM(22-52), a putative antagonist for AM receptors, or calcitonin gene-related peptide (CGRP)(8-37), a putative antagonist for CGRP receptors. AM also attenuated bradykinin (BK)-induced periodic uterine contraction, which was blocked by AM(22-52) or CGRP(8-37), whereas AM had no effect on the periodic contraction caused by oxytocin or prostaglandin F(2alpha) (PGF(2alpha)). RT-PCR analysis showed that mRNAs for calcitonin receptor-like receptor (CRLR), receptor-activity-modifying protein (RAMP)1, RAMP2 and RAMP3 were expressed in the rat uterus. These results demonstrate that AM selectively inhibits spontaneous and BK-induced periodic contraction via activating receptors for AM and CGRP.  相似文献   

3.
Ashton D  Hieble P  Gout B  Aiyar N 《Pharmacology》2000,61(2):101-105
Human adrenomedullin (AM) and human calcitonin gene-related peptide (CGRP) produced a concentration-dependent relaxation in mouse aorta, precontracted with noradrenaline. EC(50) values for AM and CGRP were 9.8 +/- 2.4 and 4.2 +/- 0.1 nmol/l, respectively. AM-mediated vasorelaxation was partially (3-fold) shifted by AM(22-52), the C-terminal AM fragment, but not by CGRP(8-37), a selective CGRP1 antagonist. Both AM(22-52) and CGRP(8-37) failed to inhibit CGRP-mediated vasorelaxation of mouse aorta rings. Binding of rat [(125)I]AM to these membranes was specific. Both human AM and AM(22-52) displaced rat [(125)I]AM binding in a concentration-dependent manner with IC(50) values of 12.0 +/- 4 and 19.4 +/- 8 nmol/l, respectively. In contrast, both human CGRP and CGRP(8-37) were weak in displacing [(125)I]AM binding. Very little specific binding was observed with [(125)I]CGRP. In conclusion, the data presented here demonstrate that the mouse aorta displays AM receptors that mediate vasorelaxation.  相似文献   

4.
Adrenomedullin (AM) has two known receptors formed by the calcitonin receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3: we report the effects of the antagonist fragments of human AM and CGRP (AM22-52 and CGRP8-37) in inhibiting AM at human (h), rat (r) and mixed species CL/RAMP2 and CL/RAMP3 receptors transiently expressed in Cos 7 cells or endogenously expressed as rCL/rRAMP2 complexes by Rat 2 and L6 cells. AM22-52 (10 microM) antagonised AM at all CL/RAMP2 complexes (apparent pA2 values: 7.34+/-0.14 (hCL/hRAMP2), 7.28+/-0.06 (Rat 2), 7.00+/-0.05 (L6), 6.25+/-0.17 (rCL/hRAMP2)). CGRP8-37 (10 microM) resembled AM22-52 except on the rCL/hRAMP2 complex, where it did not antagonise AM (apparent pA2 values: 7.04+/-0.13 (hCL/hRAMP2), 6.72+/-0.06 (Rat2), 7.03+/-0.12 (L6)). On CL/RAMP3 receptors, 10 microM CGRP8-37 was an effective antagonist at all combinations (apparent pA2 values: 6.96+/-0.08 (hCL/hRAMP3), 6.18+/-0.18 (rCL/rRAMP3), 6.48+/-0.20 (rCL/hRAMP3)). However, 10 microM AM22-52 only antagonised AM at the hCL/hRAMP3 receptor (apparent pA2 6.73+/-0.14). BIBN4096BS (10 microM) did not antagonise AM at any of the receptors. Where investigated (all-rat and rat/human combinations), the agonist potency order on the CL/RAMP3 receptor was AM approximately betaCGRP>alphaCGRP. rRAMP3 showed three apparent polymorphisms, none of which altered its coding sequence. This study shows that on CL/RAMP complexes, AM22-52 has significant selectivity for the CL/RAMP2 combination over the CL/RAMP3 combination. On the mixed species receptor, CGRP8-37 showed the opposite selectivity. Thus, depending on the species, it is possible to discriminate pharmacologically between CL/RAMP2 and CL/RAMP3 AM receptors.  相似文献   

5.
1 The L6 myocyte cell line expresses high affinity receptors for calcitonin gene-related peptide (CGRP) which are coupled to activation of adenylyl cyclase. The biochemical pharmacology of these receptors has been examined by radioligand binding or adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation. 2 In intact cells at 37 degrees C, human and rat alpha- and beta-CGRP all activated adenylyl cyclase with EC50s of about 1.5 nM. A number of CGRP analogues containing up to five amino acid substitutions showed similar potencies. In membrane binding studies at 22 degrees C in 1 mM Mg2+, the above all bound to a single site with IC50s of 0.1-0.4 nM. 3 The fragment CGRP(8-37) acted as a competitive antagonist of CGRP stimulation of adenylyl cyclase with a calculated Kd of 5 nM. The Kd determined in membrane binding assays was lower (0.5 nM). 4 The N-terminal extended human alpha-CGRP analogue Tyro-CGRP activated adenylyl cyclase and inhibited [125I]-iodohistidyl-CGRP binding less potently than human alpha-CGRP (EC50 for cyclase = 12 nM, IC50 for binding = 4 nM). 5 The pharmacological profile of the L6 CGRP receptor suggests that it most closely resembles sites on skeletal muscle, cardiac myocytes and hepatocytes. The L6 cell line should be a stable homogeneous model system in which to study CGRP mechanisms and pharmacology.  相似文献   

6.

Background and Purpose

Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear.

Experimental Approach

Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants.

Key Results

An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide.

Conclusions and Implications

RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2.  相似文献   

7.
The present study reveals that cystein2,7 ethyl-amidealphaCGRP (Cys2,7EtalphaCGRP), an advertised calcitonin gene-related peptide 2 (CGRP2) receptor subtype-selective agonist, is also a potent agonist for the calcitonin gene-related peptide 1 (CGRP1) receptors natively expressed in the SK-N-MC human neuroblastoma cell line. Cys2,7EtalphaCGRP and alpha calcitonin gene-related peptide (alphaCGRP) promote cyclic AMP accumulation in intact SK-N-MC cells to the same extent with EC50 of 1.6+/-0.2 and 0.4+/-0.08 nM, respectively. The antagonist alpha calcitonin gene-related peptide-8-37 (alphaCGRP-(8-37)) produces a concentration-dependent rightward shift of the alphaCGRP- and Cys2,7EtalphaCGRP concentration-response curves with KB-values (71+/-33 and 47+/-21 nM, respectively). The competitive antagonism by alphaCGRP-(8-37) and the similar KB-values suggests that alphaCGRP and Cys2,7EtalphaCGRP stimulate the same receptor. In competition binding studies with [125I]-alphaCGRP on SK-N-MC cell membranes, Cys2,7EtalphaCGRP and alphaCGRP-(8-37) display high affinity for the majority of the binding sites with Ki-values of 0.030+/-0.013 and 0.60+/-0.013 nM, respectively. The present findings are at odds with the proclaimed utilization of Cys2,7EtalphaCGRP as a CGRP2 receptor-selective pharmacological tool. Differences between the agonistic profile of this ligand in this and other experimental systems might be species--or even cell type--dependent.  相似文献   

8.
1. The responses of the electrically stimulated guinea-pig ileum and vas deferens to human and rat calcitonin gene-related peptide (CGRP) and amylin were investigated. 2. The inhibition of contraction of the ileum produced by human alpha CGRP was antagonized by human alpha CGRP8-37 (apparent pA2 estimated at 7.15 +/- 0.23) > human alpha CGRP19-37 (apparent pA2 estimated as 6.67 +/- 0.33) > [Tyr0]-human alpha CGRP28-37. The amylin antagonist, AC187, was three fold less potent than CGRP8-37 in antagonizing human alpha CGRP. 3. Both human beta- and rat alpha CGRP inhibited contractions of the ileum, but this was less sensitive to inhibition by CGRP8-37 than the effect of human alpha CGRP. However, CGRP19-37 was twenty times more effective in inhibiting the response to rat alpha CGRP (apparent pA2 estimated as 8.0 +/- 0.1) compared to human alpha CGRP. 4. Rat amylin inhibited contractions in about 10% of ileal preparations; this effect was not antagonized by any CGRP fragment. Human amylin had no action on this preparation. 5. Both human and rat alpha CGRP inhibited electrically stimulated contractions of the vas deferens, which were not antagonized by 3 microM CGRP8-37 or 10 microM AC187. 6. Rat amylin inhibited the stimulated contractions of the vas deferens (EC50 = 77 +/- 9 nM); human amylin was less potent (EC50 = 213 +/- 22 nM). The response to rat amylin was antagonized by 10 microM CGRP8-37 (EC50 = 242 +/- 25 nM) and 10 microM AC187 (EC50 = 610 +/- 22 nM). 7. It is concluded that human alpha CGRP relaxes the guinea-pig ileum via CGRP1-like receptors, but that human beta CGRP and rat alpha CGRP may use additional receptors. These are distinct CGRP2-like and amylin receptors on guinea-pig vas deferens.  相似文献   

9.
This study was designed to characterize rat glomerular thromboxane A2 (TxA2) receptors and compare them to rat platelet TxA2 receptors. The radioligand binding characteristics of the receptors were characterized using [125I][1S-(1 alpha,2 beta(5Z),3 alpha-(1E,3R*),4 alpha]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxabicyclo- [2.2.1]heptan-2yl]-5-heptenoic acid ([125I]BOP), a TxA2 agonist. Equilibrium binding with [125I]BOP, as well as competitive binding assays between [125I]BOP and 13-azapinane TxA2 receptors antagonists, were performed in rat glomerular membranes (RGM) and washed rat platelets (WRP). [125I]BOP identified a single class of TxA2 receptor sites in glomerular membranes with a Kd of 318 +/- 55 pM and a Bmax of 260 +/- 62 fmol/mg protein (n = 14). [125I]BOP was displaced by the TxA2 agonist 15S-hydroxy-11 alpha,9 alpha(epoxymethano)-prosta-5Z,13E-dienoic acid (U-46,619) (IC50 = 22 +/- 6 nM, n = 3), the antagonist SQ-29,548 (IC50 = 41 +/- 7 nM, n = 4), and stereoselectively by the antagonists (-)-9-chlorobenzyl-6-fluoro-1,2,3,4-tetrahydrocarbazol-1-yl acetic acid (L-657,925) (IC50 = 0.27 +/- 0.04 nM, n = 3) and (+)-9-chlorobenzyl-6-fluoro-1,2,3,4-tetrahydrocarbazol-1-yl acetic acid (L-657,926) (IC50 = 124 +/- 0 nM, n = 2). The ability of six 13-azapinane TxA2 antagonists to compete with [125I]BOP was evaluated. The rank orders for the 13-azapinanes showed no significant correlation between RGM and WRP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Receptor activity-modifying proteins (RAMPs) are single-transmembrane proteins that transport the calcitonin receptor-like receptor (CRLR) to the cell surface. RAMP 1-transported CRLR is a calcitonin gene-related peptide (CGRP) receptor. RAMP 2- or RAMP 3-transported CRLR is an adrenomedullin receptor. The role of RAMPs beyond their interaction with CRLR, a class II G protein-coupled receptor, is unclear. In this study, we have examined the role of RAMPs in generating amylin receptor phenotypes from the calcitonin (CT) receptor gene product. Cotransfection of RAMP 1 or RAMP 3 with the human CT receptor lacking the 16-amino acid insert in intracellular domain 1 (hCTRI1-) into COS-7 cells induced specific 125I-labeled rat amylin binding. RAMP 2 or vector cotransfection did not cause significant increases in specific amylin binding. Competition-binding characterization of the RAMP-induced amylin receptors revealed two distinct phenotypes. The RAMP 1-derived amylin receptor demonstrated the highest affinity for salmon CT (IC50, 3.01 +/- 1.44 x 10(-10) M), a high to moderate affinity for rat amylin (IC50, 7.86 +/- 4.49 x 10(-9) M) and human CGRPalpha (IC50, 2.09 +/- 1.63 x 10(-8) M), and a low affinity for human CT (IC50, 4.47 +/- 0.78 x 10(-7) M). In contrast, whereas affinities for amylin and the CTs were similar for the RAMP 3-derived receptor, the efficacy of human CGRPalpha was markedly reduced (IC50, 1.12 +/- 0.45 x 10(-7) M; P <.05 versus RAMP 1). Functional cyclic AMP responses in COS-7 cells cotransfected with individual RAMPs and hCTRI1- were reflective of the phenotypes seen in competition for amylin binding. Confocal microscopic localization of c-myc-tagged RAMP 1 indicated that, when transfected alone, RAMP 1 almost exclusively was located intracellularly. Cotransfection with calcitonin receptor (CTR)I1- induced cell surface expression of RAMP 1. The results of experiments cross-linking 125I-labeled amylin to RAMP 1/hCTR-transfected cells with bis succidimidyl suberate were suggestive of a cell-surface association of RAMP 1 and the receptors. Our data suggest that in the CT family of receptors, and potentially in other class II G protein-coupled receptors, the cellular phenotype is likely to be dynamic in regard to the level and combination of both the receptor and the RAMP proteins.  相似文献   

11.

BACKGROUND AND PURPOSE

The extracellular loops (ECLs) in Family A GPCRs are important for ligand binding and receptor activation, but little is known about the function of Family B GPCR ECLs, especially ECL3. Calcitonin receptor-like receptor (CLR), a Family B GPCR, functions as a calcitonin gene-related peptide (CGRP) and an adrenomedullin (AM) receptor in association with three receptor activity-modifying proteins (RAMPs). Here, we examined the function of the ECL3 of human CLR within the CGRP and AM receptors.

EXPERIMENTAL APPROACH

A CLR ECL3 chimera, in which the ECL3 of CLR was substituted with that of VPAC2 (a Family B GPCR that is unable to interact with RAMPs), and CLR ECL3 point mutants were constructed and transiently transfected into HEK-293 cells along with each RAMP. Cell-surface expression of each receptor complex was then measured by flow cytometry; [125I]-CGRP and [125I]-AM binding and intracellular cAMP accumulation were also measured.

KEY RESULTS

Co-expression of the CLR ECL3 chimera with RAMP2 or RAMP3 led to significant reductions in the induction of cAMP signalling by AM, but CGRP signalling was barely affected, despite normal cell-surface expression of the receptors and normal [125I]-AM binding. The chimera had significantly decreased AM, but not CGRP, responses in the presence of RAMP1. Not all CLR ECL3 mutants supported these findings.

CONCLUSIONS AND IMPLICATIONS

The human CLR ECL3 is crucial for AM-induced cAMP responses via three CLR/RAMP heterodimers, and activation of these heterodimers probably relies on AM-induced conformational changes. This study provides a clue to the molecular basis of the activation of RAMP-based Family B GPCRs.

LINKED ARTICLES

This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1  相似文献   

12.
1. In the present study, we examined the expression of the CGRP receptor-activity-modifying proteins (RAMP1, RAMP2 and RAMP3) and receptor component protein (RCP) in human brain astrocytes (AST), cerebromicrovascular endothelial (EC) and smooth muscle (SMC) cells in culture. Further, we pharmacologically characterized CGRP receptors in these cells by assessing the potency of the CGRP receptor antagonists h-alpha CGRP(8-37) and the new non-peptide compound BIBN4096BS to block the production of cAMP elicited by CGRP(1) and CGRP(2) receptor agonists. 2. AST, EC and SMC all expressed mRNAs for RAMP1, RAMP2 and RCP. In contrast, message for RAMP3 was detected in AST, but not in SMC and in only one out of four preparations of EC. 3. h-alpha CGRP, h-beta CGRP and [Cys (Et)(2,7)]-h-alpha CGRP exerted concentration-dependent production of cAMP in all cultures, with a maximal effect at 25-50 nM (20-60-fold increase from basal levels). In contrast, 50 nM [Cys (Acm)(2,7)]-h-alpha CGRP only induced a weak stimulatory effect on cAMP formation, especially in SMC and AST (1.5- and 5-fold increase above baseline, respectively). 4. h-alpha CGRP(8-37) and BIBN4096BS concentration-dependently inhibited cAMP formation evoked by CGRP receptor agonists. Depending on the agonists used, h-alpha CGRP(8-37) distinguished two different CGRP receptors for which it exhibited low (pIC(50)< or =6.4) and high (pIC(50) approximately 7.3) affinity, respectively. BIBN4096BS was much more potent (>2.5 orders of magnitude) than h-alpha CGRP(8-37). Further, BIBN4096BS was able to discriminate three different CGRP receptor sites for which it exhibited low (pIC(50) approximately 9.3-9.9), intermediate (pIC(50) approximately 10.9), and a very high (pIC(50) approximately 13.7) affinity, respectively. Together, these results suggest the presence of CGRP(1) and/or CGRP(2) receptors in human brain AST, EC and SMC, and of an additional population of CGRP receptors in AST, possibly associated to the combined expression of RAMP3 and RCP in these cells, for which BIBN4096BS exhibits an exquisitely high affinity.  相似文献   

13.
The binding of [125I]sarafotoxin 6b (SRT 6b) and [125I]endothelin-1 (ET-1) to endothelin (ET) receptors of neuronal membranes prepared, from regions of the brain and spinal cord of 8 week-old, spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. Spontaneously hypertensive rats had significantly higher blood pressure as compared to WKY rats. Heart rate was similar in SHR and WKY rats. [125I]SRT 6b and [125I]ET-1 bound to the membranes of the cerebral cortex, hypothalamus, ventrolateral medulla, dorsomedial medulla and spinal cord at a single, high affinity site. The Kd and Bmax values of the binding of [125I]SRT 6b were found to be similar to binding of [125I]ET-1 in all the regions. The concentration-dependent inhibition of binding of [125I]ET-1 by unlabeled ET-1, in spinal cord membranes showed an IC50 value of 2.66 +/- 0.59 nM and a Ki value of 2.35 +/- 0.52 nM in WKY rats and an IC50 value of 2.82 +/- 0.76 nM and a Ki value of 2.43 +/- 0.70 nM in SHR rats. On the other hand, the concentration-dependent inhibition of the binding of [125I]SRT 6b by unlabeled ET-1, in spinal cord membranes showed an IC50 value of 10.31 +/- 1.82 pM and a Ki value of 8.44 +/- 1.41 pM in WKY rats, while SHR rats showed an IC50 value of 10.28 +/- 1.94 pM and a Ki value of 8.89 +/- 2.00 pM. The binding of [125I]SRT 6b and [125I]ET-1 in the cerebral cortex, dorsomedial medulla and spinal cord membranes was found to be similar in SHR and WKY rats.(ABSTRACT TRUNCATED AT 250 WORDS) [corrected]  相似文献   

14.
The binding of [125I]9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxypheny l)-13,14- dihydro-13-aza-15 alpha beta-omega-tetranor-TXA2 [( 125I]PTA-OH), a thromboxane A2/prostaglandin H2 receptor antagonist, to washed guinea-pig platelets was studied. [125I]PTA-OH bound to guinea-pig platelets in a saturable and displaceable manner. The Kd for [125I]PTA-OH was 14.5 +/- 2 nM (n = 4) and the Bmax was 32 +/- 7 fmol/10(7) platelets or 1,927 +/- 422 binding sites/platelet. The IC50 value for a series of 13-azapinane TXA2 analogs to antagonize the TXA2/PGH2 mimetic U46619-induced platelet aggregation and displace [125I]PTA-OH from its binding site was determined. The IC50 values for the series of five antagonists were highly correlated (r = 0.99) in the binding assays and aggregation studies. The ability of a series of five agonists to displace [125I]PTA-OH from its binding site was compared to their ability to induce platelet aggregation. All the agonists completely displaced the ligand from its binding site but their rank order did not correlate well with their ability to induce aggregation (r = 0.37). Collectively, the data are consistent with the notion that [125I]PTA-OH binds to a putative TXA2/PGH2 receptor in guinea-pig platelets.  相似文献   

15.
1. The ability of the CGRP antagonist BIBN4096BS to antagonize CGRP and adrenomedullin has been investigated on cell lines endogenously expressing receptors of known composition. 2. On human SK-N-MC cells (expressing human calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1)), BIBN4096BS had a pA(2) of 9.95 although the slope of the Schild plot (1.37 +/- 0.16) was significantly greater than 1. 3. On rat L6 cells (expressing rat CRLR and RAMP1), BIBN4096BS had a pA(2) of 9.25 and a Schild slope of 0.89 +/- 0.05, significantly less than 1. 4. On human Colony (Col) 29 cells, CGRP(8-37) had a significantly lower pA(2) than on SK-N-MC cells (7.34 +/- 0.19 (n = 7) compared to 8.35 +/- 0.18, (n = 6)). BIBN4096BS had a pA(2) of 9.98 and a Schild plot slope of 0.86 +/- 0.19 that was not significantly different from 1. At concentrations in excess of 3 nM, it was less potent on Col 29 cells than on SK-N-MC cells. 5. On Rat 2 cells, expressing rat CRLR and RAMP2, BIBN4096BS was unable to antagonize adrenomedullin at concentrations up to 10 microM. CGRP(8-37) had a pA(2) of 6.72 against adrenomedullin. 6. BIBN4096BS shows selectivity for the human CRLR/RAMP1 combination compared to the rat counterpart. It can discriminate between the CRLR/RAMP1 receptor expressed on SK-N-MC cells and the CGRP-responsive receptor expressed by the Col 29 cells used in this study. Its slow kinetics may explain its apparent 'non-competitive' behaviour. At concentrations of up to 10 micro M, it has no antagonist actions at the adrenomedullin, CRLR/RAMP2 receptor, unlike CGRP(8-37).  相似文献   

16.
17.
1-Piperidinecarboxamide, N-[2-[[5-amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) (BIBN4096BS), a calcitonin gene-related peptide (CGRP) receptor antagonist, can alleviate the symptoms of migraine and is highly selective for CGRP over adrenomedullin (AM) receptors. These receptors are heterodimers of the calcitonin receptor-like receptor (CL) and receptor activity modifying proteins (RAMPs), with the pharmacological properties determined by the RAMP subunit. BIBN4096BS-sensitive CGRP(1) receptors are CL/RAMP1, whereas BIBN4096BS-insensitive AM receptors are CL/RAMP2 or CL/RAMP3 (AM(1) and AM(2), respectively), implicating RAMP1 in conferring BIB-N4096BS sensitivity. Because calcitonin receptors [CT((a))] also interact with RAMP1 [AMY(1(a)) receptors], BIBN4096BS could also have affinity for these receptors. To test this, receptors were transfected into COS-7 cells and agonist-stimulated cAMP levels measured in the presence and absence of antagonists. We found that AMY(1(a)) receptors were approximately 150-fold less sensitive to BIBN4096BS antagonism than CGRP(1) receptors. In contrast, AMY(3(a)) [CT((a))/RAMP3] or AM(2) receptors were not sensitive to BIBN4096BS antagonism. We investigated Trp74 in RAMP1, a residue implicated in the species selectivity of BIBN4096BS. BIBN4096BS affinity was reduced at AMY(1(a)) and CGRP(1) receptors when this residue was mutated to lysine or alanine. The equivalent residue in RAMP3, Glu74, when mutated to tryptophan (E74W), induced BIBN4096BS sensitivity at AM(2) and AMY(3(a)) receptors. It is interesting that a selective reduction in AM potency was observed at E74W AM(2) receptors, implicating this residue in AM interactions with this receptor. These data support the importance of Trp74 in RAMP1 in the interaction of BIBN4096BS with CGRP(1) and AMY(1(a)) receptors and identified Glu74 in RAMP3 as the first amino acid in RAMP important for agonist interactions with calcitonin-family receptors.  相似文献   

18.
1. The effect of the calcitonin gene-related peptide (CGRP) antagonist CGRP8-37 on responses to CGRP and other mediators was investigated in rabbit dorsal skin. 2. Blood flow changes at intradermally-injected sites were measured by a multiple site 133xenon clearance technique. CGRP8-37 had little effect on blood flow at doses up to 0.3 nmol/site, when injected alone, although a significant increase in blood flow was observed at the highest dose tested (1 nmol/site). 3. CGRP8-37 dose-dependently inhibited the increased blood flow induced by human alpha CGRP and human beta CGRP, but had no effect on equivalent vasodilator responses induced by vasoactive intestinal peptide (VIP) and prostaglandin E1 (PGE1). CGRP8-37 showed a preferential ability to inhibit alpha CGRP (IC50 0.04 nmol), when compared with beta CGRP (IC50 greater than or equal to 0.3 nmol). 4. Capsaicin, which selectively activates sensory nerves, caused a dose-dependent increase in blood flow when injected intradermally into rabbit skin. The effects of capsaicin (0.01-0.1 mumol/site) were inhibited by CGRP8-37 (0.3 nmol/site), with a partial but significant attenuation of blood flow induced by the highest dose of capsaicin. 5. Oedema formation, induced by intradermal histamine injection (3 nmol/site), was measured in rabbit skin by the local accumulation of intravenously-injected 125I-labelled albumin. Vasodilator doses of CGRP, PGE1 and capsaicin potentiated, in a synergistic manner, oedema formation induced by histamine. GRP8-37 totally inhibited the potentiating effect of CGRP, partially inhibited the synergistic effect of capsaicin, but did not affect PGE1-induced responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The binding properties of p-[125I]iodoclonidine [( 125I]PIC) to human platelet membranes and the functional characteristics of PIC are reported. [125I]PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific [125I]PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. [125I]PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist [3H] bromoxidine (UK14,304), which represented approximately 40% of the sites bound by the antagonist [3H]yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of [125I]PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for [125I]PIC binding was stereoselective. Competition for [3H]bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for [3H]yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. [125I]PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM. [125I]PIC should prove useful in binding assays involving tissues with a low receptor density or in small tissue samples and in studies of cloned and expressed alpha 2-AR.  相似文献   

20.
WHAT MAKES A CGRP2 RECEPTOR?   总被引:1,自引:0,他引:1  
1. Heterogeneity in the receptors for the neuropeptide calcitonin gene-related peptide (CGRP) has been apparent for nearly 20 years. This is most clearly manifested in the observation of CGRP(8-37)-sensitive and -insensitive populations of CGRP-activated receptors. The pA(2) values for CGRP(8-37) in excess of 7 are widely considered to be the result of antagonism of CGRP(1) receptors, whereas those below 7 are believed to be the consequence of antagonism of a second population of receptors, namely CGRP(2) receptors. 2. However, a multitude of pA(2) values exist for CGRP(8-37), spanning several log units, and as such no obvious clusters of values are apparent. Understanding the molecular nature of the receptors that underlie this phenomenon is likely to aid the development of selective pharmacological tools to progress our understanding of the physiology of CGRP and related peptides. Because there is active development of CGRP agonists and antagonists as therapeutics, such information would also further this pursuit. 3. The CGRP(1) receptor is pharmacologically and molecularly well defined as a heterodimer of the calcitonin receptor-like receptor (CL) and receptor activity modifying protein (RAMP) 1. The CL/RAMP1 complex is highly sensitive to CGRP(8-37). Conversely, the constituents of the CGRP(2) receptor have not been identified. In fact, there is little evidence for a distinct molecular entity that represents the CGRP(2) receptor. 4. Recent pharmacological characterization of receptors related to CGRP(1) has revealed that some of these receptors may explain CGRP(2) receptor pharmacology. Specifically, AMY(1(a)) (calcitonin receptor/RAMP1) and AM(2) (CL/RAMP3) receptors can be activated by CGRP but are relatively insensitive to CGRP(8-37). 5. This, along with other supporting data, suggests that the 'CGRP(2) receptor' that has been extensively reported in the literature may, in fact, be an amalgamation of contributions from a variety of CGRP-activated receptors. The use of appropriate combinations of agonists and antagonists, along with receptor expression studies, could allow such receptors to be separated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号