首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
1. Eight metabolites of triazolam have been identified, namely, triazolam, dichlorotriazolobenzophenone (DCTB), 1'-hydroxytriazolam, dichloro-alpha-hydroxytriazolobenzophenone (1'-hydroxy-DCTB), Ar-hydroxytriazolam, 4-hydroxytriazolam, Ar-1'-dihydroxytriazolam and 1',4-dihydroxytriazolam. 2. Major metabolites found in the urine were 1',4-dihydroxytriazolam, 1'-hydroxy-DCTB and DCTB in rats; 1'-hydroxytriazolam, 4-hydroxytriazolam and conjugated 1'-hydroxytriazolam in dogs. 3. Major metabolites found in the faeces were 4-hydroxytriazolam in rats; 1'-hydroxytriazolam and 4-hydroxytriazolam in dogs. 4. Conjugated 4-hydroxytriazolam was the major metabolite in both the original and reabsorbed bile of rats. 5. Major metabolites in free form in the plasma were 4-hydroxytriazolam and 1'-hydroxytriazolam in rats; triazolam and 1'-hydroxytriazolam in dogs. 6. The major metabolite in the brain was triazolam, but those in the liver were 4-hydroxytriazolam and triazolam, and in the kidneys were 4-hydroxytriazolam and 1',4-dihydroxytriazolam. 7. Major metabolites in the urine, faeces, plasma and brain after 7-, 14- or 21-day repeated dosing in rats were not much different in type and ratio from those after single dosing. 8. Unchanged triazolam and 1'-hydroxytriazolam were the major metabolites in the plasma, placenta, foetus and amniotic fluid in pregnant rats. 9. There was no change in hepatic aniline hydroxylase and aminopyrine-N-demethylase activity from controls in rats given oral dose of [14C]triazolam for 14 days.  相似文献   

2.
Abstract

1. The absorption, distribution and excretion of d-limonene were investigated in rats using the 14C-labelled compound.

2. The highest concentration of radioactivity in blood was obtained 2 h after oral administration of [14C]d-limonene and most occurred in the serum fraction. Radioactivity in the tissues reached maximum 1 or 2 h after administration. Radioactivity in liver, kidney and blood was higher than in other tissues, but was negligible 48 h after administration. An autoradiographic study confirmed these findings of tissue distribution.

3. About 60% of administered radioactivity was recovered from urine, 5% from faeces and 2% from expired CO2 within 48 h. In bile duct cannulated rats, about 25% of the dose was excreted in bile within 24 h.  相似文献   

3.
1. The absorption, tissue distrigution, elimination and biotransformation of the anti-tussive agent Azipranone labelled with 14C have been investigated after oral dosing to rat, dog, baboon and man and parenteral administration to rat and baboon. 2. Levels of radioactivity in plasma were maximal within 20 min of dosing in the rat and after 1-2 h in the remaining species. The concn. declined thereafter with a half-life estimated at 1, 3-4 and 18-24 h for rat, dog, and baboon and man respectively. 3. Three human volunteers excreted 53, 62 and 70% of the radioactivity in the urine in 96 h while the remaining species excreted 50-70% of the dose in the faeces in the same period. 4. Radioactivity was rapidly and extensively eliminated in the bile of both rat and baboon after administration of [14C]Azipranone. 5. The 24 h urine samples from all species contained ten major and a similar number of minor radioactive components. 6. In hepatic microsomal preparations, biotransformations of Azipranone are catalysed by enzymes requiring both NADPH2 and cytochrome-P450.  相似文献   

4.
1. The absorption, distribution and excretion of nilvadipine have been studied in male rats and dogs after an i.v. (1 mg/kg for rats, 0.1 mg/kg for dogs) and oral dose (10 mg/kg for rats, 1 mg/kg for dogs) of 14C-nilvadipine.

2. Nilvadipine was rapidly and almost completely absorbed after oral dosing in both species; oral bioavailability was 4.3% in rats and 37.0% in dogs due to extensive first-pass metabolism. The ratios of unchanged drug to radioactivity in plasma after oral dosing were 0.4–3.5% in rats and 10.4–22.6% in dogs. The half-lives of radioactivity in plasma after i.v. and oral dosing were similar, i.e. 8–10h in rats, estimated from 2 to 24 h after dosing and 1.5 d in dogs, estimated from 1 to 3 d. In contrast, plasma concentrations of unchanged drug after i.v. dosing declined biexponentially with terminal phase half-lives of 1.2 h in rats and 4.4 h in dogs.

3. After i.v. dosing to rats, radioactivity was rapidly distributed to various tissues, and maintained in high concentrations in the liver and kidneys. In contrast, after oral dosing to rats, radioactivity was distributed mainly in liver and kidneys.

4. With both routes of dosing, urinary excretion of radioactivity was 21–24% dose in rats and 56–61% in dogs, mainly in 24 h. After i.v. dosing to bile duct-cannulated rats, 75% of the radioactive dose was excreted in the bile. Only traces of unchanged drug were excreted in urine and bile.  相似文献   

5.
The absorption, distribution and excretion of the red azo dye carmoisine (Ext. D & C No. 10) was studied in male rats. [14C]Carmoisine was administered in a dose of 200 mg/kg (25 microCi) by gavage or in the same dose (200 mg/kg; 3 microCi) by intravenous injection, and radioactivity was measured in blood, tissue, faeces and urine at different times after dosing. After oral administration of the dye, no radioactivity was detected in the brain, adipose tissue, muscle, testes, spleen or lung, and recovery of the administered activity in faeces and urine was almost complete by 32 hr. The radioactivity profile of the blood indicated rapid but poor absorption of [14C]carmoisine, a maximum radioactivity content corresponding to 0.01% of the dose per ml of blood being reached within 10 min. The decay curve for 14C radioactivity in the blood after iv injection of [14C]carmoisine indicated rapid distribution to the tissues and could be described in terms of a two-compartment mathematical model. The highest levels of radioactivity occurred in the gastro-intestinal tract and liver after the injection but after 24 hr no radioactivity was detectable in these or other tissues. All the radioactivity was recovered in the faeces and urine in the 24 hr following iv injection, the 79% of the dose present in faeces indicating active excretion of the dye and its metabolites in the bile and poor reabsorption from the intestine. The bioavailability of [14C]carmoisine, calculated from the blood-radioactivity curves after oral and iv administration, was less than 10%.  相似文献   

6.
The fate of a novel imidazo-benzodiazepine (I) was studied in male rats and rabbits using 14C and 3H-labelled I. In both species the compound was rapidly and widely absorbed after an oral dose of 5 mg/kg to give peak tissue and plasma levels after 1 hour in the rat and 4 hours in the rabbit. The highest concentrations of radioactivity were present in the liver (rat) and liver, kidney and subcutaneous fat (rabbit). Plasma levels of radioactivity fell to 3% of the maximum value in 24 hours in the rat but 48 hours were required for a similar fall in the rabbit. The main route of elimination of radioactivity was via the bile followed by excretion in the faeces. For the rat the rate of biliary elimination was 16.6% of the administered dose/hour; for the rabbit this rate was 5.6%/hour. Recovery of administered radioactivity during 0-24 hours for urine and faeces respectively was 4.8% and 69% for the rat and 23.2% and 10.9% for the rabbit. Up to 97% of the radioactivity administered to rats could be recovered in the excreta in the 7 days following dosing. Up to 90% of the dose administered to rabbits appeared in the excreta during 10 days. No unchanged (I) could be detected in the urine or bile. The radioactive metabolites were polar products, some of which were in the form of glucuronide conjugates.  相似文献   

7.
Absorption, distribution and excretion of [3H]-enprostil ((+-)-11a,15a-dihydroxy-9-oxo-16-phenoxy-17,18,19,20-tetranorpr osta -4,5,13(t)-trienoic acid methyl ester, TA-84135), a new anti-ulcer prostaglandin, were studied in mice, rats and rabbits. Radioactivity associated with enprostil was rapidly absorbed from the gastrointestinal tract with Tmax values of 15 or 30 min. Absorption was also efficient inasmuch as approximately 80% of an oral dose was recovered in bile and urine in 24 h in bile duct-cannulated rats. Experiments in pylorus-ligated, bile duct-cannulated rats demonstrated that enprostil was mainly absorbed from the intestine, rather than from the stomach. In mice given oral doses of 2, 8 and 32 micrograms/kg, Cmax and AUC values of enprostil radioequivalents increased proportionately to the increase in dose, indicating linear kinetics over this dose range. Distribution of enprostil-associated radioactivity was investigated in rats by quantitating tritium in various tissues after the oral administration of [3H]-enprostil. Radioactivity in tissues was highest at 15 or 30 min after dosing. Highest levels of radioactivity were found in the stomach and intestines, the organs which came into direct contact with the dose, and the liver and kidney, the organs involved in excretion of enprostil. The rate of elimination of enprostil-associated radioactivity from all tissues and from plasma was similar. Enprostil-associated radioactivity did not accumulate in any tissue. Radioactivity was found in fetuses following oral administration of [3H]-enprostil to rats on the 12th or 19th day of gestation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Metabolism of 2-amino-3-methylimidazo[4,5-f]quinoline in the male rat   总被引:1,自引:0,他引:1  
The metabolism of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was studied in the male rat using the radiochemical labels 14C and 3H at positions 2 and 5 of the molecule, respectively. Adult male Fischer 344 rats were administered [2-14C]IQ or [5-3H]IQ by oral gavage at dose levels of 20 or 40 mg/kg body weight. Rats were also given [2-14C]IQ in the diet at a dose level of 300 ppm for 2 days and after administration of unlabelled IQ (300 ppm) in the diet for approximately 6.5 wk for an additional 2 days. In the initial 48 hr following oral administration of 20 or 40 mg [2-14C]IQ/kg body weight, about 40-50% radioactivity was recovered in the urine, and about 30-38% radioactivity was recovered in the faeces. In the initial 72 hr following consumption of [2-14C]IQ (300 ppm) in the diet about 26% radioactivity was recovered in the urine and about 61% radioactivity was recovered in the faeces. Following cannulation of the bile ducts, rats administered a single dose of [2-14C]IQ (40 mg/kg body weight) by oral gavage excreted about 15% of the administered dose in the bile over a period of 2 days. Urine from rats given [2-14C]IQ contained three main polar metabolites that included a glucuronide, a sulphate ester and IQ sulphamate, and a number of less polar metabolites that included IQ, 2-acetylamino-3-methylimidazo[4,5-f]quinoline, 2-aminoimidazo[4,5-f]quinoline and 2-amino-3,6-dihydro-3-methyl-7H-imidazo[4,5-f]quinoline-7-one (7-OH-IQ). Administration of [2-14C]IQ by oral gavage or in the diet gave the same metabolites, but in different amounts. In the faeces of rats given [2-14C] by oral gavage, IQ-sulphamate was the major metabolite in the polar fraction. Non-polar metabolites similar to those found in the urine were also present, but in different amounts. A major, non-polar faecal metabolite, 7-OH-IQ was probably formed as a result of the activity of the intestinal bacterial flora. In rats given a single gavage dose of [2-14C]IQ, excretion of metabolites was higher in the urine and lower in the faeces compared with that in animals fed [2-14C]IQ in the diet. One polar metabolite present in the urine, IQ-sulphamate (39%), was found at considerably higher levels in rats dosed orally with IQ compared with those fed IQ (less than 6%). Thus, IQ is extensively metabolized to give a number of polar and non-polar metabolites, the amounts of which depend, in part, on the mode of dosing.  相似文献   

9.
1. The disposition of [14C]-labelled benazepril HCl, an ACE-inhibitor, was studied in four normal adult volunteers after a single oral dose of 20 mg and after repeated doses of 20 mg once daily for 5 days. Radioactivity was measured in plasma, urine and faeces. The prodrug ester benazepril and the pharmacologically active metabolite benazeprilat were determined quantitatively in plasma and urine by a g.c.-m.s. method. The pattern of metabolites in urine was analysed semiquantitatively by h.p.l.c.-radiometry. 2. After a single oral dose at least 37% was absorbed, as indicated by urinary recovery. The peak plasma concentration of benazepril (0.58 +/- 0.13 nmol/g (SD] was observed at 0.5h after dose, indicating rapid absorption. Peak concentrations of radioactivity (1.88 +/- 0.48 nmol/g) and of active benazeprilat (0.84 +/- 0.25 nmol/g) were observed at 1 h after dose, demonstrating rapid bioactivation. 3. The area under the plasma curve (AUC0-96 h) of total radioactivity amounted to 9.7 +/- 1.1 (nmol/g)h, 5% of which was accounted for by benazepril and about 50% by benazeprilat. 4. Over 9 days 96.8 +/- 0.5% of the dose was excreted in urine and faeces. Urinary excretion accounted for 37.0 +/- 6.0% of the dose, 80% of which was recovered in the first 8 h after dosing. 5. In urine, only 0.4% of the dose (1% of the radioactivity) was excreted as unchanged benazepril, indicating that the compound was extensively metabolized. Benazeprilat accounted for 17% of the dose (about half of the radioactivity; 0-96 h). Glucuronide conjugates of benazepril and benazeprilat constituting approximately 11% and 22% of the radioactivity (about 4% and 8% of the dose; 0-48 h) were tentatively identified. 6. Repeated oral treatment with benazepril HCl did not influence the pharmacologically relevant kinetics and disposition parameters.  相似文献   

10.
The metabolism, excretion and disposition of melamine were determined after administration of a single oral dose of 0.025 mCi (0.38 mg) [14C]melamine to adult male Fischer 344 rats. Within the first 24 hr, 90% of the administered dose was excreted in the urine. Negligible radioactivity appeared in breath and faeces. There was little difference in blood, liver or plasma concentrations of 14C, suggesting that melamine distributes in body water. The only organs showing radioactivity levels much higher than plasma were the kidney and bladder. The bladder level was by far the highest, a finding probably due either to back diffusion from urine or to contamination of bladder tissue with urine. Virtually no residual radioactivity was observed in tissues examined at 24 hr or later. The elimination-phase half-life calculated from plasma data, 2.7 hr, was in good agreement with the urinary-excretion half-life of 3.0 hr. The renal clearance of melamine was 2.5 ml/min. Radioactivity in plasma or urine co-chromatographed with that of the dosing solution, indicating that melamine is not metabolized in the male Fischer 344 rat.  相似文献   

11.
1. The metabolism and disposition of telmesteine, a muco-active agent, have been investigated following single oral or intravenous administration of (14)C-telmesteine in the Sprague-Dawley rat. 2. (14)C-telmesteine was rapidly absorbed after oral dosing (20 and 50 mg kg(-1)) with an oral bioavailability of >90% both in male and female rats. The C(max) and area under the curve of the radioactivity in plasma increased proportionally to the administered dose and those values in female rats were 30% higher than in male rats. 3. Telmesteine was distributed over all organs except for brain and the tissue/plasma ratio of the radioactivity 30 min after dosing was relatively low with a range of 0.1-0.8 except for excretory organs. 4. Excretion of the radioactivity was 86% of the dose in the urine and 0.6% in the faeces up to 7 days after oral administration. Biliary excretion of the radioactivity in bile duct-cannulated rats was about 3% for the first 24 h. The unchanged compound mainly accounted for the radioactivity in the urine and plasma. 5. Telmesteine was hardly metabolized in microsomal incubations. A glucuronide conjugate was detected in the urine and bile, but the amount of glucuronide was less than 6% of excreted radioactivity.  相似文献   

12.
Percutaneous absorption of [l4C]methacrylamide was determined in rabbits, rats and mice. Radioactivity in blood of rabbits increased rapidly after IV injection, after topical application with a cloth and after direct topical application of a 15 or 5% test solution, suggesting high permeability of the skin for methacrylamide. Radioactivity then began to decrease exponentially within 1 h. Tissue radioactivity 24 h after IV dosing was high in blood, liver and serum, and low in brain, nerve and muscle. The radioactivity was more uniformly distributed with the exception of liver, after application with a cloth and after direct contact than after IV dosing. When the application site was washed with water after direct application, decline of radioactivity in blood was accelerated slightly and a decrease in radioactivity in some tissues was found, although the difference between non-wash and wash groups was not significant in either the declining curve or the tissue radioactivity, with the exception of serum for the latter. Between 25 and 60% of the radioactivity found in tissues was protein-bound after 24 h. Recovery of radioactivity in urine was highest after IV administration, intermediate after direct contact, and lowest after cloth application. Radioactivity in expired air and bile was small. Both radioactivity in tissues and its recovery in urine in rats, and tissue radioactivity in mice, were lower than in rabbits, when adjusted for dose per unit body weight, suggesting lower skin permeability for methacrylamide in the former species. In rats, radioactivity in some tissues was significantly decreased after washing. An autoradiographic study on rabbit skin indicated that the test material penetrated the skin largely through hair follicles.  相似文献   

13.
The absorption and kinetics of excretion of [14C]2-amino-3,8-dimethylimidazo[4,5-f]-quinoxaline (MeIQx) was studied in male Sprague-Dawley rats. Within 72 hr of an oral dose of [14C]MeIQx (20 mg/kg) 33-56% of the radioactivity was excreted in the urine and 37-75% of the radioactivity in the faeces, which accounted for greater than 99% of the dose. Only low levels of radioactivity remained in the body. Radioactivity, when expressed per gram of tissue, was highest in the liver and kidney with smaller amounts detected in the lung and both the small and large intestines. Between 25 and 50% of a dose of MeIQx was recovered in the bile within 24 hr. Biliary metabolites were excreted over a long period of time with one radioactive fraction rapidly excreted at 2-3 hr and a second fraction excreted at 10-12 hr. The metabolites present in bile were assessed for genotoxicity using Salmonella typhimurium TA98 with or without hepatic S-9 activation and were found to be present as detoxified products. The residual mutagenic activity present in bile was attributed primarily to unmetabolized MeIQx.  相似文献   

14.
The distribution and excretion of radioactivity from [14C]citrinin (3 mg/kg, i.v) was determined in male rats. At 0.5 h after administration maximum values of 14.7% and 5.6% of total radioactivity were observed in the liver and kidneys, respectively, and by 6 h decreased to 7.5% in the liver and 4.7% in the kidney. Plasma concentration of 14C decreased from 9.2% at 0.5 h to 4.7% at 6.0 h. 2 plasma elimination rates were observed, with half-lives of 2.6 and 14.9 h, respectively. Approximately 80% of the administered 14C activity was excreted in feces and urine by 24 h after administration. A second group of rats was pretreated with 50 mg/kg of citrinin, i.p., 4 days prior to administration of 3 mg/kg [14C]citrinin, i.v. 30% of the pretreated animals died and the remaining animals were divided into 2 groups on day 4 after pretreatment; rats which were "nephrotoxic" and rats which had "recovered" from the initial insult of citrinin. Proteinuria and glucosuria as well as enhanced urine output were observed in "nephrotoxic" rats 4 days after pretreatment. 24 h after [14C]citrinin, only 13% of 14C activity was detected in the urine of "nephrotoxic" rats. The plasma disappearance curve had 2 elimination rates, with half-lives of 0.6 and 14.1 h. "Nephrotoxic" rats retained 7.5% of the administered radioactivity in the liver compared to 1.3% in the "recovered" rats 24 h after the tracer dose and 47% of the radioactivity was either excreted in feces or in the colon contents after 72 h compared to 17.5% in "recovered" rats. Extraction of urine samples from "nephrotoxic" and "recovered" rats with chloroform suggested increased water soluble metabolites of citrinin in the urine from "nephrotoxic" rats. These data also suggested that in normal rats the kidneys are the major route of elimination of citrinin and its metabolite(s) while in rats rendered nephrotoxic by citrinin pretreatment, elimination is more dependent on hepatic excretion.  相似文献   

15.
1. The disposition of radioactivity has been studied in rats and dogs after administration of a new anthelminthic agent, 14C-labelled methyl-5-cyclopropylcarbonyl-2-benzimidazole carbamate (14C-ciclobendazole). 2. An oral dose of 14C-ciclobendazole (4 mg/kg) to rats was rapidly absorbed and about 70% and 20% of the dose was excreted in the faeces and urine, respectively, during 2 days. Bile duct cannulated rats excreted about 80% of the dose in 48-h bile, about 2% in the faeces and about 10% in the urine showing that an oral dose was well-absorbed and that some enterohepatic circulation probably occurred. The excretion of radioactivity in the bile was less after i.v. administration. 3. An oral dose of 14C-ciclobendazole (4 mg/kg) to dogs was mainly eliminated during 2 days with about 80% of the dose in the faeces and only about 10% in the urine. Anaesthetised bile duct-cannulated dogs, excreted between 26% and 35% of an oral dose in the bile during 24 h and up to 58% of an oral dose was absorbed at this time. 4. The tissue distribution of radioactivity in rats and dogs after single or multiple oral doses of 14C-ciclobendazole (4 mg/kg) showed that there was no unusual accumulation or localisation of radioactivity in the measured tissues. Highest concentrations were present in the intestinal tract, liver and kidneys, organs associated with biotransformation and excretion and also in the lungs and adrenals. 5. After oral administration of 14C-ciclobendazole to rate at three different dose levels (4, 40 and 400 mg/kg), peak plasma levels occurred at 15-30 min and declined with similar half-lives (about 20 h). A comparison of peak concentrations and areas under the plasma concentration-time relationships showed that the absorption of ciclobendazole was probably dose-dependent, a lower proportion probably being absorbed at higher doses. After repeated daily oral dosing with 14C-ciclobendazole (4 mg/kg), there were no significant changes in either the daily plasma concentrations or the biological half-life measured after the last dose, indicating that ciclobendazole probably did not induce or inhibit its own metabolism when dosed repeatedly at 4 mg/kg. 6. A comparison of the areas under the plasma concentration-time relationships after oral, i.p. and i.v. administration of 14C-ciclobendazole to rates indicated that there was no signigicant uptake by the liver during first pass and that an oral dose was well absorbed by rats. 7. The peak plasma concentration in the dog, after an oral dose of 14C-ciclobendazole (4 mg/kg) was reached at about 30 min and declined with a half-life of about 3 h. 8. Ciclobendazole was probably well-absorbed by rats and dogs and excreted more rapidly by the latter species than by the former Relatively higher plasma concentrations of drug and/or metabolites were thus achieved in rats than in dogs.  相似文献   

16.
The pharmacokinetics, tissue distribution and excretion of sitafloxacin (CAS 127254-12-0, DU-6859a) were investigated in rats, dogs, and monkeys following single intravenous or single oral administration of 14C-labelled sitafloxacin at a dose of 4.69 mg/kg. Following single administration of the oral dose, serum concentrations of radioactivity peaked at 0.5 h in rats, 2.3 h in dogs, and 2.5 h in monkeys. The apparent absorption ratios of 14C-sitafloxacin based on the AUC0-infinity were 31%, 51%, and 93% in rats, dogs, and monkeys, respectively. In rats, the drug-related radioactivity had been distributed to most organs and tissues 30 min after oral dosing, and had been essentially eliminated after 24 h. The highest levels of radioactivity were observed in the kidneys and liver, whereas the concentrations in the cerebrum and spinal cord were much lower than the serum value. The urinary recoveries of radioactivity after intravenous dosing were 45.5 % in rats, 32.3 % in dogs, and 77.8 % in monkeys. In bile duct-cannulated rats, 57.8 % of the orally administered radioactivity was excreted in the bile within 48 h, and at least 45 % of the sitafloxacin-related material secreted in the bile was re-absorbed from the gastrointestinal tract. These results indicate that sitafloxacin is rapidly absorbed and widely distributed into various tissues. Sitafloxacin-related material is eliminated primarily through both renal and biliary excretion in rats, and possibly in dogs, whereas renal excretion is the major route of elimination in monkeys.  相似文献   

17.
YM466 is a novel factor Xa inhibitor for the treatment of thrombosis. The absorption, distribution, metabolism and excretion of YM466 were investigated in male Fisher rats after a single oral administration. YM466 was absorbed rapidly from all segments of the gastrointestinal tract except the stomach. After oral dosing, the plasma concentration of (14)C-YM466 reached a maximum within 0.5 h, and declined rapidly with an elimination half-life of 0.64 h. The unchanged YM466 accounted for almost all of its radioactivity, suggesting a minimal metabolism in rats. This was also supported by the finding that no metabolites were observed in bile and urine after oral dosing of (14)C-YM466. The distribution of (14)C-YM466 in tissue was evaluated and the liver and kidney were the organs with radioactivity concentrations consistently higher than that of plasma. Cumulative biliary and urinary excretion of radioactivity in bile duct-cannulated rats was 29.5% and 7.6%, respectively, indicating prominent excretion into bile after oral dosing. This was consistent with the finding that 76.1% and 25.2% of radioactivity dosed were excreted to faeces and urine, respectively, after i.v. dosing. These results suggest that YM466 was rapidly absorbed and then subjected to biliary excretion with a minimal metabolism after oral dosing to rats.  相似文献   

18.
1. The disposition of [14C]-labelled benazepril HC1, an ACE-inhibitor, was studied in four normal adult volunteers after a single oral dose of 20 mg and after repeated doses of 20 mg once daily for 5 days. Radioactivity was measured in plasma, urine and faeces. The prodrug ester benazepril and the pharmacologically active metabolite benazeprilat were determined quantitatively in plasma and urine by a g.c.-m.s. method. The pattern of metabolites in urine was analysed semiquantitatively by h.p.l.c.-radiometry.

2. After a single oral dose at least 37% was absorbed, as indicated by urinary recovery. The peak plasma concentration of benazepril (0.58. 0.13 nmol/g (SD)) was observed at 0.5 h after dose, indicating rapid absorption. Peak concentrations of radioactivity (1.88.0.48 nmol/g) and of active benazeprilat (0.84. 0.25 nmol/g) were observed at 1 h after dose, demonstrating rapid bioactivation.

3. The area under the plasma curve (AUC0-96h) of total radioactivity amounted to 9.7. 1.1 (nmol/g) h, 5% of which was accounted for by benazepril and about 50% by benazeprilat.

4. Over 9 days 96.8. 0.5% of the dose was excreted in urine and faeces. Urinary excretion accounted for 37.0. 6.0% of the dose, 80% of which was recovered in the first 8 h after dosing.

5. In urine, only 0.4% of the dose (1% of the radioactivity) was excreted as unchanged benazepril, indicating that the compound was extensively metabolized. Benazeprilat accounted for 17% of the dose (about half of the radioactivity; 0-96 h). Glucuronide conjugates of benazepril and benazeprilat constituting approximately 11% and 22% of the radioactivity (about 4% and 8% of the dose; 0-48 h) were tentatively identified.

6. Repeated oral treatment with benazepril HC1 did not influence the pharmacologically relevant kinetics and disposition parameters.  相似文献   

19.
The enterohepatic circulation of radioactive material after administering [14C]temazepam was evaluated in three sets of male Wistar strain rats connected in pairs by bile duct-duodenum cannulae. After a single oral dose (10 mg kg-1) to the donor rat, the excretion of radioactivity in the urine and faeces of both rats and in the bile of the recipient rat was determined. Mean total recovery of the administered radioactivity was 92.2%. Based on the amount remaining in the donor rat (gastrointestinal tract and faeces), 81.7% of the dose was absorbed by the donor. The total amount recovered from the recipient, 69.4% of original dose (85.1% of donor's absorbed dose), represented the amount excreted in the donor's bile. Similarly, 54.1% of the original dose (77.9% of the transferred biliary excretion from donor) was reabsorbed by the recipient, and the biliary excretion from this animal (45.9% original dose) accounted for 86.% of the amount reabsorbed.  相似文献   

20.
Bevirimat is the first drug in the class of maturation inhibitors, which treat HIV infection by disrupting the activity of HIV protease enzyme with a mechanism of action distinct from that of conventional protease inhibitors. The absorption, distribution, metabolism and elimination characteristics of single intravenous (25 mg/kg) and oral (25 mg/kg and 600 mg/kg) doses of 14C-bevirimat were studied in male Sprague Dawley and Long Evans rats. Pharmacokinetic and mass-balance studies revealed that bevirimat was cleared rapidly (within 12-24 h) after dosing, although plasma radioactivity was quantifiable up to 168 h. Radioactive metabolites of bevirimat were responsible for approximately 60-80% of plasma radioactivity. Systemically available bevirimat was predominantly (97%) excreted via bile in the faeces, with 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号