首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This study investigated whether serotonergic lesion may affect density, sensitivity, and plasticity of muscarinic receptors in hippocampus and cerebral cortex. Intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) in rats produced a 90% reduction in cortical and hippocampal 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents. In these brain areas, the 5,7-DHT lesion did not affect the overall density of muscarinic receptors or those of M1 and non-M1 muscarinic receptor subtypes as assayed using [3H]N-methylscopolamine ([3H]NMS), [3H]pirenzepine, and [3H]NMS in the presence of pirenzepine, respectively. In addition, the binding of the muscarinic agonist [3H]oxotremorine-M (OXO-M), taken as an indirect index of coupling efficiency of non-M1 receptors with G-proteins, did not change significantly in cortex and hippocampus of 5,7-DHT-lesioned rats. Similarly, carbachol-induced accumulation of [3H]inositol phosphates (InPs) in hippocampal miniprisms showed no significant differences between tissues from 5,7-DHT-lesioned and sham-operated rats. In sham-operated rats, an intraperitoneal (i.p.) injection of scopolamine (10 mg/kg once daily) during 21 days caused an increased density of [3H]NMS binding sites in cortex (+20%) and hippocampus (+26%). This up-regulation was restricted to non-M1 receptors subtypes. In 5,7-DHT-lesioned rats, chronic scopolamine failed to modify significantly the density of cortical or hippocampal M1 or non-M1 receptors. These results suggest 1) that 5-HT denervation did not affect the density and sensitivity of muscarinic receptors and 2) that the ability of cortical and hippocampal non-M1 receptors to up-regulate following repeated injection of scopolamine requires the integrity of 5-HT neurons terminating in these brain structures.  相似文献   

2.
3.
Anatomical evidence indicates that cholinergic and opioidergic systems are co-localized and acting on the same neurons. However, the regulatory mechanisms between cholinergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are compensatory changes of acetylcholinesterase activity and cholinergic receptors in mice lacking mu-opioid receptor gene. The acetylcholinesterase activity was determined by histochemistry assay. The cholinergic receptor binding was carried out by quantitative autoradiography using [3H]-quinuclidinyl benzilate (nonselective muscarinic receptors), N-[3H]-methylscopolamine (nonselective muscarinic receptors), [3H]-pirenzepine (M1 subtype muscarinic receptors) and [3H]-AF-DX384 (M2 subtype muscarinic receptors) in brain slices of wild-type and mu-opioid receptor knockout mice. The acetylcholinesterase activity of mu-opioid receptor knockout mice was higher than that of the wild-type in the striatal caudate putamen and nucleus accumbens, but not in the cortex and hippocampus areas. In addition, the bindings in N-[3H]-methylscopolamine and [3H]-AF-DX384 of mu-opioid receptor knockout mice were significantly lower when compared with that of the wild-type controls in the striatal caudate putamen and nucleus accumbens. However, there were no significant differences in bindings of [3H]-quinuclidinyl benzilate and [3H]-pirenzepine between mu-opioid receptor knockout and wild-type mice in the cortex, striatum and hippocampus. These data indicate that there are up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatal caudate putamen and nucleus accumbens of mu-opioid receptor knockout mice.  相似文献   

4.
The present study shows that the putative M2 ligand, [3H]AF-DX 116, binds to two classes of muscarinic sites in homogenates of rat hippocampus, striatum and cerebral cortex: one with a high affinity (Kd less than 5 nM)/low capacity (Bmax = 30-63 fmol/mg protein), and a second of lower affinity (Kd greater than 65 nM) and higher capacity (Bmax greater than 190 fmol/mg protein). In experiments which tested the effects of the muscarinic antagonists on acetylcholine (ACh) release from brain slices, the non-selective antagonist (-)-quinuclidinyl benzylate and atropine significantly enhanced the potassium (25 mM)-evoked release of ACh. This effect was mimicked by the M2 ligand AF-DX 116, but neither the M1-selective antagonist pirenzepine, nor the putative M3-muscarinic antagonist, 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), altered ACh release. Also, the muscarinic agonist, oxotremorine, significantly depressed evoked ACh release from brain slices, an effect that was completely antagonized by atropine or by AF-DX 116, but not by pirenzepine or 4-DAMP. Thus, it appears that presynaptic muscarinic autoreceptors in the rat hippocampus, striatum and cerebral cortex belong to the M2 subtype of muscarinic receptors.  相似文献   

5.
Three classes of muscarinic receptors in mammalian brain have been postulated on the basis of equilibrium and kinetic binding data. However, equilibrium binding assays alone have not permitted a clear demonstration of the localization of putative M1, M2, and M3 receptor subtypes in the brain because of the overlaping affinities of virtually all muscarinic antagonists. In the present study, the conditions for selective occupancy of the M1, M2, and M3 receptor subtypes in the brain of the rhesus monkey were based on the distinct kinetic and equilibrium binding properties of N-[3H]-methylscopolamine (NMS) at cloned m1–m4 muscarinic receptor subtypes expressed in A9L transfected cells. Quantitative autoradiography of the M1, M2, and M3 muscarinic receptor subtypes in the primate brain was performed according to the following strategy. The M1 (m1) receptor subtype was labeled directly with a non-saturating concentration of [3H]-pirenzepine. The M2 (m2) subtype was labeled by incubations consisting of short, two minute pulses of [3H]-NMS after a preincubation with 0.3 μM pirenzepine to occlude m1, m3, and m4 sites. Selective occupancy of the M3 (m3) receptor (subtype) was achieved by pre-incubation with 0.5 nM unlabeled NMS to partially occlude the m1, m2, and m4 sites, equilibrium with 0.5 nM [3H]-NMS, followed by a 60 minute tracer dissociation in the presence of 1 μM atropine. In vitro autoradiography demonstrated that the M1 receptor subtype was confined to forebrain structures. M1 receptors were prevalent throughout the cerebral cortical mantle, amygdala, hippocampus, and the striatum. Low to background levels of the M1 receptor subtype were measured over the thalamus, hypothalamus, and brainstem. The M2 subtype was widely distributed with elevated densities of binding sites seen over all primary sensory cortical areas, and within discrete thalamic, hypothalamic, and brainstem nuclei. The distribution of the M3 receptor subtype was largely coincident with the pattern of the M1 sites labeled by non-saturating concentrations of [3H]-pirenzepine with some notable exceptions. Within the cerebral cortical mantle, the M3 receptor exhibited an elevated gradient over the orbitofrontal gyrus and the temporal lobe. Within the striatum, the M3 subtype was elevated over the anterior and dorsal part of the caudate nucleus, while the M1 receptors were most prevalent over the ventromedial sector. Selective labeling of M3 receptors was seen over the medial division of the globus pallidus and within the substantia nigra pars reticulata. In contrast to the pattern of the M1 receptor subtype, M3 receptors were prevalent also over midline nuclei of the hypothalamus. These results demonstrate that the distinct kinetic and equilibrium binding profiles of N-methylscopolamine and pirenzepine for cloned muscarinic receptors provide a viable ligand autoradiographic strategy for mapping the distribution of M1, M2, and M3 receptors in brain. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Elevated brain monoamine concentrations resulting from monoamine oxidase A genetic ablation (MAOA knock-out mice) lead to changes in other neurotransmitter systems. To investigate the consequences of MAOA deficiency on the cholinergic system, we measured ligand binding to the high-affinity choline transporter (CHT1) and to muscarinic and nicotinic receptors in brain sections of MAOA knock-out (KO) and wild-type mice. A twofold increase in [3H]-hemicholinium-3 ([3H]-HC-3) binding to CHT1 was observed in the caudate putamen, nucleus accumbens, and motor cortex in MAOA KO mice as compared with wild-type (WT) mice. There was no difference in [3H]-HC-3 labeling in the hippocampus (dentate gyrus) between the two genotypes. Binding of [125I]-epibatidine ([125I]-Epi), [125I]-α-bungarotoxin ([125I]-BGT), [3H]-pirenzepine ([3H]-PZR), and [3H]-AFDX-384 ([3H]-AFX), which respectively label high- and low-affinity nicotinic receptors, M1 and M2 muscarinic cholinergic receptors, was not modified in the caudate putamen, nucleus accumbens, and motor cortex. A small but significant decrease of 19% in M1 binding densities was observed in the hippocampus (CA1 field) of KO mice. Next, we tested acetylcholinesterase activity and found that it was decreased by 25% in the striatum of KO mice as compared with WT mice. Our data suggest that genetic deficiency in MAOA enzyme is associated with changes in cholinergic activity, which may account for some of the behavioral alterations observed in mice and humans lacking MAOA.  相似文献   

7.
Quantitative autoradiography was utilized to examine the response of the dopamine (DA) and muscarinic cholinergic system within the striatum to lesions of the mesostriatal DA system following intranigral 6-hydroxydopamine (6-OHDA) injections. In addition, the response of DA system was examined in the striatum of animals treated with low, medium, or high doses of 6-OHDA made intracerebroventricularly (icv). Three weeks following removal of the mesostriatal DA fibers with intranigral 6-OHDA, there was an almost complete depletion of DA and [3H]mazindol binding throughout the striatum. The resulting increase in D2 receptors labeled with [3H]spiroperidol (27%) was most evident in the lateral striatum and topographically correlated with an increase in choline uptake sites labeled with [3H]hemicholinium-3 (20%). There was a smaller but significant decrease in D1 receptors labeled with [3H]SCH 23390 (15-18%) that was not topographically related to changes in [3H]spiroperidol or [3H]hemicholinium-3 binding. All doses of icv 6-OHDA produced a significant loss of DA and of [3H]mazindol binding as compared to vehicle injections that was more pronounced in the medial than in the lateral striatum. No increase in D1 receptors was observed with any dose of 6-OHDA and greater than 90% loss of DA and [3H]mazindol resulted in an increase in D2 receptors in the lateral striatum and a reduction in D1 receptors in the dorsal striatum. These data are consistent with the evidence that there is independent regulation of the two subtypes of the DA receptor. Moreover, the distribution and regulation of the subtypes of the muscarinic receptor were independent. Muscarinic M2 receptors ([3H]N-methylscopolamine in presence of excess pirenzepine) showed a lateral to medial gradient (highest laterally) that was related to the pattern of choline uptake sites and D2 receptors. Loss of DA resulted in a reduction in M2 receptors (24-30%) that was correlated with the increase in choline uptake sites. In contrast, M1 ([3H]pirenzepine) receptors showed a reverse gradient from the M2 receptor and a smaller reduction following loss of DA.  相似文献   

8.
Muscarinic cholinergic M1 and M2 receptors in young and aged adult male volunteers were studied using [N-11C-methyl]-benztropine, a specific muscarinic cholinergic receptor ligand, and high resolution positron emission tomography (PET). A regionally specific pattern of decreased binding was observed in aged volunteers. Using two separate methods of data analysis, thalamic, hippocampal and cerebellar regions showed no decreases in the apparent specific binding of [N-11C-methyl]-benztropine while frontal, parietal, temporal and occipital cortices as well as the corpus striatum showed age related changes in binding that declined (in 82 yrs old subject) to about 50% of the value obtained from the youngest volunteer (19 yrs). These data suggest that regions high in muscarinic receptor density, the corpus striatum and the cortical mantle, show a greater rate of decline than those areas that have a relatively low number of muscarinic receptors. Furthermore, this study demonstrates the usefulness of PET and [N-11C-methyl]-benztropine for assessing age related regional changes in muscarinic cholinergic receptor binding in the living human brain.  相似文献   

9.
The present study shows that [3H]4-DAMP binds specifically, saturably, and with high affinity to muscarinic receptor sites in the rat brain. In homogenates of hippocampus, cerebral cortex, striatum, and thalamus, [3H]4-DAMP appears to bind two sub-populations of muscarinic sites: one class of high-affinity, low capacity sites (Kd less than 1 nM; Bmax = 45-152 fmol/mg protein) and a second class of lower-affinity, high capacity sites (Kd greater than 50 nM; Bmax = 263-929 fmol/mg protein). In cerebellar homogenates, the Bmax of [3H]4-DAMP binding sites was 20 +/- 2 and 141 +/- 21 fmol/mg protein for the high- and the lower-affinity site, respectively. The ligand selectivity profile for [3H]4-DAMP binding to its sites was similar for both the high- and lower-affinity sites; atropine = (-)QNB = 4-DAMP much greater than pirenzepine greater than AF-DX 116, although pirenzepine was more potent (16-fold) at the lower- than at the high-affinity sites. The autoradiographic distribution of [3H]4-DAMP sites revealed a discrete pattern of labeling in the rat brain, with the highest densities of [3H]4-DAMP sites present in the CA1 sub-field of Ammon's horn of the hippocampus, the dentate gyrus, the olfactory tubercle, the external plexiform layer of the olfactory bulb and layers I-II of the frontoparietal cortex. Although the distribution of [3H]pirenzepine sites was similar to that of [3H]4-DAMP sites in many brain regions, significant distinctions were apparent. Thus, both the ligand selectivity pattern of [3H]4-DAMP binding and the autoradiographic distribution of sites suggest that although the high-affinity [3H]4-DAMP sites may consist primarily of muscarinic-M3 receptors, the lower-affinity [3H]4-DAMP sites may be composed of a large proportion of muscarinic-M1 receptors.  相似文献   

10.
BACKGROUND: Having shown a decrease in [3H]pirenzepine binding in the hippocampus from subjects with schizophrenia, we wished to determine whether such a change in radioligand binding was associated with changes in hippocampal mRNA for the muscarinic1 (M1) and muscarinic4 (M4) receptors in tissue from different cohorts of subjects. METHOD: The [3H]pirenzepine binding using autoradiography and in situ hybridization with oligonucleotides specific for muscarinic M1 and M4 receptors were completed using hippocampal tissue obtained postmortem from 20 control subjects and 20 subjects with schizophrenia. RESULTS: The [3H]pirenzepine binding was decreased in the dentate gyrus (p < .05), CA3 (p < .01), CA2 (p < .05), and CA1 (p < .01) regions of the hippocampus from subjects with schizophrenia. Levels of M4 mRNA varied with the diagnosis of schizophrenia (p = .01), but significant region-specific changes were not apparent. Changes in levels of mRNA for the muscarinic M1 receptor were not detected with diagnosis. CONCLUSIONS: This study suggests that decreases in hippocampal [3H]pirenzepine binding in subjects with schizophrenia are most likely associated with widespread changes in expression levels of the M4 receptor. These data further implicate the hippocampal formation in the pathology of schizophrenia.  相似文献   

11.
The potential involvement of mu-opioid receptors in mediating the changes of toxic signs and muscarinic receptor bindings after acute administration of irreversible antiacetylcholinesterase diisopropylfluorophosphate (DFP) was investigated. DFP-induced chewing movement and tremors were monitored for a period of 180 min in mu-opioid receptor knockout and wild-type mice. The autoradiographic studies of total, M1, and M2 muscarinic receptors were conducted using [(3)H]quinuclidinyl benzilate, [(3)H]pirenzepine, and [(3)H]AF-DX384 as ligands, respectively. Saline-treated mu-opioid receptor knockout and wild-type mice did not show chewing movement or tremors. Although DFP (1, 2, or 3 mg/kg, subcutaneous injection, s.c.)-induced chewing movement and tremors were shown in a dose-dependent manner, there were no significant differences in tremors induced by 1 or 2 mg/kg of DFP between mu-opioid receptor knockout and wild-type mice. There were also no significant differences in chewing movement induced by all doses of DFP between mu-opioid receptor knockout and wild-type mice. However, DFP (3 mg/kg)-induced tremors in mu-opioid receptor knockout mice were significantly increased over those in wild-type controls. Acetylcholinesterase activity in the striatum of saline-treated mu-opioid receptor knockout mice was significantly higher than that of the wild-type controls. After administration of DFP, acetylcholinesterase activity in the striatum of both mu-opioid receptor knockout and wild-type mice was significantly decreased (more than 36%, 58%, and 94% reduced at the doses of 1, 2, and 3 mg/kg, respectively) than that of their respective saline controls. M2 muscarinic receptor binding in saline-treated mu-opioid receptor knockout mice was significantly lower than that of the wild-type controls in the striatum. However, there were no significant differences in total, M1, or M2 muscarinic receptor binding in the cortex, striatum, or hippocampus of mu-opioid receptor knockout and wild-type mice after DFP administration. Our data show increased DFP-induced tremors, compensatory up-regulation of acetylcholinesterase activity, and compensatory down-regulation of M2 muscarinic receptors in the striatum of mice lacking mu-opioid receptor gene. These results suggest that the enhancement of DFP-induced tremors may be associated with the compensatory up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatum of mu-opioid receptor knockout mice.  相似文献   

12.
The binding capacities of the novel antagonist pirenzepine and the agonist carbamylcholine were examined autoradiographically to compare their abilities to reduce the binding of 1-[3H]quinuclidinyl benzilate ([3H]-1-QNB). This technique, which is applicable to any muscarinic ligand, permits a direct comparison between the binding of carbamylcholine and pirenzepine in the same assay. Analysis of the binding curves generated by standard scintillation counting of whole-brain slices indicated that the ligands bound heterogeneously to muscarinic receptors in the brain. Following apposition of slides to tritium-sensitive film, the binding profile for each ligand was examined visually and by microdensitometry. Regional analyses indicated that the agonist carbamylcholine displayed highest potency for thalamic nuclei, lower potency for cortical regions, and the lowest affinity for layers of the hippocampus. The M1-selective ligand pirenzepine displayed the highest potency for the dentate gyrus of the hippocampus, with lower inhibition levels in the cortex, and the lowest levels of inhibition found in the thalamus. The distribution of high affinity agonist sites was found to be distinct from the distribution of high-affinity antagonist binding sites. In a separate assay, the regional inhibition of pirenzepine and scopolamine was compared for the hippocampus and the forebrain. While scopolamine did not distinguish between muscarinic receptor sites in the hippocampus and cortex, pirenzepine inhibited [3H]-1-QNB labeling in the hippocampus significantly greater than in the cerebral cortex, providing additional evidence for the hypothesis that pirenzepine is a selective antagonist.  相似文献   

13.
The classification of muscarinic receptors into M1 and M2 subtypes and the involvement of guanine nucleotide binding proteins (G-proteins) as major mediators of receptor information transduction in the cholinergic and other neurotransmitter systems have prompted us to undertake studies both at receptor and postreceptor levels that may shed light on the importance of these new findings to the pharmacotherapy of manic-depressive illness and of extrapyramidal syndromes. We searched for patterns of muscarinic selectivity among the commonly used anticholinergics (biperiden, procyclidine, trihexyphenidyl, benztropine, and methixen) through radioligand receptor studies in various rat tissues. The drugs showed a range of selectivity, from the totally nonselective methixen to the highly M1-selective biperiden. Sinus arrhythmia measurements were undertaken in psychiatric patients treated with different antiparkinsonian anticholinergics. The extent of sinus arrhythmia suppression was inversely correlated with the degree of M1 selectivity of the drugs used, advocating the use of M1-selective antiparkinsonian anticholinergics like biperiden in the treatment of extrapyramidal side effects. The implications of muscarinic receptor subclassification were further extended to include postreceptor phenomena. We have directly studied G-protein function by measuring cholinergic agonist-induced increases in guanosine triphosphate (GTP) binding to these proteins. This cholinergic agonistic effect was shown to be exerted by G-proteins other than Gs (the adenylate cyclase stimulatory G-protein), i.e., Gi (the adenylate cyclase inhibitory G-protein) or Gp [the G-protein activating phosphatidylinositol (PI) turnover], as ribosylation by pertussis toxin abolished this cholinergic effect, whereas it was unaffected by cholera toxin. Pertussis toxin-blockable, carbamylcholine-induced increases in GTP binding capacity were found to be mediated through M1 muscarinic receptors, as M1-selective antagonists were 100-fold more effective than M2 selective antagonists in blocking carbamylcholine effects. Moreover, carbamylcholine effect was exclusively detected in tissues predominantly populated by M1 receptors. Our results thus suggest that carbamylcholine-induced increases in GTP binding are exerted through M1 receptors interacting with Gp. At therapeutically efficacious concentrations, lithium completely blocked carbamylcholine-induced increases in GTP binding capacity in both in vitro and in vivo experiments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Recent evidence has identified directly muscarinic acetylcholine receptor (m-ACh R) and nicotinic acetylcholine receptor (n-ACh R) in the brain utilizing receptor binding assay. Several studies suggest that release of dopamine (DA) in the striatum is regulated by presynaptic receptors present on dopaminergic terminals. In the present study, the effects of cholinergic drugs on [3H]DA release were examined using micropunched tissue and synaptosomes obtained from rat striatum. ACh (5 x 10(-4) M) significantly increased spontaneous [3H]DA release, and the overflow was partially inhibited by D-tubocurarine (1 mM) but not atropine. Nicotine, lobeline, coniine and spartein, nicotinic agonists, significantly increased spontaneous and 25 mM K + evoked [3H]DA release almost in a dose-dependent manner. In contrast, oxotremorine (2 x 10(-4) M), muscarinic agonist, did not any change in [3H]DA efflux. Furthermore, the metabolites of [3H]DA were separated by column chromatography. The main metabolite of [3H]DA in the spontaneous release from rat striatal synaptosomes was [3H]DOPAC (3,4-dihydroxyphenylacetic acid). Lobeline (5 x 10(-5) M) accelerated the outflow of [3H]DOPAC and [3H]OMDA metabolites (O-methylated and deaminated metabolites). These results could give rise to the suggestion that there was n-ACh R on the dopaminergic nerve terminals in the striatum and n-ACh R might have related to a directly excitatory effect on the DA release.  相似文献   

15.
We have previously shown that exposure to the anti-cholinesterase eserine provokes interictal-like discharges in the CA3 area of hippocampal slices from adult rats in which a generalized seizure has been induced by pentylenetetrazole (PTZ) when immature (at 20 days). Such increased responsiveness to acetylcholine (ACh) was not associated with any change in hippocampal acetylcholine or gamma-aminobutyric acid (GABA) content, GABAergic inhibition or density of ACh innervation, but was blocked by the muscarinic receptor antagonist atropine. We therefore turned to quantitative radioligand binding autoradiography, in situ hybridization and the [35S]GTPgammaS method to assess the properties of hippocampal and neocortical muscarinic receptors in adult rats having experienced a PTZ seizure at P20. The densities of M1 and M2 receptor binding sites, respectively labeled with [3H]pirenzepine and [3H]AFDX-384, as well as the amount of m1, m2 and m3 receptor mRNAs, did not differ from control in the hippocampus and neocortex of these rats. In contrast, in PTZ rats, both brain regions displayed a marked increase in [35S]GTPgammaS incorporation stimulated by ACh, bethanechol and particularly oxotremorine. This finding indicates that a generalized seizure in immature rat can entail a long-term and presumably permanent increase in the efficacy of G-protein coupling to muscarinic receptors in the hippocampus and neocortex of the adult. By analogy, such a mechanism could account for the susceptibility to epilepsy of human adults having suffered from prolonged convulsions in early life.  相似文献   

16.
Heterotrimeric guanosine triphosphate (GTP)-binding proteins (G-proteins) couple many different cell surface receptor types to intracellular effector mechanisms. Uncoupling between receptors and G-proteins and between G-proteins and adenylyl cyclase (AC) and phospholipase C (PLC) has been described for Alzheimer's disease (AD) brain. However, there is little information on whether altered G-protein signaling in AD is just an end-stage phenomenon or is important for the progression of disease pathology. Here we used [(35)S]GTPgammaS autoradiography to study G-protein distribution in sections of entorhinal cortex and hippocampus from 23 cases staged for neurofibrillary changes and amyloid deposits according to Braak and Braak (Acta Neuropathol. [1991] 82:239-259). We also studied the effects of GTP, which has been found to increase [(35)S]GTPgammaS binding in an Mg(2+)-dependent manner. Results show that the ability of GTP (3 microM) to stimulate [(35)S]GTPgammaS binding declined significantly with staging for neurofibrillary changes in the entorhinal cortex (P < 0.05, ANOVA) and CA1 subfield of the hippocampus (P < 0.05, ANOVA). No significant changes were seen for [(35)S]GTPgammaS binding in the absence of GTP. Our results suggest a decrease in G-protein GTP hydrolysis, which correlates with the progression of AD neurofibrillary changes, in the regions most affected by this pathology. These alterations appear to occur prior to stages corresponding to clinical disease and could lead to an impaired regulation of several signaling systems in AD brain.  相似文献   

17.
Is the effect of somatostatin on muscarinic receptors selective to M1 type?   总被引:1,自引:0,他引:1  
The effect of somatostatin on muscarinic receptors (mAchR) was investigated through saturation experiments of [3H]oxotremorine-M-acetate and oxotremorine/[3H]N-methyl-scopolamine competition experiments. Somatostatin converted oxotremorine high affinity binding sites to low affinity sites in the hippocampus and cerebral cortex whose mAchR were dominantly of M1 type. Somatostatin did not alter agonist binding in the medulla-pons where M2 receptors were abundant. Therefore, the effect of somatostatin on mAchR seems to be selective to high affinity binding sites of M1 receptors.  相似文献   

18.
Analysis of lymphocyte muscarinic cholinergic receptors using quantitative techniques such as radioligand binding assay is made difficult due to the low density of these sites and the lack of subtype-specific selectivity of most available muscarinic ligands. In this study, a combined kinetic and equilibrium labeling technique recently developed for brain tissue was used for labeling the five muscarinic cholinergic receptor subtypes in intact human peripheral blood lymphocytes. No specific muscarinic M1 receptor binding was detectable in human peripheral blood lymphocytes using [3H]-pirenzepine as a ligand. Labeling of M2-M5 muscarinic receptors using [3H]N-methyl-scopolamine (NMS) by occluding various receptor subtypes with muscarinic antagonist and mamba venom resulted in the labeling of M2-M5 receptors in brain as well as in human peripheral blood lymphocytes. The relative density of different receptor subtypes was M3 > M5 > M4 > M2. The development of a reproducible technique for assaying muscarinic cholinergic receptor subtypes expressed by human peripheral blood lymphocytes may contribute to clarify their role in lymphocyte function.  相似文献   

19.
The technique of quantitative autoradiography was used to examine the effects of Huntington's disease (HD) and schizophrenia on the organization of striatal dopamine (DA) D1 and D2 receptors. Whereas the striatum of HD cases showed a reduction in the density of D1 ([3H]SCH 23390) and D2 ([3H]spiroperidol) receptors, the patterning of D2 receptor loss did not match that of the D1 receptor loss. The HD loss of D1 D1 receptors (65%) is far greater than the loss of D2 receptors (28%). Whereas there was a dorsal-ventral gradient of effect on both receptor subtypes, the effects of HD on D2 receptors in the ventral putamen (PUT) and nucleus accumben septi (NAS) were minimal. Similarly, muscarinic M1 and M2 receptors demonstrate different patterns of alteration in HD. The M2 subtype, labeled with [3H]N-methylscopolamine (in the presence of excess pirenzepine to occlude M1 sites), was depleted far more than the M1 receptor subtype, labeled with [3H]pirenzepine. Although the effects of HD on [3H]mazindol labeling of DA terminals were more heterogeneous, there appeared to be a relative preservation of this afferent input to the striatum of the HD cases. In the schizophrenic cases, our autoradiographic studies confirm previous reports of an elevation of D2 receptor density in the striata of many schizophrenics. This increase was evident even though two of the three cases were known to have not been treated with neuroleptics, and the third case may also have been drug naive. However, the increase was far greater in the NAS (164%) and ventral PUT (173%) than more dorsally in the striatum (68%). The density of D1 receptors and DA terminals labeled with [3H]mazindol in the striatum of schizophrenics was not significantly different from that of control cases. Thus in both HD and schizophrenia, the ratio of D2/D1 receptors is altered in favor of the D2 population, particularly in the NAS.  相似文献   

20.
Biochemical and behavioral evidence for muscarinic autoreceptors in the CNS   总被引:1,自引:0,他引:1  
Muscarinic autoreceptors of the M2 subclass were examined in rat forebrain using a number of different methodologies, including receptor autoradiography and image analysis, regulation of acetylcholine release, phosphoinositide turnover, low-Km GTP hydrolysis, and behavioral analysis. The relatively minor population of M2 receptors in coronal sections was visualized by autoradiography and image analysis using [3H]quinuclidinyl benzilate in the presence of a concentration of pirenzepine that blocked most of M1 (and M4) receptors. The highest densities of M2 receptors in forebrain regions were found in the outer layers of the cortex, CA1 region of the hippocampus and striatum. The M2-, but not M1-selective antagonists were able to block the oxotremorine-induced attenuation of acetylcholine release in forebrain synaptosomes. Low concentrations of the M2-selective antagonist gallamine increased phosphoinositide turnover, which is thought to be an M1 postsynaptic response in the forebrain, in brain slices by a Ca2(+)-dependent mechanism. The M2-selective agonist oxotremorine produced a substantial stimulation of low-Km GTPase in cortical membranes, suggesting that M2 forebrain receptors are efficiently coupled to G-proteins in the cortex. Behavioral signs of cholinergic stimulation were observed after intracerebroventricular injections of M2-, but not M1-selective antagonists. It is suggested that a minor population of forebrain M2 receptors regulates acetylcholine release by a mechanism that includes coupling through G-proteins presynaptically at synapses for which the postsynaptic response involves phosphoinositide turnover. Selective blockade of these receptors produces both biochemical and behavioral signs of acetylcholine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号