首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing use of computerized ECG processing systems requires effective electrocardiogram (ECG) data compression techniques which aim to enlarge storage capacity and improve data transmission over phone and internet lines. This paper presents a compression technique for ECG signals using the singular value decomposition (SVD) combined with discrete wavelet transform (DWT). The central idea is to transform the ECG signal to a rectangular matrix, compute the SVD, and then discard small singular values of the matrix. The resulting compressed matrix is wavelet transformed, thresholded and coded to increase the compression ratio. The number of singular values and the threshold level adopted are based on the percentage root mean square difference (PRD) and the compression ratio required. The technique has been tested on ECG signals obtained from MIT-BIH arrhythmia database. The results showed that data reduction with high signal fidelity can thus be achieved with average data compression ratio of 25.2:1 and average PRD of 3.14. Comparison between the obtained results and recently published results show that the proposed technique gives better performance.  相似文献   

2.
Error propagation and word-length-growth are two intrinsic effects influencing the performance of wavelet-based ECG data compression methods. To overcome these influences, a non-recursive 1-D discrete periodized wavelet transform (1-D NRDPWT) and a reversible round-off linear transformation (RROLT) theorem are developed. The 1-D NRDPWT can resist truncation error propagation in decomposition processes. By suppressing the word- length-growth effect, RROLT theorem enables the 1-D NRDPWT process to obtain reversible octave coefficients with minimum dynamic range (MDR). A non-linear quantization algorithm with high compression ratio (CR) is also developed. This algorithm supplies high and low octave coefficients with small and large decimal quantization scales, respectively. Evaluation is based on the percentage root-mean-square difference (PRD) performance measure, the maximum amplitude error (MAE), and visual inspection of the reconstructed signals. By using the MIT-BIH arrhythmia database, the experimental results show that this new approach can obtain a superior compression performance, particularly in high CR situations.  相似文献   

3.
This paper presents a combined wavelet and a modified runlength encoding scheme for the compression of electrocardiogram (ECG) signals. First, a discrete wavelet transform is applied to the ECG signal. The resulting coefficients are classified into significant and insignificant ones based on the required PRD (percent root mean square difference). Second, both coefficients are encoded using a modified run-length coding method. The scheme has been tested using ECG signals obtained from the MIT-BIH Compression Database. A compression of 20:1 (which is equivalent to 150 bit per second) is achieved with PRD less than 10.  相似文献   

4.
目的为降低心电信号存储和传输的数据量,并克服传统心电压缩方法只利用导联内相关性的劣势,本文提出一种基于小波域主成分分析和分层编码(w PCA_LC)的压缩方法。方法首先通过心电电极获取12通道心电数据,对所有通道的心电信号做小波变换,每个尺度下的小波系数组成小波系数矩阵,在每个系数矩阵上做主成分分析(principal component analysis,PCA),之后对小波系数小的主成分做[位置增量,数据]的编码方式,其他主成分采用霍夫曼编码,最后使用本文算法压缩圣彼得堡心率失常数据库。结果实验表明,在均方根误差为5.2%时,本文算法的压缩比为71,远高于基于稀疏分解的方法和基于小波变换阈值选择的方法。结论基于小波域主成分分析的心电压缩算法对多导联心电信号具有较好的压缩性能。  相似文献   

5.
ECG data compression using optimal non-orthogonal wavelet transform   总被引:5,自引:0,他引:5  
This paper introduces an effective technique for the compression of electrocardiogram (ECG) signals. The technique is based on a new class of non-orthogonal discrete wavelet transform (DWT). The performance of ECG compression algorithm is measured by its ability to minimize distortion while retaining all clinically significant features of the signal. The percent root-mean square difference (PRD) is used as an accepted standard for measuring the signal distortion. However, there is no standard for measuring the clinically significant features retained after signal reconstruction. The coefficients of the DWT are calculated such that the square of the difference between the original signal and the reconstructed one is minimum in least mean square sense. The resulting transforms deal with signals of arbitrary lengths; that means the signal length is not restricted to be a multiple of power of 2. Numerical results comparing the performance of the constructed non-orthogonal transform with that of W-transform and Daubechies D(4) orthogonal transform are given. These results show that, independent of signal length, the decomposition of the signal up to the fourth level is sufficient for getting minimum PRD. In addition, the proposed technique yields the lowest PRD compared to the other two algorithms and for a compression ratio less than 10 the optimal transform can be obtained for only one ECG period. However, for a higher compression ratio the PRD is smaller for long signals.  相似文献   

6.
This paper describes a hybrid technique based on the combination of wavelet transform and linear prediction to achieve very effective electrocardiogram (ECG) data compression. First, the ECG signal is wavelet transformed using four different discrete wavelet transforms (Daubechies, Coiflet, Biorthogonal and Symmlet). All the wavelet transforms are based on dyadic scales and decompose the ECG signals into five detailed levels and one approximation. Then, the wavelet coefficients are linearly predicted, where the error corresponding to the difference between these coefficients and the predicted ones is minimized in order to get the best predictor. In particular, the residuals of the wavelet coefficients are uncorrelated and hence can be represented with fewer bits compared to the original signal. To further increase the compression rate, the residual sequence obtained after linear prediction is coded using a newly developed coding technique. As a result, a compression ratio (Cr) of 20 to 1 is achieved with percentage root-mean square difference (PRD) less than 4%. The algorithm is compared to an alternative compression algorithm based on the direct use of wavelet transforms. Experiments on selected records from the MIT-BIH arrhythmia database reveal that the proposed method is significantly more efficient in compression. The proposed compression scheme may find applications in digital Holter recording, in ECG signal archiving and in ECG data transmission through communication channels.  相似文献   

7.
A new adaptive thresholding mechanism to determine the significant wavelet coefficients of an electrocardiogram (ECG) signal is proposed. It is based on estimating thresholds for different sub-bands using the concept of energy packing efficiency (EPE). Then thresholds are optimized using the particle swarm optimization (PSO) algorithm to achieve a target compression ratio with minimum distortion. Simulation results on several records taken from the MIT-BIH Arrhythmia database show that the PSO converges exactly to the target compression after four iterations while the cost function achieved its minimum value after six iterations. Compared to previously published schemes, lower distortions are achieved for the same compression ratios.  相似文献   

8.
A new adaptive thresholding mechanism to determine the significant wavelet coefficients of an electrocardiogram (ECG) signal is proposed. It is based on estimating thresholds for different sub-bands using the concept of energy packing efficiency (EPE). Then thresholds are optimized using the particle swarm optimization (PSO) algorithm to achieve a target compression ratio with minimum distortion. Simulation results on several records taken from the MIT-BIH Arrhythmia database show that the PSO converges exactly to the target compression after four iterations while the cost function achieved its minimum value after six iterations. Compared to previously published schemes, lower distortions are achieved for the same compression ratios.  相似文献   

9.
This paper presents a combined wavelet and a modified run-length encoding schemefor the compression of electrocardiogram (ECG) signals. First, a discrete wavelet transform is applied to the ECG signal. The resulting coefficients are classified into significant and insignificant ones based on the required PRD (percent root mean square difference). Second, both coefficients are encoded using a modified run-length coding method. The scheme has been tested using ECG signals obtained from the MIT-BIH Compression Database. A compression of 20:1 (which is equivalent to 150 bit per second) is achieved with PRD less than 10.  相似文献   

10.
Compression of electrocardiography (ECG) is necessary for efficient storage and transmission of the digitized ECG signals. Discrete wavelet transform (DWT) has recently emerged as a powerful technique for ECG signal compression due to its multi-resolution signal decomposition and locality properties. This paper presents an ECG compressor based on the selection of optimum threshold levels of DWT coefficients in different subbands that achieve maximum data volume reduction while preserving the significant signal morphology features upon reconstruction. First, the ECG is wavelet transformed into m subbands and the wavelet coefficients of each subband are thresholded using an optimal threshold level. Thresholding removes excessively small features and replaces them with zeroes. The threshold levels are defined for each signal so that the bit rate is minimized for a target distortion or, alternatively, the distortion is minimized for a target compression ratio. After thresholding, the resulting significant wavelet coefficients are coded using multi embedded zero tree (MEZW) coding technique. In order to assess the performance of the proposed compressor, records from the MIT-BIH Arrhythmia Database were compressed at different distortion levels, measured by the percentage rms difference (PRD), and compression ratios (CR). The method achieves good CR values with excellent reconstruction quality that compares favourably with various classical and state-of-the-art ECG compressors. Finally, it should be noted that the proposed method is flexible in controlling the quality of the reconstructed signals and the volume of the compressed signals by establishing a target PRD and a target CR a priori, respectively.  相似文献   

11.
Knowing the location and the volume of the prostate is important for ultrasound-guided prostate brachytherapy, a commonly used prostate cancer treatment method. The prostate boundary must be segmented before a dose plan can be obtained. However, manual segmentation is arduous and time consuming. This paper introduces a semi-automatic segmentation algorithm based on the dyadic wavelet transform (DWT) and the discrete dynamic contour (DDC). A spline interpolation method is used to determine the initial contour based on four user-defined initial points. The DDC model then refines the initial contour based on the approximate coefficients and the wavelet coefficients generated using the DWT. The DDC model is executed under two settings. The coefficients used in these two settings are derived using smoothing functions with different sizes. A selection rule is used to choose the best contour based on the contours produced in these two settings. The accuracy of the final contour produced by the proposed algorithm is evaluated by comparing it with the manual contour outlined by an expert observer. A total of 114 2D TRUS images taken for six different patients scheduled for brachytherapy were segmented using the proposed algorithm. The average difference between the contour segmented using the proposed algorithm and the manually outlined contour is less than 3 pixels.  相似文献   

12.
Abstract

Myocardial infarction (MI) is a coronary artery disease acquired due to the lack of blood supply in one or more sections of the myocardium, resulting in necrosis in that region. It has different types based on the region of necrosis. In this paper, a statistical approach for classification of Anteroseptal MI (ASMI) is proposed. The first step of the method involves noise elimination and feature extraction from the Electrocardiogram (ECG) signals, using multi-resolution wavelet analysis and thresholding-based techniques. In the next step a classification scheme is developed using the nearest neighbour classification rule (NN rule). Both temporal and amplitude features relevant for automatic ASMI diagnosis are extracted from four chest leads v1–v4. The distance metric for NN classifier is calculated using both Euclidian distance and Mahalanobis distance. A relative comparison between these two techniques reveals that the later is superior to the former, as evident from the classification accuracy. The proposed method is tested and validated using the PTB diagnostic database. Classification accuracy for Mahalanobis distance and Euclidean distance-based NN rule are 95.14% and 81.83%, respectively.  相似文献   

13.
目的 为满足嵌入式移动无线终端传输高采样率心电信号的需要,设计一种实时心电数据压缩算法.方法 根据心电数据自身特点,在嵌入式S3C2440平台上,以Huffman算法、LZ77算法及LZW算法进行心电数据压缩并比较分析,在此基础上设计了一阶差分结合Huffman算法和LZ77算法的混合压缩算法.结果 心电数据的压缩结果显示,该算法压缩比达7.20,平均计算时间392 ms,与普通压缩算法相比具有更高的心电压缩比和更低的时间复杂度.结论 将该压缩算法运用到远程无线监测终端中能满足系统设计的要求.  相似文献   

14.
目的 为满足嵌入式移动无线终端传输高采样率心电信号的需要,设计一种实时心电数据压缩算法.方法 根据心电数据自身特点,在嵌入式S3C2440平台上,以Huffman算法、LZ77算法及LZW算法进行心电数据压缩并比较分析,在此基础上设计了一阶差分结合Huffman算法和LZ77算法的混合压缩算法.结果 心电数据的压缩结果显示,该算法压缩比达7.20,平均计算时间392 ms,与普通压缩算法相比具有更高的心电压缩比和更低的时间复杂度.结论 将该压缩算法运用到远程无线监测终端中能满足系统设计的要求.  相似文献   

15.
Extraction of foetal ECG that is embedded in the maternal ECG is a challenging problem. This paper presents a combined system to extract foetal ECG from maternal abdominal ECG. The system uses a combination of singular value decomposition (SVD) and a neuro-fuzzy inference system. The SVD is used to construct two reference signals, while the fuzzy system is used as an adaptive canceller. The algorithm is applied on synthetic as well as real data and the results are presented. In addition, the paper presents an example of using the same system as a noise removal tool.  相似文献   

16.
We have developed an effective technique for extracting and classifying motor unit action potentials (MUAPs) for electromyography (EMG) signal decomposition. This technique is based on single-channel and short periodȁ9s real recordings from normal subjects and artificially generated recordings. This EMG signal decomposition technique has several distinctive characteristics compared with the former decomposition methods: (1) it bandpass filters the EMG signal through wavelet filter and utilizes threshold estimation calculated in wavelet transform for noise reduction in EMG signals to detect MUAPs before amplitude single threshold filtering; (2) it removes the power interference component from EMG recordings by combining independent component analysis (ICA) and wavelet filtering method together; (3) the similarity measure for MUAP clustering is based on the variance of the error normalized with the sum of RMS values for segments; (4) it finally uses ICA method to subtract all accurately classified MUAP spikes from original EMG signals. The technique of our EMG signal decomposition is fast and robust, which has been evaluated through synthetic EMG signals and real EMG signals.  相似文献   

17.
背景:心音信号包含了大量心脏瓣膜活动的生理信息,心音分析对诊断心脏疾病具有重要的临床意义。 目的:旨在通过心音的包络提取,分析心音信号的各种特征,进而判断心音中是否包含杂音,以改善传统听诊技术高度依赖医生经验、听诊范围受限的缺点。 方法:提出了一种采用小波变换来提取心音包络的方法,通过与采用希尔伯特-黄变换、数学形态学、平均香农能量等心音包络求解方法进行对比,证明这种方法具有算法简便、曲线光滑、特征点突出等优点。 结果与结论:将该方法用于临床真实心音的包络提取,利用支持向量机来训练所提取心音包络的面积和小波能量两个特征参数,判别心音信号是否明显包含杂音。选用35例心音数据对算法进行验证,结果表明该算法的准确率达到95%,具有很强的实用性。  相似文献   

18.
目的选择已配准后的多聚焦医学图像以及MRI/CT灰度图像为实验素材,以探究不同的融合策略对图像融合效果的影响。方法在对多模态医学图像融合时,低频融合分别采取了加权平均、取极大值法、区域能量以及区域方差的对比实验。高频融合分别采取了区域能量、区域方差以及滤波后基于邻域窗口的一致性检验的对比实验。结果通过对融合图像主观(融合效果)与客观(灰度直方图、边缘提取、性能评价)对比分析,找到了多模态医学图像融合的最优融合策略。结论当低频选择局部区域方差融合,融合后的图像轮廓清晰、边缘较完整;而高频选择滤波后基于邻域窗口的一致性检验,融合后的图像更好地保留和加强了源图像的细节信息。  相似文献   

19.
In this work, a filter bank-based algorithm for electrocardiogram (ECG) signals compression is proposed. The new coder consists of three different stages. In the first one--the subband decomposition stage--we compare the performance of a nearly perfect reconstruction (N-PR) cosine-modulated filter bank with the wavelet packet (WP) technique. Both schemes use the same coding algorithm, thus permitting an effective comparison. The target of the comparison is the quality of the reconstructed signal, which must remain within predetermined accuracy limits. We employ the most widely used quality criterion for the compressed ECG: the percentage root-mean-square difference (PRD). It is complemented by means of the maximum amplitude error (MAX). The tests have been done for the 12 principal cardiac leads, and the amount of compression is evaluated by means of the mean number of bits per sample (MBPS) and the compression ratio (CR). The implementation cost for both the filter bank and the WP technique has also been studied. The results show that the N-PR cosine-modulated filter bank method outperforms the WP technique in both quality and efficiency.  相似文献   

20.
探索基于小波变换对肺部CT图像进行无损雎缩的新方法.采用基于离散小波变换方法的JPEG2000标准对3019张肺部CT图像进行无损压缩,并针对压缩后图像效果进行统计分析.结果表明,该方法不但可以达到12.0的高压缩比,而且具有较高的图像尤损压缩质量,为临床CT医学影像的储存与诊断,提供了有益的技术与方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号