首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of group I metabotropic glutamate receptors (mGluRs) produces a long-lasting change in hippocampal excitability that persists in the absence of an agonist. Exposure to the group I mGluR agonist dihydroxyphenylglycine (DHPG) results in the induction of spontaneously occurring epileptiform activity in the CA3 region of rat hippocampal slices that includes both brief interictal discharges and longer synchronous activity that resembles seizure or ictal activity (>2s duration oscillating at a frequency greater than 2Hz). We evaluated activity-dependent mechanisms for the induction and maintenance of epileptiform activity. Both the induction and maintenance of epileptiform activity was blocked by inhibiting action potential generation with tetrodotoxin or substitution of sodium with choline or by blocking AMPA/KA ionotropic glutamate receptors. The ictal epileptiform activity induced by DHPG was composed of synchronous synaptic activity. Antagonists of group I mGluRs, either mGluR1 or mGluR5, suppressed the induction of ictal activity but had minimal effects on the maintenance of epileptiform activity. Group I mGluRs activate phospholipase C and inhibition of phospholipase C suppressed the induction but not the maintenance of epileptiform activity. Taken together, these results point to a use dependent change in CA3 neuronal network function produced by group I mGluR activation. Furthermore, activation of both mGluR1 and 5 is required to induce ictal discharges. The induction of epileptiform activity by DHPG is an in vitro model of epileptogenesis, and the development of epileptiform activity in this model depends on neuronal activity and synaptic transmission.  相似文献   

2.
The metabotropic glutamate receptor (mGluR) antagonist, (RS)-α-methyl-4-carboxyphenylglycine (MCPG; 500 μM), was tested on intracellularly recorded epileptiform activity induced by 4-aminopyridine (4-AP) in amygdala neurons. Superfusing 4-AP (1 mM) produced interictal spiking followed by ictal bursting. MCPG prevented the progressive transition from interictal spiking to ictal bursting but affected neither induction of interictal spiking nor maintenance of ongoing ictal bursting. These data suggest that mGluRs may be involved in the induction of ictal seizure events.  相似文献   

3.
The vascular endothelial growth factor (VEGF) signalling pathway may represent an endogenous anti-convulsant in the rodent hippocampus although its exact contribution requires some clarification. In mouse hippocampal slices, the potassium channel blocker 4-aminopyridine (4-AP) in the absence of external Mg(2+)(0 Mg(2+)) produces both ictal and interictal activity followed by a prolonged period of repetitive interictal activity. In this model, we demonstrated that exogenous VEGF has clear effects on ictal and interictal activity as it reduces the duration of ictal-like events, but decreases the frequency and intensity of interictal discharges. VEGF affects epileptiform activity through its receptor VEGFR-2. We also demonstrated for the first time that the synaptic action of VEGF in the hippocampus is through VEGFR-2-mediated effects on NMDA and GABA(B) receptors and that VEGF does not affect the NMDA excytatory postsynaptic potential paired-pulse facilitation ratio. Exogenous VEGF does not affect the AMPA-mediated responses and the dendritic or the somatic GABA(A) inhibitory postsynaptic potentials. In addition, VEGF drastically reduces 0 Mg(2+)/4-AP-induced glutamate release through VEGFR-2 activation. In vitro epileptiform activity is sufficient to increase hippocampal expression of VEGF and VEGFR-2, and this up-regulation may serve a neuroprotective and/or anti-convulsant role. VEGFR-2 up-regulation has been localized to the CA1 region, which suggests that VEGF signalling may protect CA1 pyramidal cells from hyperexcitability. These results indicate that VEGF controls epileptic activity by influencing both glutamatergic and GABAergic transmission and further advance our understanding of the conditions required for endogenous VEGF up-regulation, and the mechanisms by which VEGF achieves an anti-convulsant effect.  相似文献   

4.
Epileptiform activity induced by 4-aminopyridine in immature hippocampus   总被引:2,自引:0,他引:2  
Bath application of 4-aminopyridine (4-AP) to hippocampal slices taken from rats on postnatal days 10-15 produced prolonged synchronized epileptiform discharges in the CA3 subfield. Extracellular field recordings obtained from the pyramidal cell body layer recorded repetitive synchronized afterdischarges which were often 30 sec in duration. These ictal-like events were interspersed with variable amplitude positive-going interictal burst-like discharges. The afterdischarges consisted of a sustained negative field potential, upon which were superimposed negative-going population spikes. Simultaneous recordings from areas CA3 and CA1 indicated that the afterdischarge activity originated in CA3 since population spikes recorded there preceded and were time locked to spikes in CA1 pyramidal neurons. The burst-like interictal events recorded in CA3 were not all-or-none and had 2 clearly identifiable phases, the first being a smooth positive wave of relatively constant amplitude and duration. A second and subsequent excitatory phase was also positive going but more variable in size. This latter phase was accompanied by multiple population spikes. Intracellular events recorded simultaneously were most often excitatory, depolarized potentials. These varied in size and duration with coincident field potentials. Thus variations of the extracellular burst-like discharges recorded are more likely to be produced by changes from time to time in excitatory synaptic drive to CA3 pyramidal neurons than by alterations in the number of these pyramidal cells discharging in an all-or-none manner. The 4-AP-induced epileptiform discharge occurred in the presence of inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cyclosporine induces epileptiform activity in an in vitro seizure model   总被引:3,自引:3,他引:0  
Wong M  Yamada KA 《Epilepsia》2000,41(3):271-276
PURPOSE: Cyclosporine (CSA) toxicity represents a common cause of seizures in transplant patients, but the specific mechanisms by which CSA induces seizures are unknown. Although CSA may promote seizure activity by various metabolic, toxic, vascular, or structural mechanisms, CSA also has been hypothesized to modulate neuronal excitability directly. The objective of this study was to determine if CSA exerts direct epileptogenic actions on neurons in an in vitro seizure model. METHODS: Combined hippocampal-entorhinal cortex slices from juvenile rats were exposed directly to artificial cerebrospinal fluid (ACSF) containing either (a) 1.0 mM magnesium sulfate (control), (b) 1.0 mM sodium sulfate (low-magnesium), or (c) 1.0 mM magnesium sulfate + CSA (1,000-10,000 ng/ml). Spontaneous and evoked extracellular field potentials were recorded simultaneously from the dentate gyrus (DG) and CA3 hippocampal regions. Evoked synaptic responses were elicited by stimulation of the entorhinal cortex/perforant pathway. RESULTS: CSA elicited spontaneous or stimulation-induced epileptiform activity in the DG or CA3 region of approximately 40% of slices, consisting of brief repetitive "interictal" discharges or prolonged stereotypical "ictal" discharges. Mean latency to epileptiform activity was approximately 100 min after onset of CSA application. The interictal discharges were inhibited by the non-NMDA antagonist, NBQX. Similar epileptiform activity was observed in low-magnesium ACSF without CSA. In control ACSF alone, epileptiform activity was not seen, except for rare spontaneous potentials in the DG. CONCLUSIONS: Direct effects of CSA on neuronal excitability and synaptic transmission may contribute to seizures seen in clinical CSA neurotoxicity.  相似文献   

6.
The cellular and network mechanisms of the transition of brief interictal discharges to prolonged seizures are a crucial issue in epilepsy. Here we used hippocampal slices exposed to ACSF containing 0 Mg(2+) to explore mechanisms for the transition to prolonged (3-42 sec) seizure-like ("ictal") discharges. Epileptiform activity, evoked by Shaffer collateral stimulation, triggered prolonged bursts in CA1, in 50-60% of slices, from both adult and young (postnatal day 13-21) rats. In these cases the first component of the CA1 epileptiform burst was followed by a train of population spikes at frequencies in the gamma band and above (30-120 Hz, reminiscent of tetanically evoked gamma oscillations). The gamma burst in turn could be followed by slower repetitive "tertiary" bursts. Intracellular recordings from CA1 during the gamma phase revealed long depolarizations, action potentials rising from brief apparent hyperpolarizations, and a drop of input resistance. The CA1 gamma rhythm was completely blocked by bicuculline (10-50 microm), by ethoxyzolamide (100 microm), and strongly attenuated in hyperosmolar perfusate (50 mm sucrose). Subsequent tertiary bursts were also blocked by bicuculline, ethoxyzolamide, and in hyperosmolar perfusate. In all these cases intracellular recordings from CA3 revealed only short depolarizations. We conclude that under epileptogenic conditions, gamma band oscillations arise from GABA(A)ergic depolarizations and that this activity may lead to the generation of ictal discharges.  相似文献   

7.
Following prolonged withdrawal from extended access cocaine self-administration in adult rats, high conductance Ca2+ -ermeable AMPA receptors (CP-AMPARs) accumulate in nucleus accumbens (NAc) synapses and mediate the expression of "incubated" cue-induced cocaine craving. Using patch-clamp recordings from NAc slices prepared after extended access cocaine self-administration and >45 d of withdrawal, we found that group I metabotropic glutamate receptor (mGluR) stimulation using 3,5-dihydroxyphenylglycine (DHPG; 50 μm) rapidly eliminates the postsynaptic CP-AMPAR contribution to NAc synaptic transmission. This is accompanied by facilitation of Ca2+ -impermeable AMPAR (CI-AMPAR)-mediated transmission, suggesting that DHPG may promote an exchange between CP-AMPARs and CI-AMPARs. In saline controls, DHPG also reduced excitatory transmission but this occurred through a CB1 receptor-dependent presynaptic mechanism rather than an effect on postsynaptic AMPARs. Blockade of CB1 receptors had no significant effect on the alterations in AMPAR transmission produced by DHPG in the cocaine group. Interestingly, the effect of DHPG in the cocaine group was mediated by mGluR1 whereas its effect in the saline group was mediated by mGluR5. These results indicate that regulation of synaptic transmission in the NAc is profoundly altered after extended access cocaine self-administration and prolonged withdrawal. Furthermore, they suggest that activation of mGluR1 may represent a potential strategy for reducing cue-induced cocaine craving in abstinent cocaine addicts.  相似文献   

8.
We investigated the potential of 4-AP (50-100 microM) to induce seizure-like events (SLEs) in combined entorhinal cortex-hippocampal slices from Sprague Dawley rats which developed spontaneous limbic seizures following kainic acid induced status epilepticus. Slices from control rats (n=8) displayed SLEs in the entorhinal and perirhinal cortex upon application of 50 or 100 microM 4-AP. By contrast, 4-AP failed to induce SLEs in slices from chronic epileptic rats (n=13) except for one slice from one rat. This animal displayed only minor cell loss in layer III of the entorhinal cortex, in contrast to the other epileptic rats for which layer III neuronal loss was extensive. In all slices from epileptic rats, 4-AP induced recurrent epileptiform discharges similar to the interictal activity observed in control rats. Combined application of 4-AP (100 microM) and bicuculline methiodide (30 microM) induced frequent and prolonged recurrent epileptiform discharges in both control and chronic epileptic rats. 4-AP at 50-100 microM likely affects potassium channels containing Kv1.4, Kv1.5, Kv3.1 or Kv3.2 subunits. Real-time PCR revealed no significant downregulation of Kv1.4, Kv1.5, Kv3.1 or Kv3.2 in the subiculum, entorhinal and perirhinal cortex from chronic epileptic rats compared to controls. However, the expression of Kv3.4, responding to 4-AP in mM range, was significantly reduced. Using sub-unit-specific antibodies, the real-time PCR findings were confirmed by immunocytochemistry. We suggest that after chronic epilepsy, reorganization in the entorhinal cortex is accompanied by adaptations in homeostatic plasticity with anticonvulsant consequences.  相似文献   

9.
Ictal paresis (IP) is a rare negative motor phenomenon presenting challenging differential diagnostic problems with transient ischemic attacks, post-ictal paralysis, migraine and psychogenic paralysis. Video-EEG undoubtedly represents the essential mean for a proper diagnosis. Periodic lateralised epileptiform discharges (PLEDs) are a distinctive EEG pattern, consisting of periodic spike or sharp wave discharges, often associated with seizures. It is under debate if PLEDs should be considered only a peri-ictal or also an ictal EEG pattern. We describe two children with severe focal epilepsies, who presented IP recorded during video-EEG monitoring, associated to PLEDs. Clinical observation along with interictal and ictal scalp-EEG findings, suggested a fronto-temporal seizure onset in the first, and a temporo-insular onset in the second. We confirm that PLEDs may be an ictal pattern associated with negative motor phenomena.  相似文献   

10.
Y Fueta  M Avoli 《Epilepsy research》1992,12(3):207-215
Extracellular field potential recordings were used to study the effects of the antiepileptic drugs (AEDs) carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PhB) and valproic acid (VPA) on the epileptiform activity evoked by 4-aminopyridine (4-AP, 50 microM) in the CA3 subfield of rat hippocampal slices obtained from young (8-23-day-old) and adult (> 60-day-old) male rats. Ictal (duration: 3-20 s; rate of occurrence: 3-12 x 10(-3) s-1) and interictal (duration: 0.2-0.8 s; rate of occurrence: 0.2-0.8 s-1) discharges were recorded in young slices, while only interictal activity (duration: 70-90 ms; rate of occurrence: 0.5-0.9 s-1) discharges were observed in adult slices. In addition, in both young and adult slices 4-AP disclosed a synchronous long-lasting potential (duration and rate of occurrence: 0.6-3 s, 7-70 x 10(-3) s-1 and 260-660 ms, 8-60 x 10(-3) s-1, respectively) that was caused by the activation of the gamma-aminobutyric acid type A (GABAA) receptor. In young slices, ictal discharges were blocked by CBZ (0.05 mM), PHT (0.1 mM), PhB (0.5 mM) and VPA (0.5 mM). With the exception of PhB, higher concentrations were necessary in these experiments for blocking the interictal activity (i.e., CBZ: 0.1 mM; PHT: > 0.2 mM; VPA: 2 mM). At these concentrations, none of the AEDs blocked the interictal activity in the adult hippocampus, but only reduced the rate of occurrence. PhB enhanced the rate of occurrence of the synchronous GABA-mediated long-lasting potentials both in young (increase: 190%) and in adult (increase: 145%) slices, while VPA increased their occurrence by 54% only in young slices. CBZ decreased the rate of occurrence of this long-lasting potential only in adult hippocampus. Our data indicate that the effects of the AEDs on 4-AP-induced epileptiform discharges are both pattern- and age-dependent. The rank order of potencies of the four AEDs was: (a) in young: CBZ > PHT > PhB > VPA; (b) in adult: CBZ > PhB > PHT > VPA.  相似文献   

11.
Purpose:   The anterior cingulate cortex (ACC)—which plays a role in pain, emotions and behavior—can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region.
Methods:   We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation.
Results:   Bath-application of the convulsant 4-aminopyridine (4AP, 50 μM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N -methyl- d -aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application.
Conclusions:   Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC.  相似文献   

12.
PURPOSE: We determined how CA3-driven interictal discharges block ictal activity generated in the entorhinal cortex during bath application of 4-aminopyridine (4AP, 50 microM). METHODS: Field potential and [K+]o recordings were obtained from mouse combined hippocampus-entorhinal cortex slices maintained in vitro. RESULTS: 4AP induced N-methyl-d-aspartate (NMDA) receptor-dependent ictal discharges that originated in the entorhinal cortex, disappeared over time, but were reestablished by cutting the Schaffer collateral (n = 20) or by depressing CA3 network excitability with local application of glutamatergic receptor antagonists (n = 5). In addition, two types of interictal activity occurred throughout the experiment. The first type was CA3 driven and was abolished by a non-NMDA glutamatergic receptor antagonist. The second type was largely contributed by gamma-aminobutyric acid type A (GABAA) receptor-mediated conductances and persisted during blockade of glutamatergic transmission. The absence of CA3-driven interictal discharges in the entorhinal cortex after Schaffer collateral cut facilitated the GABA-mediated interictal potentials that corresponded to large [K+]o elevations and played a role in ictal discharge initiation. Accordingly, ictal discharges along with GABA-mediated interictal potentials disappeared during GABAA-receptor blockade (n = 7) or activation of mu-opioid receptors that inhibit GABA release (n = 4). CONCLUSIONS: Our findings suggest that CA3-driven interictal events restrain ictal discharge generation in the entorhinal cortex by modulating the size of interictal GABA-mediated potentials that lead to large [K+]o elevations capable of initiating ictal discharges in this structure.  相似文献   

13.
Two types of spontaneous filed potentials were recorded in rat hippocampal slices after addition of 4-aminopyridine (4-AP; 50 microM). One consisted of brief, epileptiform discharges that occurred at 0.6 +/- 0.2 sec-1 in the CA3 and CA1 areas. The other type occurred less frequently (0.036 +/- 0.013 sec-1) and was recorded in CA1, CA3, and dentate areas. It corresponded in all regions to an intracellular long-lasting depolarization (LLD; duration, 300-1200 msec; peak amplitude, 2-15 mV) that was abolished by bicuculline methiodide; therefore, it was mediated by GABAA receptors. Sectioning experiments and the occurrence of propagation failures indicated that LLDs could be initiated by any area of the slice. Furthermore, the propagation of LLDs did not follow any consistent or predictable pattern along known anatomical hippocampal pathways. Finally, neither the occurrence nor the propagation of LLDs was affected when excitatory synaptic transmission was blocked by NMDA and non-NMDA receptor antagonists. In the presence of antagonists of glutamatergic receptors, LLDs disappeared after the omission of Ca2+ or the addition of Cd2+ to the perfusing solution, suggesting that synaptic transmission was required for their generation. These data indicate that 4-AP discloses both interictal epileptiform discharges and LLDs in the rat hippocampus. The first type of activity is presumably related to certain properties of CA3 pyramidal neurons and the neuronal circuit, whereas LLDs originate from the spontaneous, periodic activity of GABAergic interneurons located in any area of the hippocampus, and can propagate to the other areas by the use of nonsynaptic mechanisms. We propose that 4-AP reveals a novel type of interaction among GABAergic interneurons that is based on the accumulation and the dispersion of K+.  相似文献   

14.
Purpose: The piriform cortex (PC) is known to be epileptic‐prone and it may be involved in the manifestation of limbic seizures. Herein, we have characterized some electrophysiologic and pharmacologic properties of the spontaneous epileptiform activity generated by PC networks maintained in vitro. Methods: We performed field potential recordings from the PC in coronal or sagittal rat brain slices along with pharmacologic manipulations of γ‐aminobutyric acid (GABA)ergic and glutamatergic signaling during application of the convulsant drug 4‐aminopyridine (4AP, 50 μm ). Key Findings: Coronal and sagittal preparations generated interictal‐like and ictal‐like epileptiform discharges with similar duration and frequency. Ictal‐like discharges in sagittal slices were initiated mostly in the PC anterior subregion, whereas interictal activity did not have any preferential site of origin. In sagittal slices, high frequency oscillations (HFOs) at 80–200 Hz were detected mainly at the beginning of the ictal discharge in both posterior and anterior subregions. N‐Methyl‐d ‐aspartate (NMDA) receptor antagonism abolished ictal discharges, but failed to influence interictal activity. In the absence of ionotropic glutamatergic transmission, PC networks generated slow, GABA receptor–dependent events. Finally, GABAA receptor antagonism during application of 4AP only, abolished ictal discharges and disclosed recurrent interictal activity. Significance: Our findings demonstrate that PC networks can sustain in vitro epileptiform activity induced by 4AP. HFOs, which emerge at the onset of ictal activity, may be involved in PC ictogenesis. As reported in several cortical structures, ionotropic glutamatergic neurotransmission is necessary but not sufficient for ictal discharge generation, a process that also requires operative GABAA receptor–mediated signaling.  相似文献   

15.
PURPOSE: To report the rare opportunity to study ictal magnetoencephalography (MEG) in a 26 year old man with simple partial status epilepticus that presented as elementary visual hallucinations (EVHs) in the right upper visual field. METHODS: The patient described his EVHs as "snowing on TV," "flickering lights," and "rotating coloured balls" that continued for several days. MEG and simultaneous EEG were recorded twice: during an episode of EVHs (ictal recordings) and after EVHs were controlled by medications (interictal recordings). RESULTS: During EVHs, MEG showed continuous periodic epileptiform discharges over the left posterior superior temporal region, while simultaneous EEG showed rhythmic theta waves and sporadic spikes over the left temporal region. The MEG discharge consisted of a three phase spike complex. Equivalent current dipoles (ECDs), modelled from spike complexes, localised in the left superior temporal area. After drug treatment controlled the EVHs, interictal MEG and EEG showed rare spikes over the same left temporal region. The average ictal ECD moment (mean (SD)) (128.7 (32.8 nAm)) was significantly weaker than the average interictal ECD moment (233.0 (63.9) nAm) (p<0.05). CONCLUSIONS: The continuous, periodic, and clustered discharges seen on ictal MEG were the sources of EVH. The weaker ictal ECD sources were frequently not detected by scalp EEG, while the stronger interictal sources, presumably originating from an extensive interictal zone, were sufficiently large to be seen as EEG spikes.  相似文献   

16.
Patients with absence epilepsy frequently develop convulsions later in life. We were therefore interested whether tissue from rats with a genetic absence epilepsy is more prone to seizure generation than normal animals. We compared the epileptiform activities induced by 4-aminopyridine (4-AP) induced in hippocampal–entorhinal cortex slices from genetic absence epilepsy rats of Strasbourg (GAERS, age 6 months) in which absence seizures have been present for about 4 months and from control non epileptic rats (NE). 4-AP induced short recurrent discharges in area CA1 of rat hippocampus, seizure-like events and interictal discharges in the entorhinal cortex. The various epileptiform discharges did not differ between the two strains in amplitude, duration and frequency. However, the latency for induction of different epileptiform activities by 50 μM 4-AP was significantly shorter in GAERS (about 16 min) than in NE rats (about 25 min). We also analysed differences in evoked field potentials (fp) in hippocampal area CA1 before, during and after application of 4-AP. Before application of 4-AP, responses to stimulation of Schaffer collateral were smaller in GAERS than in NE rats. Paired pulse potentiation was significantly larger in GAERS than in NE rats. 4-AP in the bath augmented the size of the evoked field potentials and this increase was larger in GAERS than in NE rats. Our findings show a greater excitability of hippocampal area CA1 in GAERS rats and a greater ability to develop 4-AP-induced epileptiform activity in combined hippocampal–enthorhinal cortex slices in GAERS than in NE rats.  相似文献   

17.
Activation of muscarinic cholinergic receptors produces oscillations in the hippocampal slice that resemble the theta rhythm, but also may produce abnormal synchronous activity that is more characteristic of epileptiform activity. We used pilocarpine, a muscarinic agonist and convulsant, and an elevation in extracellular potassium (5-7.5 mM) to produce synchronous neuronal activity that was prolonged (>2 s) and mimicked synchronization noted during seizures in vivo (ictal activity). In the CA3 region of adult rat hippocampal slices, prolonged ictal oscillations consisted of rhythmic field potentials occurring at 4-10 Hz for up to 30 s (ictal duration) that occurred in a regular periodic pattern every 12-166 s (ictal interval). The duration and interval between ictal oscillations were measured before and after application of drugs to define determinants of ictal occurrence. High threshold calcium channel antagonists (nifedipine and verapamil) blocked ictal activity. Release of calcium from intracellular stores also appeared to be important for ictal synchronization because ictal activity was blocked by dantrolene, an inhibitor of calcium release from intracellular stores, and by thapsigargin which blocks the ATPase that maintains intracellular calcium stores. These suppressive effects appeared to be postsynaptic because nifedipine, dantrolene, and thapsigargin had no effect on evoked fEPSPs. Enhancement of presynaptic inhibition by activation of GABA(B) or adenosine A(1) receptors suppressed ictal activity and depressed the amplitude of evoked population synaptic potentials. The results point to an important role for high threshold calcium channels and release of calcium from intracellular stores in addition to strength of synaptic connections in generation of prolonged oscillations that underlie seizure activity.  相似文献   

18.
Bath application of the GABAB receptor agonist baclofen produced a concentration-dependent long-lasting potentiation (LLP) of the evoked population spike in the dentate gyrus of rat hippocampal slices. A high concentration of baclofen (5 microM) also produced a loss of inhibition that was manifested as the appearance of epileptiform, multiple evoked population spikes and a decrease in paired-pulse inhibition. Both baclofen-induced potentiation and epileptiform activity could be blocked or significantly reduced in slices from pertussis toxin-treated animals (1 microgram, intradentate) or in slices pretreated with the NMDA receptor antagonist D-(-)-2-amino-5-phosphonovaleric acid (10 microM). At a concentration that had no significant effect on individual evoked responses (0.1 microM) but still produced a loss in paired-pulse inhibition, baclofen facilitated the induction of beta-adrenergic receptor-mediated LLP. LLP was induced in the dentate gyrus by bath application of 1 microM, but not 0.1 microM, isoproterenol. Coapplication of baclofen and isoproterenol, both at a concentration (0.1 microM) that individually had no effect on the population spike, produced a synergistic LLP of the population spike. We propose that baclofen produces a selective disinhibitory effect in the granule cell layer of the dentate gyrus by inhibiting the activity of GABAergic interneurons. At a low concentration, the subtle loss of inhibition can facilitate the induction of isoproterenol-induced LLP. At a high concentration, baclofen can produce an LLP that is probably induced by a loss of inhibition.  相似文献   

19.
Interictal discharges are used in clinical practice to localize the epileptogenic focus in patients with partial epilepsy. However, the interaction between interictal and ictal discharges remains debatable. For instance, interictal events may lead to seizure onset in some models of epileptiform discharge. By contrast, in other models, disappearance of interictal activity (for example by activation of GABAB receptors) induces or potentiates ictal events. We have recently obtained new evidence for a control exerted by interictal discharges on ictal activity in rodent combined slices of hippocampus-entorhinal cortex. In this preparation continuous application of 4-aminopyridine induces: (i) interictal activity which initiates in CA3 and propagates via CA1 and subiculum to the entorhinal cortex, and return to the hippocampus through the dentate gyrus; and (ii) ictal discharges, which originate in the entorhinal cortex and propagate via the dentate gyrus to the hippocampus. Ictal discharges disappear over time, while synchronous interictal discharges continue to occur. Lesioning the Schaffer collaterals abolishes interictal discharges in CA1, entorhinal cortex and dentate gyrus and discloses entorhinal ictal discharges that propagate, via the dentate gyrus, to the CA3 subfield. Interictal activity of CA3 origin also prevents the occurrence of ictal events recorded in the entorhinal cortex in Mg(2+)-free medium. Moreover, in both models, ictal discharge generation in the entorhinal cortex after Schaffer collateral cut is prevented by mimicking CA3 activity through rhythmic electrical stimulation of CA1 hippocampal outputs. Hence, our data demonstrate that hippocampus interictal discharges control the expression of electrographic seizures in entorhinal cortex. Sectioning the Schaffer collaterals may model the epileptic condition in which cell damage in the CA3 subfield results in loss of CA3 control over the entorhinal cortex. Hence, the functional integrity of hippocampal CA3 neurons may represent a critical control point in temporal lobe epilepsy.  相似文献   

20.
EEG remains the primary technique in the diagnosis, characterization, and localization of partial seizures. This review examines the significance and character of interictal epileptiform abnormalities, periodic lateralized epileptiform discharges, and ictal patterns in patients with partial epilepsy. Interictal epileptiform discharges are common and assist in the diagnosis and localization of partial seizures. Fortunately, true "false positive" EEGs with focal epileptiform abnormalities are distinctly rare. Periodic lateralized discharges have characteristics of both interictal and ictal activity and are an area of controversy as to their clinical significance. Ictal patterns in partial seizures are variable, with the most distinctive features seen in seizures from a mesial temporal lobe origin. The unifying EEG feature of a partial seizure is in its evolution. A partial seizure begins with a clear delineation of the onset of activity that is distinct from the preceding background, followed by an evolution of this activity in both frequency and amplitude and terminating with an identifiable cessation of the rhythmic pattern that merges again into the background activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号