首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased contractility of the peri-junctional actomyosin ring (PAMR) breaks down the barrier integrity of corneal endothelium. This study has examined the effects of microtubule disassembly on Myosin Light Chain (MLC) phosphorylation, a biochemical marker of actomyosin contraction, and barrier integrity in monolayers of cultured bovine corneal endothelial cells (BCEC). Exposure to nocodazole, which readily induced microtubule disassembly, led to disruption of the characteristically dense assembly of cortical actin cytoskeleton at the apical junctional complex (i.e., PAMR) and dispersion of ZO-1 from its normal locus. Nocodazole also led to an increase in phosphorylation of MLC. Concomitant with these changes, nocodazole caused an increase in permeability to HRP and FITC dextran (10 kDa) and a decrease in trans-endothelial electrical resistance (TER). Y-27632 (a Rho kinase inhibitor) and forskolin (known to inhibit activation of RhoA through direct elevation of cAMP) opposed the nocodazole-induced MLC phosphorylation, decrease in TER, and dispersion of ZO-1. Thrombin, which breaks down the barrier integrity of BCEC monolayers, also induced microtubule disassembly and MLC phosphorylation. Pre-treatment with paclitaxel to stabilize microtubules opposed the thrombin effects. These results suggest that microtubule disassembly breaks down the barrier integrity of BCEC through activation of RhoA and subsequent disruption of the PAMR. The thrombin effect also highlights that signaling downstream of GPCRs can also influence the organization of microtubules.  相似文献   

2.
3.
Increased contractility of the actin cytoskeleton by phosphorylation of the regulatory myosin light chain (MLC) results in a loss of barrier integrity in corneal endothelial cells. This study has investigated the effect of extracellular ATP, which may influence both Ca2+ and cAMP signalling, on MLC phosphorylation and barrier integrity in cultured bovine corneal endothelial cells (BCEC) known to express A2B and P2Y purinergic receptors, and ecto-nucleotidases. Extracellular ATP (100 microM) promoted MLC dephosphorylation (pMLC=61.8% at 18 min; n=9). Pre-exposure to ARL-67156, an ecto-nucleotidase inhibitor, prevented ATP-induced dephosphorylation. Other P2Y agonists, UTP and ATPgammaS, also induced MLC dephosphorylation but to a lesser degree compared to ATP. Thrombin (2 U/ml), which activate Rho kinase through PAR-1 receptors in the endothelium, induced MLC phosphorylation (pMLC=129.2%; n=14). This phosphorylation was completely abolished by concomitant exposure to ATP. When cells were pretreated with adenosine (100 microM; A2B agonist) or forskolin (10 microM), thrombin-induced phosphorylation was suppressed. ATP also led to a significant increase in cAMP (> 3-fold compared to 10 microM adenosine). Thrombin-induced increase in trans-endothelial flux of horseradish peroxidase (44 kDa) and disruption of the cortical actin were suppressed by ATP. These findings indicate that in BCEC (1) ATP induces elevated cAMP through its metabolite adenosine leading to MLC dephosphorylation, (2) Stimulation of P2Y2 receptors also leads to activation of MLCP since UTP- and ATPgammaS caused MLC dephosphorylation, and (3) ATP is antagonistic to thrombin since the latter inhibits MLCP through increased activity of Rho kinase. These findings further emphasize the role of contractility of the actin cytoskeleton in regulating the barrier integrity of corneal endothelium.  相似文献   

4.
PURPOSE: Dephosphorylation of the myosin II regulatory light chain (MLC) promotes barrier integrity of cellular monolayers through relaxation of the actin cytoskeleton. This study has investigated the influence of adenosine (ADO) on MLC phosphorylation in cultured bovine corneal endothelial cells (BCEC). METHODS: MLC phosphorylation was assessed by urea-glycerol gel electrophoresis and immunoblotting. Elevation of cAMP in response to agonists of A2b receptors (subtype of P1 purinergic receptors) was confirmed by phosphorylation of the cAMP response element binding protein (CREB), which was determined by Western blotting. Activation of MAP kinases (i.e. activated ERK1 and ERK2) was assessed by Western blotting to examine their influence on MLC phosphorylation. Transepithelial electrical resistance (TER) of cells grown on porous filters was measured to assess the altered barrier integrity. RESULTS: Exposure to ADO (200 microm; 30 min) and N-ethyl (carboxamido) adenosine (NECA; 50 microm; 30 min), known agonists of A2b receptors, induced phosphorylation of CREB similar to forskolin (FSK, 20 microm; 30 min), a direct activator of adenylate cyclase. Exposure to ADO, NECA, and FSK led to dephosphorylation of MLC by 51, 40, and 47%, respectively. ADO-induced dephosphorylation was dose-dependent with as much as 31% dephosphorylation at 1 microm ADO. CGS-21680, a selective A2a agonist, neither induced MLC dephosphorylation nor CREB phosphorylation. ADO phosphorylated MAP kinases which could be prevented by exposure to the MAP kinase-specific inhibitor, U0126 (10 microM). NECA and FSK also induced ERK1 and ERK2 activation similar to ADO. Exposure to U0126 inhibited MLC phosphorylation under basal conditions by 17%. ADO-induced MLC dephosphorylation was enhanced by a simultaneous exposure to U0126 (25% increase in dephosphorylation). Exposure to ADO caused an increase in TER from 17 to 22 ohms cm2. CONCLUSIONS: (1) CREB phosphorylation in response to ADO and NECA, which indicates activation of the cAMP-PKA axis, suggests expression of A2b receptors in BCEC. (2) ERK1 and ERK2, activated by cAMP and A2b receptors, promote MLC phosphorylation. However, the net result of cAMP elevation is MLC dephosphorylation, presumably because the competing pathways involving inactivation of MLCK and/or ROCK are dominant (Rho-associated coiled coil-containing protein kinase or Rho kinase). (3) Consistent with MLC dephosphorylation, exposure to ADO increases TER, which suggests increased barrier integrity.  相似文献   

5.
PURPOSE: Phosphorylation of myosin light chain (MLC) is essential for the contractility of the actin cytoskeleton, which regulates barrier integrity, adhesion, and migration. This study was conducted to investigate the effect of benzalkonium chloride (BAK), a preservative in topical ophthalmic formulations, on MLC phosphorylation in primary cultures of bovine corneal epithelial cells (BCECs). METHODS: MLC phosphorylation was assessed by urea-glycerol gel electrophoresis followed by Western blot analysis. Activation of RhoA, which inhibits MLC phosphatase through Rho kinase, was examined by immunoprecipitation. The release of adenosine triphosphate (ATP) was measured by the luciferase-luciferin bioluminescence technique. RESULTS: Positive expression of MLC kinase (MLCK) was found at the mRNA and protein levels by RT-PCR and Western blot analysis, respectively. Exposure to BAK for 10 to 20 minutes at concentrations of 0.0005%, 0.001%, and 0.003% reduced MLC phosphorylation by more than 30%. In addition, BAK led to thinning of the cortical actin and a decrease in cell adhesion. However, RhoA activity was found to increase with BAK treatment. Similar to BAK, ATP-depletion (induced by both antimycin-A and hypoxia) led to MLC dephosphorylation. BAK exposure also showed acute ATP release. CONCLUSIONS: BAK induces acute ATP release and concomitant MLC dephosphorylation in bovine corneal epithelial cells. The dephosphorylation, presumably due to ATP loss, is indicative of a loss of contractility of the actin cytoskeleton that could affect cellular functions contributing to the maintenance of epithelial barrier integrity.  相似文献   

6.
A potential role for myosin light chain kinase (MLCK) in regulating intraocular pressure and outflow function has recently been reported in living monkey eye and rabbit eye. There is little information about the effects of the ocular hypotensive agents, prostaglandin F2alpha (PGF2alpha) and latanoprost on this signaling pathway in ocular tissues. The aim of this study was to determine the agonist activity of PGF2alpha, latanoprost and carbachol (CCh) on the MLCK pathway in isolated bovine iris sphincter and furthermore to investigate the existence of the FP receptor in this tissue. In the present studies on the MLCK pathway four signal transduction mechanism assays were employed, phosphoinositide (PI) turnover, p42/p44 MAP kinase phosphorylation and activation, MLC phosphorylation and contraction. In the studies on the existence of the FP receptor in the bovine iris sphincter, the pharmacology and expression of the FP receptor protein, using a polyclonal anti-FP-receptor antibody and Western blot analysis, were determined. The data obtained on the MLCK pathway showed that the three agonists stimulated the biochemical and pharmacological responses in a concentration and time-dependent manner and that the order of potency and efficacy is PGF2alpha>latanoprost>CCh. The EC50 values in the PI turnover, MAP kinase phosphorylation, MLC phosphorylation and contraction assays were for PGF2alpha: 9, 42, 200 and 140 nM, respectively, for latanoprost: 13, 59, 250 and 828 nM, respectively, and for CCh: 22, 200, 630 and 910 nM, respectively. Wortmannin, a selective inhibitor of MLCK, dose-dependently inhibited MLC phosphorylation and contraction induced by PGF2alpha, demonstrating a close relationship between activation of the MLCK pathway and contraction. The pharmacological studies showed that in the concentration range of 1 nM to 10 microM, the FP-receptor agonists caused concentration-response curves with the following order of potencies: 17-phenyl trinor PGF2alpha (bimatoprost acid)>PGF2alpha>cloprostenol>latanoprost>latanoprost acid>bimatoprost amide>fluprostenol. Immunoblot analysis of the FP receptor demonstrated expression of the prostaglandin FP receptor protein in this smooth muscle. These results clearly indicate that the MLCK signaling pathway is involved in the FP-receptor function of the bovine iris sphincter and furthermore demonstrate that functional FP receptors exist and are expressed in this tissue.  相似文献   

7.
Retinal pigment epithelial cells (RPEs) are thought to be one of the main components of fibrous membrane observed in eyes with proliferative vitreo-retinopathy. We investigated the signalling mechanisms of TGF-beta2-dependent collagen gel contraction by RPEs.An in vitro type I collagen gel contraction assay was performed to evaluate the effect of TGF-beta2 on gel contraction. The expression of alpha-smooth muscle actin (alpha-SMA) and the phosphorylation state of myosin light chain (MLC) were analyzed by Western blotting. The involvement of protein kinases such as p44/42 mitogen-activated protein kinase (MAPK), protein kinase C (PKC), p38 MAPK and phosphatidylinositol-3 kinase was investigated. The contribution of Rho-kinase and/or MLC-kinase was also evaluated using respective kinase inhibitors (Y27632, hydroxyfasudil and ML7). Additionally, RPEs were immunostained to examine whether the expression of alpha-SMA detected in our western blotting correlated to the stress fiber formation within the cells. TGF-beta2 caused time (0-5 days)-and dose (0 10 ng ml(-1))-dependent gel contraction associated with overexpression of alpha-SMA and phosphorylation of MLC (p < 0.01, respectively). PKC inhibitor (GF109203X, 5 microM) and p38 MAPK inhibitor (SB203580, 10 microM) significantly attenuated TGF-beta2-elicited gel contraction via partial downregulation of both alpha-SMA expression and MLC phosphorylation (p < 0.01, respectively). The gel contraction was prominently inhibited in the presence of Y27632 (10 microM) or hydroxyfasudil (10 microM) with strong suppression of MLC phosphorylation but had no significant effect on alpha-SMA expression. Treatment with ML7, in contrast, resulted in a marginal inhibition of MLC phosphorylation and gel contraction. Finally, pretreatment of the cells with Y27632 or hydroxyfasudil prevented the formation of stress fiber within the cells. These results indicate that TGF-beta2-dependent myofibroblastic transdifferentiation and MLC phosphorylation by RPEs involve both PKC and p38 MAPK pathways at least in part. Myofibroblastic transdifferentiation of RPEs appears to be independent of the Rho-kinase pathway, and the presence of alpha-SMA does not necessarily reflect the contractile potential of a cell. While Rho-kinase inhibitors are incapable of preventing myofibroblastic transdifferentiation itself, this pathway could be one of the critical targets of cell-mediated contraction of the tissue containing fibrillar collagens by transdifferentiated RPEs.  相似文献   

8.
Cellular contraction and relaxation and integrity of the actin cytoskeleton in trabecular meshwork (TM) tissue have been thought to influence aqueous humour outflow. However, the cellular pathways that regulate these events in TM cells are not well understood. In this study, we investigated physiological agonist-mediated regulation of myosin light chain (MLC) phosphorylation in the TM, and correlated such effects with alterations in aqueous outflow facility, since MLC phosphorylation is a critical biochemical determinant of cellular contraction in TM cells. Treatment of serum starved human TM cells with endothelin-1 (0.1 microM), thromboxane A2 mimetic U-46619 (1.0 microM), or angiotensin II (1 microM), all of which are agonists of G-protein coupled receptors, triggered activation of MLC phosphorylation, as determined by urea/glycerol-based Western blot analysis. Agonist-stimulated increase in MLC phosphorylation was associated with activation of Rho GTPase in TM cells, as determined in pull-down assays. In contrast, treatment of human TM cells with a novel Rho-kinase inhibitor H-1152 (0.1-2 microM), in the presence of serum reduced basal MLC phosphorylation. H-1152 also increased aqueous outflow facility significantly in a dose-dependent fashion, in perfusion studies with cadaver porcine eyes. This effect of H-1152 on outflow facility was associated with decreased MLC phosphorylation in TM tissue of drug-perfused eyes. Collectively, this study identifies potential physiological regulators of MLC phosphorylation in human TM cells and demonstrates the significance of Rho/Rho-kinase pathway-mediated MLC phosphorylation in modulation of aqueous outflow facility through TM.  相似文献   

9.
Most retinal proliferative diseases involve blood-retinal barrier (BRB) breakdown, exposing the retinal pigment epithelium (RPE) to thrombin, which triggers cell transformation, proliferation and migration through the activation of PAR-1. These processes require the assembly of contractile stress fibers containing actin and non-muscle myosin II, which allow cell movement upon phosphorylation of the myosin light chains (MLCs). PKC family of kinases promotes agonist-mediated contraction in smooth muscle and endothelial cells through the activation of its downstream target, the PKC-potentiated inhibitory protein of 17?kDa (CPI-17), which specifically inhibits MLC phosphatase. Although the participation of PKC in RPE cell transdifferentiation has been suggested, the role of PKC/CPI-17 signaling has not been investigated. The purpose of this study was to analyze the involvement of specific PKC isoenzymes and their effector protein CPI-17 in thrombin-induced MLC phosphorylation and actin stress fiber assembly in RPE cells. Rat RPE cells in primary culture were shown to respond to thrombin stimulation by activation of conventional, novel and atypical PKC isoforms and the downstream phosphorylation of CPI-17 and MLC, which in turn promoted actin stress fiber assembly. These effects were prevented by the pharmacological inhibition of conventional PKC isoenzymes (Ro-32-0432) and novel PKCδ (rottlerin and δV1-1 antagonist peptide), as well as by myristoylated pseudosubstrates specifically directed to conventional and atypical PKC isoforms. Thrombin effects were mimicked by phorbol 12-myristate 13-acetate (PMA), further confirming the involvement of diacylglycerol (DAG)-sensitive classical and novel PKC isoforms in thrombin-induced actin cytoskeleton modification. The present work shows, for the first time, the functional expression of the oncoprotein CPI-17 in RPE cells and suggests that PKC/CPI-17 signaling is involved in the control of actin cytoskeletal remodeling leading to cell motility in RPE cells exposed to thrombin, and hence could contribute to the development of proliferative eye diseases.  相似文献   

10.
PURPOSE: To investigate histamine-induced changes in the phosphorylation of myosin light chain (MLC) and its influence on the barrier integrity of corneal endothelial cells through altered contractility of the actin cytoskeleton. METHODS: Experiments were performed in cultured bovine corneal endothelial cells (BCECs). Phosphorylation of MLC, which increases contractility of the actin cytoskeleton through actomyosin interaction, was assessed by urea-glycerol gel electrophoresis and Western blot analysis. Immunocytochemistry was used to locate phosphorylated MLC in relation to tight junctions. Phosphorylation of the 17-kDa PKC-potentiated inhibitory protein of type 1 protein phosphatase (CPI-17), which inhibits MLC phosphatase, was studied using Western blot analysis. The cortical actin cytoskeleton was visualized by staining with Texas-red phalloidin. Barrier integrity was determined by quantifying horseradish peroxidase (HRP; 44 kDa) flux across cells grown on porous filters. RESULTS: RT-PCR and Western blot analysis confirmed the expression of Galphaq/11-coupled H1 receptors in BCECs. Exposure to histamine (100 microM; 10 minutes) led to phosphorylation of MLC (134% relative to untreated cells) and of CPI-17. Histamine also increased the flux of HRP by sevenfold and disrupted the assembly of the dense cortical actin found in resting cells. PKC activation by phorbol 12-myristate 13-acetate (PMA; 100 nM; 30 minutes) caused phosphorylation of both MLC and CPI-17. The histamine-induced MLC phosphorylation was reduced by pre-exposure to either ML-7 (50 microM), an MLCK (MLC kinase) inhibitor, or chelerythrine (10 microM), an inhibitor of PKC. Cotreatment with agents that elevate cAMP in BCECs prevented the histamine-induced MLC phosphorylation and the disruption of the actin cytoskeleton, and increased HRP flux. Phosphorylated MLC in response to histamine or PMA was found in a punctate form in close proximity to ZO-1, a marker of the tight junctional complex. CONCLUSIONS: Histamine induces MLC phosphorylation by activating MLCK and partly inhibiting MLC phosphatase. The latter is facilitated by the phosphorylation of CPI-17. Localization of phosphorylated MLC in proximity to ZO-1 suggests increased contractility of the cortical actin at the tight junctional complex. This contractility oppose the tethering forces and lead to a breakdown of the barrier integrity. Last, elevated cAMP prevents histamine-induced loss of the barrier integrity, not only by blocking inactivation of MLC phosphatase but also by inactivating MLCK.  相似文献   

11.
PURPOSE: The goal of this study was to investigate the role of Rho kinase in the modulation of aqueous humor outflow facility. Rho kinase, a critical downstream effector of Rho GTPase is recognized to control the formation of actin stress fibers, focal adhesions, and cellular contraction. METHODS: Expression of Rho GTPase, Rho kinase, and other downstream targets of Rho GTPase were determined in human trabecular meshwork (HTM) and Schlemm's canal (SC) primary cell cultures by Western blot analysis. The Rho kinase-specific inhibitor (Y-27632)-induced changes in actin stress fibers, focal adhesions, and protein phosphotyrosine status were evaluated by staining with rhodamine-phalloidin, anti-paxillin, and anti-phosphotyrosine antibodies, respectively. Myosin light-chain phosphorylation was determined by Western blot analysis. Y-27632-induced changes in SC cell monolayer permeability were quantitated using a colorimetric assay to evaluate horseradish peroxidase diffusion through SC cell monolayers grown in transwell chambers. Aqueous humor outflow facility was measured using enucleated porcine eyes and a constant-pressure perfusion system. RESULTS: Treatment of HTM and SC cells with Y-27632 (10 microM) led to significant but reversible changes in cell shape and decreases in actin stress fibers, focal adhesions, and protein phosphotyrosine staining. SC cell monolayer permeability increased (by 80%) in response to Y-27632 (10 microM) treatment, whereas myosin light-chain phosphorylation was decreased in both HTM and SC cells. Aqueous humor outflow facility increased (40%-80%) in enucleated porcine eyes perfused with Y-27632 (10-100 microM), and this effect was associated with widening of the extracellular spaces, particularly the optically empty area of the juxtacanalicular tissue (JCT). The integrity of inner wall of aqueous plexi, however, was observed to be intact. CONCLUSIONS: Based on the Rho kinase inhibitor-induced changes in myosin light-chain phosphorylation and actomyosin organization, it is reasonable to conclude that cellular relaxation and loss of cell-substratum adhesions in HTM and SC cells could result in either increased paracellular fluid flow across Schlemm's canal or altered flow pathway through the JCT, thereby lowering resistance to outflow. This study also suggests Rho kinase as a potential therapeutic target for the development of drugs to modulate intraocular pressure in glaucoma patients.  相似文献   

12.
Previous studies have shown that the inhibition of Rho kinase is involved in the regulation of outflow facility in the live rabbit eye and the enucleated porcine eye. However, it is unknown whether the Rho kinase inhibition will do the same in non-human primates. To determine if the Rho kinase inhibitor Y-27632 will reduce outflow resistance in the live monkey eye, if Y-27632 and the phosphatase inhibitor calyculin A (Caly-A which antagonises Y-27632-induced MLC dephosphorylation) will affect outflow facility differently, and if the latter will inhibit effect of the former on facility, we studied effects of Y-27632 and Caly-A on outflow facility in living monkeys separately and concurrently. Total outflow facility was measured by 2-level constant pressure perfusion of the anterior chamber (AC) before and after exchange with different doses of Y-27632 (1, 10 and 100 microM) or Caly-A (10, 50 and 100 nM), or vehicles, followed by continuous AC infusion of corresponding drug/vehicle solution, in opposite eyes of cynomolgus or rhesus monkeys. The effect of 100 microM Y-27632 or 100 nM Caly-A vs vehicle and the effect of 100 microM Y-27632+100 nM Caly-A vs 100 microM Y-27632 alone on outflow facility were also determined in monkeys pre-treated topically with 10 microl of 1% atropine in both eyes 1 hr before perfusion. Both Y-27632 and Caly-A dose-dependently increased outflow facility by up to 2-3 fold in monkeys, adjusted for baseline and contralateral control eye washout. Pre-treatment with 1% topical atropine partially inhibited the effect of 100 nM Caly-A, but not 100 microM Y-27632, on outflow facility. 100 nM Caly-A gradually and partially inhibited the Y-27632-induced facility increase. In conclusion, Y-27632 increases outflow facility in monkeys presumably by inhibiting cellular contractility in the TM. Caly-A increases outflow facility by complicated mechanisms perhaps including drug-induced ciliary muscle contraction and cytoskeletal reorganisation in TM cells. The partial inhibitory effect of Caly-A on the Y-27632-induced increase in outflow facility may reflect the former partially inhibiting the latter's relaxation of cells in the TM.  相似文献   

13.
PURPOSE: To investigate the role of lysophospholipid growth factors in the regulation of aqueous humor outflow in the trabecular meshwork (TM). METHODS: The expression profile of the endothelial differentiation gene (Edg) family of G-protein coupled receptors was determined by RT-PCR of human TM (HTM) cell-derived total RNA and by PCR amplification of HTM cell-derived and tissue-derived cDNA libraries. The effects of lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) on actin cytoskeleton and focal adhesions and on myosin light-chain (MLC) phosphorylation in HTM cells were evaluated by immunofluorescence microscopy and Western blot analysis, respectively. Activation of Rho GTPase in HTM cells was quantified by "pull-down" assays. Mobilization of intracellular calcium in HTM cells was determined using spectrofluorometric digital-imaging microscopy. The effects of LPA and S1P on aqueous humor outflow facility were evaluated by perfusion of enucleated porcine eyes. RESULTS: Each of the receptor isoforms Edg1, -2, -3, and -4 was readily detectable in three of four HTM cell-derived libraries, whereas Edg2 was detectable in the HTM tissue library. LPA (20 microM) and S1P (1 microM) stimulated actin stress fiber and focal adhesion formation, increased MLC phosphorylation, and induced marked activation of Rho GTPase in HTM cells. Both LPA (20 microM) and S1P (10 microM) also stimulated increases in intracellular calcium concentration in HTM cells. LPA- and S1P-induced effects on MLC phosphorylation in HTM cells were markedly inhibited by pretreatment with the Rho kinase-specific inhibitor Y-27632 (5 microM). Perfusion of LPA (50 microM) and S1P (5 microM) in enucleated porcine eyes produced a significant decrease in aqueous humor outflow facility from baseline of 37% (n = 6) and 31% (n = 5), respectively. CONCLUSIONS: These studies demonstrate that LPA and S1P, the physiological agonists of Edg receptors, decrease outflow facility in perfused porcine eyes in association with increased MLC phosphorylation and Rho guanosine triphosphatase (GTPase) activation. These data provide evidence for a novel mechanism for negative regulation of outflow facility, which may contribute to overall physiological homeostasis of aqueous humor outflow facility.  相似文献   

14.
PURPOSE: In corneal endothelial cells, intercellular Ca(2+) waves elicited by a mechanical stimulus involve paracrine intercellular communication, mediated by ATP release via connexin hemichannels, as well as gap junctional intercellular communication. Both mechanisms are inhibited by thrombin, which activates RhoA and hence results in myosin light chain phosphorylation. This study was conducted to examine the effects of adenosine, which is known to oppose thrombin-induced RhoA activation, thereby leading to myosin light chain dephosphorylation, on gap junctional intercellular communication and paracrine intercellular communication in cultured bovine corneal endothelial cells. METHODS: An intercellular Ca(2+) wave was elicited by applying a mechanical stimulus to a single cell in a confluent monolayer. The area of Ca(2+) wave propagation was measured by [Ca(2+)](i) imaging using the fluorescent dye Fluo-4. Gap junctional intercellular communication was assessed by fluorescence recovery after photobleaching. Activity of hemichannels was determined by uptake of the hydrophilic dye Lucifer yellow in a Ca(2+)-free medium containing 2 mM EGTA. Adenosine triphosphate (ATP) release in response to mechanical stimulation was measured using the luciferin-luciferase technique. Gap26, a connexin mimetic peptide, was used to block hemichannels. RESULTS: Exposure to thrombin or TRAP-6 (a selective PAR-1 agonist) inhibited the Ca(2+) wave propagation by 70%. Pretreatment with adenosine prevented this inhibitory effect of thrombin. NECA (a potent A2B agonist) and forskolin, agents known to elevate cAMP in bovine corneal endothelial cells, also suppressed the effect of thrombin. The A1 receptor agonist CPA failed to inhibit the effect of thrombin. Similar to the effects on Ca(2+) wave propagation, adenosine prevented the thrombin-induced reduction in the fluorescence recovery during photobleaching experiments. Furthermore, pretreatment with adenosine prevented both thrombin and TRAP-6 from blocking the uptake of Lucifer yellow in a Ca(2+)-free medium. However, adenosine was ineffective in overcoming the Gap26-mediated block of Lucifer yellow uptake. In consistence with Lucifer yellow uptake through hemichannels, the thrombin-induced inhibition of ATP release was overcome by pretreatment with adenosine. CONCLUSIONS: Adenosine prevents thrombin-induced inhibition of hemichannel-mediated paracrine intercellular communication and of gap junctional intercellular communication. The mechanism involves an increase in cAMP, which results in inhibition of RhoA and a subsequent decrease in myosin light chain phosphorylation. Since myosin light chain dephosphorylation causes a decrease in contractility of the actin cytoskeleton, the results suggest possible effects of the actin cytoskeleton on gap junctions and connexin hemichannels.  相似文献   

15.
16.
PURPOSE: Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. METHODS: Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. RESULTS: Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. CONCLUSIONS: Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.  相似文献   

17.
PURPOSE: To clarify the effect of bradykinin on cytosolic free calcium mobilization and cell proliferation in cultured bovine corneal endothelial cells (BCEC). METHODS: The cytosolic free calcium concentration (Ca2+]i) was measured with the InCa(TM) Imaging System after the treatment of bradykinin (10(-11) to 10(-7) M) alone or with the pretreatments of EGTA, bradykinin receptor (Bk1 and Bk2) antagonists and an inhibition of phospholipase C (U-73122). Also, the effect of bradykinin on cell proliferation in BCEC was evaluated using cell counts. RESULTS: In BCEC, [Ca2+]i in the resting state was 87 +/- 9 nM. Bradykinin induced an increment of [Ca2+]i in a concentration-dependent manner and its 50% effective concentration was approximately 5 x 10(-11) M. A [Ca2+]i increment at 10(-8) M bradykinin was inhibited with the pretreatment of EGTA, an extracellular calcium chelator. U-73122 (5 x 10(-6) M) attenuated the bradykinin-induced [Ca2+]i increment. The pretreatment of HOE-140 (Bk2 antagonist) almost attenuated the bradykinin (10(-8) M)-induced [Ca2+]i increase, but des-Arg9-[Leu(8)]-bradykinin (Bk1 antagonist) did not suppress it. To investigate the physiological effect of bradykinin, the effect of bradykinin on cell proliferation was studied. 10(-8) M of bradykinin produced a significant increase in cell numbers. This mitogenic effect of bradykinin was inhibited by the Bk2 antagonist. CONCLUSIONS: Bradykinin-induced stimulation of the signal transduction pathway in BCEC is coupled with the Bk2 type receptor. Furthermore, bradykinin produces the mitogenic effect in BCEC.  相似文献   

18.
The elevated intraocular pressure that is commonly associated with glaucoma is believed to arise due to impairment of trabecular meshwork (TM) function. Although the TM and Schlemm's canal (SC) comprise the major route for aqueous humor outflow, little is known about the potential signaling mechanisms involved in the regulation of aqueous outflow. Based on knowledge regarding the role of protein kinase C (PKC) in vascular biology, we sought to understand the contribution of the PKC pathway towards outflow function by studying the modulation of contractile and morphological characteristics of TM and SC cells. We investigated the involvement of PKC in regulation of myosin light chain (MLC) phosphorylation, formation of actin stress fibers and integrin-ECM adhesions (focal adhesions) in human TM and SC cells and correlated these changes with aqueous outflow facility measured in an enucleated porcine whole eye perfusion model. Expression and distribution of PKC isoforms (alpha and epsilon ) in TM and SC cells and tissues was confirmed by Western blot and immunohistochemical analysis, respectively. Both, pharmacological activators (phorbol-12-myristate 13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and inhibitors (staurosporine and GF109203X) of PKC were found to induce changes in cell shape (retraction and rounding up) and cytoskeletal organization in human TM and SC cells. While PMA and PDBu produced an increase in formation of actin stress fibers and focal adhesions and in MLC phosphorylation, PKC inhibitors were observed to induce contrasting effects in these cells. Intriguingly, both PDBU and GF109203X caused increases in aqueous outflow facility in the perfusion model. The PKC inhibitor (GF109203X) increased outflow by 46% while the PKC activator (PDBu) only increased outflow by 27%. These results suggest that PKC might play an important role in modulation of aqueous outflow facility by regulating MLC phosphorylation and thereby, the morphological and cytoskeletal characteristics of TM and SC cells.  相似文献   

19.
20.
BACKGROUND: Endothelin-1 (ET-1) is known to induce contraction of trabecular meshwork (TM) and is probably involved in the pathogenesis of glaucoma. Calcium (Ca(2+))-independent contraction has been shown in TM, and its inhibition may represent an interesting way of influencing outflow facility, and thus intraocular pressure (IOP). This study investigates the role of ET-1 and its receptors ET-A and ET-B (ET-AR and ET-BR) in TM Ca(2+)-independent contractility. METHODS: Isometric tension measurements of bovine TM (BTM) strips were performed using a force-length transducer system. Intra- and extracellular Ca(2+) buffering was achieved by means of EGTA and BAPTA-AM. Under Ca(2+)-free conditions, ET-1-induced contractility of TM was assessed also in the presence of the specific inhibitors for ET-AR and ET-BR, BQ123 and BQ788 respectively. In order to clarify the intracellular mediators of Ca(2+)-independent contractility induced by ET-1, TM contraction was further measured in the presence of Y-27632, a selective inhibitor of Rho-associated kinases (ROCKs). The expression of ROCK1 and of its activating protein RhoA in BTM cells was investigated using western blot analysis. RESULTS: ET-1 induced a significant contraction of native BTM after intra- and extracellular Ca(2+)-depletion (45% +/- 8% of the maximally inducible contraction). Both endothelin receptor inhibitors BQ123 and BQ788 significantly reduced TM Ca(2+)-independent contraction in response to ET-1 (8.4 +/- 3.3% and 20.3 +/- 4.8% respectively). In the presence of the ROCK inhibitor Y-27632, ET-1-induced contraction of TM under Ca(2+)-free conditions was almost completely abolished (4.3% +/- 1.7%, p < 0.001). A clear signal for RhoA at 24 kDa and ROCK1 at 160 kDa could be detected in lysates of native tissue and cultured BTM cells with western blot. CONCLUSIONS: This study shows evidence that a significant portion of ET-1-induced contraction of TM is Ca(2+)-independent. In this contraction pathway, both ET-AR and ET-BR are involved with RhoA and its kinases as intracellular mediators. Ca(2+)-independent contraction of TM in response to ET-1 may represent a specific target to modulate IOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号