首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible application of excimer laser to laser angioplasty was studied. In the first experiment, the ablative effects of excimer laser at wavelengths of 248 nm and 308 nm on the pig myocardium were examined in vitro at an air-tissue interface. Crater depth increased with total delivered energy and energy per pulse. Very clear cuts could be observed by histological examination. There was no evidence of thermal damage at a wavelength of 248 nm, at 10 pps. Above 10 pps, a thin bordering zone of suspicious thermal damage was noted with the wavelengths of 248 nm and 308 nm. Thermal damage increased with pulse repetition rate. In the second experiment, the effects of excimer laser irradiation on blood were examined. Five vials, each of which contained 3 ml of blood, were exposed to 37.5 mJ laser beam at 10 pps in repetition rate for 10, 20, 30, 40, 50 seconds. One vial was left untreated as a control. No change in hematocrit value was observed after excimer laser irradiation. In contrast, the level of plasma free hemoglobin rose progressively with each increased duration of exposure. This result indicates that the lysis of erythrocytes does not occur in the laser-exposed cells. However, the damage to erythrocyte membrane took place as it was evidenced by progressive hemoglobin leakage into plasma. In the third experiment, the excimer laser was coupled to a 400 microns quartz optical fiber and the laser energy transmitted through the fiber was measured. At a wavelength of 308 nm, pulse energies up to 9 mJ were noted at the tip of the fiber. At a wavelength of 248 nm, the fiber tip was destroyed. In the fourth experiment, acute and chronic healing responses of normal canine arteries to excimer laser irradiation were studied in 4 mongrel dogs. The artery healed completely at the 18th day after the excimer laser irradiation. There was no evidence of thrombus formation and intimal hyperplasia in these arteries. The results suggest the applicability of excimer laser to laser angioplasty.  相似文献   

2.
Excimer ablation of human intervertebral disc at 308 nanometers   总被引:1,自引:0,他引:1  
Excimer laser energy, which has been shown to photoablate tissue at a precisely controllable rate with minimal thermal damage, was applied to human intervertebral disc in an effort to develop a technique for percutaneous discectomy. Cadaveric samples of human disc were used. Excimer laser energy was produced by a XeCl, magnetically switched, long-pulse laser working at 308 nm, 20 Hz. Annulus tissue of approximately 1 mm thickness was placed in contact with the output tip of a 400 microns core diameter quartz fiber, and measurements of ablation rate were made at different radiant exposures. Ablation rates were found to vary linearly with radiant exposure, from 0.7 micron/pulse at 10 mJ/mm2 to 11.0 microns/pulse at 55 mJ/mm2, with a correlation coefficient of 0.984. Threshold radiant exposure, calculated by extrapolation, was found to be about 7 mJ/mm2. Histologic analysis showed a minimum of thermal damage in these specimens, and when ablated with modification to maintain constant fiber-tissue contact, thermal injury was nearly absent, as compared to samples ablated with Nd:YAG through a contact probe. Thermographic analysis, performed using the AGA 782 Digital Thermography system, showed increasing temperature with increasing radiant exposure, with a maximum temperature of 47.2 degrees C at 55 mJ/mm2. In that precise tissue ablation was demonstrated with minimal generated heat, and excimer energy at 308 nm is transmissible through fiber optics, excimer holds great promise for the development of a percutaneous discectomy technique.  相似文献   

3.
To quantify the dependence on pulse repetition rate of 308 nm laser ablation in ocular tissue and elucidate the photoablation mechanisms involved, 85 full-thickness ab interno sclerostomies were created in six human donor eyes using an 800-μm-diameter quartz optical fiber. A laser pulse duration of 135 ns, fluence of 31 mJ/mm2, and a fixed repetition rate between 5 and 40 Hz were used for 38 sclerostomies; the remaining 47 sclerostomies were completed at various laser settings during initial experimentation. Surprisingly, the numbers of pulses required for complete penetration of the optical fiber through the fixed tissue thickness were not constant as expected but decreased nonlinearly with increasing repetition rate. This demonstrates that the 308 nm excimer laser cuts ocular tissue significantly more rapidly per pulse at higher repetition rates. To explain this nonlinearity, we propose a composite ablation mechanism composed of photochemical, thermal, mechanical, and optical effects in varying proportions. © 1994 Wiley-Liss, Inc.  相似文献   

4.
We describe a modified technique for percutaneous denervation of the thoracic sympathetic chain by laser to treat selected cases of sympathetic causalgia of the upper extremities. The technique involves transpleural ablation with laser under thoracoscopic guidance through the second or third intercostal space-anterior axillary line. We also compare four different modalities of endoscopic denervation: A xenon chloride excimer laser (308 nm, 35 mJ/pulse, 20 pulses/sec, 2.2 mm catheter tip), CO2 laser (14 W, CW, 2 mm spot size), Nd:YAG laser (88 W, CW, 3 mm spot size), and radiofrequency-generated thermocoagulation (3 W, CW, 2.1 mm catheter tip) by performing bilateral thoracic sympathectomy on 12 mongrel dogs (three dogs each). Criteria analyzed included duration of exposure, power density, total energy output, laser penetration and spread, gross morphology, and scanning electron microscopy (SEM) of the destroyed neural tissue. Total ablation of the inferior segment of the stellate ganglion and the T1-T2 nerve roots by excimer laser required 83 +/1 1 Joules over an exposure period of 118 seconds. Ablation by CO2 and Nd:YAG laser required 153 +/- 13 Joules and 554 +/- 47 Joules delivered over 11 and 6 seconds respectively. In contrast, ablation of the same volume of nerve tissue by RF required 810 +/- 50 Joules over 270 seconds. SEM evaluation revealed that excimer and CO2 laser lesions were narrower in configuration compared to RF and Nd:YAG lesions which showed more lateral spread. The actual depth of penetration per 1 second exposure was similar for Excimer and CO2 (1.5 mm) and RF (1.3 mm), but deeper for Nd:YAG (3 mm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
One of the main problems in orthopaedics is the surgical removal of hard substances, such as bone and polymethylmethacrylate (PMMA). Such materials are often very difficult to remove without mechanical trauma to the remaining tissue. This study investigated the feasibility of the ultraviolet 308 nm excimer laser in the ablation of these materials. The beam was delivered through a 1 mm-diameter fiber optic at 40 Hz with energy densities at the target surface of 20-80 J/cm2 per pulse. The goal of the study was to establish the ideal dosimetry for removing bone and PMMA with minimum trauma to the adjacent tissue. Histology revealed that the 308 nm laser effectively removed bone leaving a thermal damage zone of only 2-3 microns in the remaining tissue. Increasing the energy per pulse gave correspondingly larger and deeper cuts with increasing zones of thermal damage. The excimer laser was also effective in the ablation of PMMA, creating craters in the substrate with a thermal damage zone of 10-40 microns. The debris from both substrates was evaluated.  相似文献   

6.
BACKGROUND AND OBJECTIVES: The prognosis for infants with pulmonary atresia and intact ventricular septum (PA/IVS) is poor and they present a major management challenge. Mechanical penetration of the atretic pulmonary valve is an applicable option for decompression of the right ventricle and optimization of left ventricular function. The utilization of laser energy for debulking and vaporization of the atretic valve tissue is a relevant approach due to the potential for controlled, precise mode of energy distribution. STUDY DESIGN/PATIENTS AND METHODS: A 4-month-old female with PA/IVS whose failure to thrive was accompanied by critical hemodynamic abnormalities received successful percutaneous pulmonary valve plate ablation by a 0.9 mm pulsed-wave ultraviolet excimer laser catheter (308 nm wavelength, fluence 50 mJ/mm(2); 30 Hz). A "step-by-step" lasing technique was applied whereby the tip of the emitting laser catheter is advanced ahead of a guide wire that serves mainly as support for positioning of that catheter. RESULTS: Adequate penetration of the atretic tissue enabled introduction of balloon dilations resulting in patency of the atretic valve, decompression of the right ventricle, improved right and left ventricular hemodynamics, and oxygenation. To further investigate the effect of excimer laser energy on atretic valvular tissue this laser was applied in a specimen of heart from an infant who died because of PA/IVS. Histopathologic examination of the irradiated tissue revealed no laser-induced injury to the pulmonary valve. CONCLUSIONS: Thus, laser ablation and penetration of an atretic pulmonary valve is feasible and safe. The penetration of the atretic valve with the laser catheter enables subsequent introduction of various sizes balloon dilations. The application of available laser sources for treatment of congenital heart diseases is reviewed.  相似文献   

7.
A modified exeimer laser energy delivery system was used to irradiate 100 segments of normal and fibrous aorta in vitro. The laser beam was scanned into 8 fiber bundles consisting of 50 fibers each resulting in a reduction of the applied pulse energy. The total repetition rate was increased to 150 Hz in order to keep the repetition rate per fiber bundle close to 20 Hz and to minimize thermal injury. The results demonstrate that effective ablation (etch rate per 8 pulses > 2.0 μm) occurred at an energy fluency of 50 mJ/mm2 in both normal and fibrous aorta. Tissue damage (carbonization, tissue separation, fissures, cracks, and vacuolization) was in a range of 100 ± 28 to 152 ± 30 μm for normal aorta and in a range of 57 ± 35 to 110 ± 39 μm for fibrous aorta. We conclude that effective ablation of normal and fibrous human aorta can be achieved by the application of smooth excimer laser coronary angioplasty. This improvement of excimer laser technology may result in a reduction of shock wave- and cavitation-induced damage leading to a reduction of tissue injury. However, this awaits further in vitro and in vivo confirmation. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Pulsed excimer laser angioplasty of human cadaveric arteries   总被引:2,自引:0,他引:2  
Laser angioplasty has been limited by the lack of precise control of thermal and acoustic vascular injury. Pulsed excimer lasers, by contrast, have a capacity to affect target tissue without heat dispersion or damage to surrounding structures. The ablative properties of three excimer wavelengths, krypton fluoride (249 nm), xenon chloride (308 nm), and xenon fluoride (351 nm), were investigated with the use of fresh human cadaveric normal and atherosclerotic femoral arteries. Light and electron microscopy demonstrated clean cuts with histologically normal edges. There was no evidence of either thermal or acoustic damage with any of the wavelengths studied. The depth of ablation varied directly with the number of pulses and inversely with tissue density while the incision width remained constant. The excimer laser appears to offer significant advantages over its conventional counterparts for the ablation of atherosclerotic plaque.  相似文献   

9.
In order to develop a system of peripheral arterial angioplasty, we carried out an in vitro study to define the quantitative, thermal and morphological characteristics of human-atheroma ablation by excimer laser. A multigas ‘Sopra’ laser was used. The study was performed by using 248nm, krypton fluoride (KrF), then 308nm, xenon chloride (XeCl) wavelengths. The delivered energy was up to 150 mJ pulse−1, pulse duration was 25ns, and the repetition rate could be adjusted to up to 20Hz. Irradiated tissue segments of the superficial femoral and external iliac arteries were obtained in man during surgical procedures and were both calcified and non-calcified atherosclerotic lesions. Quantitative measurements showed a linear increase of ablated tissue mass depending on the energy delivered. For the same energy, the loss of mass was greater with the 248nm wavelength than with the 308nm. The maximum temperature rise measured at the site of irradiation was 6°C at 248nm and 25°C at 308nm. Histological analysis of the irradiated segments revealed neat and precise ablation without thermal injury of adjacent tissue. At 248nm, this phenomenon was observed for calcified as well as non-calcified atheromas. It is concluded that quantitative, thermal and morphological characteristics of in vitro ablation of calcified and non-calcified human atheroma by excimer laser are compatible to clinical requirements. The results observed at 248nm were experimentally more satisfactory.  相似文献   

10.
Laser–induced fluorescence may be used to guide laser ablation of atherosclerotic lesions. This study was performed to evaluate arterial autofluorescence spectroscopy in vitro using a single XeCl excimer laser (308 nm) for simultaneous tissue ablation and fluorescence excitation. The laser beam was coupled to a 600-μm silica fiber transmitting 40–50 mJ/mm2 per pulse. The fluorescence radiation emanating retrogradely from the fiber was collected by a concave mirror for spectroscopic analysis over a range of 321–657 nm. The arterial media (n = 26), lipid plaques (n = 26), and calcified lesions (n = 27) of aortic specimens from ten human cadavers were investigated in air, saline, and blood. Whereas the spectrum of calcified lesions changed with the surrounding optical medium, the other spectra remained constant. In air and blood, the spectra of arterial media, lipid plaques, and calcified lesions could be differentiated qualitatively and quantitatively (P < 0.0001). In saline, there was no clearcut spectroscopic difference between lipid plaques and calcified lesions. However, normal arterial media and atherosclerotic lesions (lipid plaques plus calcified lesions) could still be discriminated. Thus spectroscopy and plaque ablation can be combined using a single XeCl excimer laser. These encouraging results should stimulate further studies to determine the potential use of this approach to guide laser angioplasty in humans. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Pulsed ultraviolet lasers and the potential for safe laser angioplasty   总被引:2,自引:0,他引:2  
Endoscopic laser ablation of atheroma using continuous wave lasers is limited by imprecise control of thermal ablation, resulting in a crater that expands in width and depth, with thermal damage to adjacent normal tissue. We compared the gross and histologic effects of pulsed 308 mm excimer irradiation to continuous-wave Nd:YAG and Argon Ion laser irradiation, and pulsed 1,060 nm, 532 nm, 355 nm, and 266 nm laser irradiation in 205 atherosclerotic aortic segments. In contrast to the continuous-wave Nd: YAG, Argon Ion, and pulsed 1,060 nm, 532 nm, and 355 nm laser irradiation, which produced gross and histologic evidence of uncontrolled ablation, the 308 nm and 266 nm pulsed lasers induced incisions that conformed precisely to the beam configuration without gross evidence of thermal injury. The incision edges from these two lasers were histologically smooth and comparable to a scalpel incision. Our histologic findings suggest that rapid, precise endoscopic ablation of vascular and nonvascular tissue can be performed at these shorter pulsed wavelengths with very high precision with relatively little damage or risk to adjacent tissue.  相似文献   

12.
This article reports the investigation of the XeCl excimer laser as a cutting-ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800-μm fiber with the laser delivering a range of fluences (40-190 mJ/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on depth per pulse, a set of measurements was made at a constant fluence of 60 mJ/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis of preserved specimens was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10–70 μm). The excimer laser achieved ablation rates adequate for arthroscopic applications. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The argon fluoride (193 nm) excimer laser is being used to change the anterior corneal curvature for correction of refractive errors. Uniformity of the surface following laser ablation may play an important role in the rate of epithelial healing and amount and type of stromal scarring. To test the effect of radiant exposure (fluence) on surface smoothness, we ablated rabbit corneas with the 193 nm argon fluoride excimer laser at nine radiant exposures from 50 to 850 mJ/cm2. A total energy of 100 J/cm2 was used for each ablation at a frequency of 1 Hz. Scanning electron microscopy demonstrated progressive improvement of surface smoothness with increasing radiant exposures. Transmission electron microscopy demonstrated no consistent increase in thickness to the surface condensate (pseudomembrane) with increasing radiant exposure. Improvement in surface quality associated with increasing radiant exposures may result from a more uniform depth of ablation per pulse in the corneal lamellae that absorb laser wavelengths differently. Radiant exposures at levels where the depth of ablation is the same regardless of increasing energy densities achieve a more uniform surface because inhomogeneities in the beam and variation in energy from pulse to pulse do not affect the ablation rate.  相似文献   

14.
The use of a XeCl excimer laser (308 nm) for biliary stone fragmentation is reported. Laser energy is delivered via UV grade fused silica fibers to the target stones immersed in normal saline solution. Sixty biliary calculi--pigment (n = 40), and cholesterol (n = 20)--were fragmented in vitro. The total energy delivered per unit mass of the stone is kept constant. Two energy fluences (80 and 110 mJ/mm2) at two repetition rates (5 and 20 Hz) delivered through fibers of two core sizes (300 and 600 microns) are utilized to study the effect of different laser parameters on the fragmentation process. Although both pigment and cholesterol stones are susceptible to excimer laser fragmentation, higher fragmentation efficiency is obtained for the pigment stones than for the cholesterol stones. Our study suggests that higher energy fluence and larger fiber core size result in higher fragmentation efficiency for pigment stones. Fragmentation thresholds at stone surface for a variety of biliary calculi of known composition were measured. The threshold energy fluence is approximately 3 mJ/mm2 and 17 mJ/mm2 for pigment and cholesterol stones, respectively. Our study indicates that the 308 nm excimer laser may be effective as a laser lithotriptor with low threshold and good efficiency for biliary stone fragmentation.  相似文献   

15.
H Ogino 《Nippon geka hokan》1992,61(2):168-189
An excimer laser, which is a pulsed ultraviolet laser and ablates tissue precisely with no thermal injury, is expected to coronary laser angioplasty. We transmitted XeCl excimer laser (308 nm) via a 400 microns fused silica fiber. In the first experiment, we studied about excimer laser ablative effects to normal canine arteries and atherosclerotic rabbit aortas, and about healing responses following excimer laser irradiation in both models. Surfaces after excimer laser ablation were slightly rough but no thermal injury was found in the media. And for healing process of normal canine arteries, endothelial cells appeared at 3 weeks and completely covered surfaces with fibrointimal ingrowth at 3 months. In the rabbit aortas, at 3 weeks there was reconstruction of the surface. At 2 months no accelerated atherosclerotic or aneurysmal changes were observed. In the second, with this excimer laser (short pulse) and 400 microns fused silica fibers (distal fiber-end power: 3-6 mJ/pulse), we performed transluminal laser angioplasty to recanalize totally occluded canine femoral arteries under an angioscopic guidance. We cold recanalize 8 of 9 totally occluded arteries with no thermal injury of adjacent tissue, though perforations were observed in 7 of 9 arteries. In the third, we used a newly-developed long pulse excimer laser, with which distal fiber-end energy was about 3 to 4 times as much as the short pulse one, to recanalize totally occluded canine arteries. In result, recanalization was performed in 6 of 8 arteries rapidly with little thermal injury. However, we observed perforations in 6 of 8 arteries like the short pulse one. Multifiber catheter ("over the wire system") coupled with this long-pulse excimer laser was used to reconstruct stenotic iliac arteries of atherosclerotic rabbit models. The procedure was successful in all the 5 rabbits. In conclusion, our preliminary results suggested that further developments of a more powerful and longer pulse-duration excimer laser, optic delivery system and guidance system would make excimer laser angioplasty safer and more effective method in the near future.  相似文献   

16.
To assess the feasibility of intra-arterial tissue ablation by Holmium:YSGG laser pulses (2.1 microns) in a noncontact mode, the transmission of the laser pulses through saline and blood was measured. The temporal interaction between the 500 microseconds laser pulse and saline at the fiber tip was investigated with time-resolved flash photography. The penetration depth in blood, and saline depended on the fiber output energy. In blood at 37 degrees C, the penetration depth varied from 1.2 to 2.1 mm for intensities of 3.1 to 12.4 J/mm2 per pulse, respectively, whereas its theoretical value for water is 0.33 mm, which is based on the measured absorption coefficient of 3.0 +/- 0.1/mm. The large penetration depth was due to the development of a transparent vapour cavity around the fiber tip. In saline, its maximum length was 4.7 mm. Its maximum width was 2.8 mm. The lifetime of the cavity was 450 microseconds. In blood, ablation of porcine aorta was feasible at a distance of 3 mm. Large fissures observed in adjacent tissue are likely to be caused by the expansion of the vapour cavity. We conclude that, due to a "Moses effect in the microsecond region," Holmium:YSGG tissue ablation is possible through at least 2.7 mm of blood.  相似文献   

17.
The present study was designed to assess the characteristics of tissue photoemission obtained from normal and atherosclerotic segments of human postmortem femoral arteries by 308 nm excimer laser irradiation of 60 ns pulsewidth. Three ablative (20, 30, and 40 mJ/pulse) and three non-ablative (2.5, 5, and 10 mJ/pulse) energy fluences were employed. Both the activating laser pulses and the induced photoemission were guided simultaneously over one and the same 1,000 micron core optical fiber that was positioned in direct tissue contact perpendicular to the vascular surface. The spectral lineshape of normal arterial and noncalcified atherosclerotic structures was characterized by a broad-continuum, double-peak emission of relevant intensity between wavelengths of 360 and 500 nm, with the most prominent emission in the range of 400-415 (407 nm peak) and 430-445 nm (437 nm peak). Fibrous and lipid atherosclerotic lesions, however, exhibited a significantly reduced intensity at 437 nm compared to normal artery layers (P less than 0.001), expressed as a 407/437 nm ratio of 1.321 +/- 0.075 for fibrous and 1.392 +/- 0.104 for lipid lesions. Normal artery components presented with approximately equal intensity at both emission peaks (407/437 nm ratio: intima, 1.054 +/- 0.033; media, 1.024 +/- 0.019; adventitia, 0.976 +/- 0.021). Comparison of spectral lineshape obtained under various energy fluences within a group of noncalcified tissues disclosed no substantial difference using the 407/437 nm ratio (P greater than 0.05). In contrast, calcified lesions revealed high-intensity multiple-line (397, 442, 461, and 528 nm) emission spectra under ablative energy fluences, whereas a low-intensity broad-continuum, single-peak spectrum resulted from irradiation beyond the ablation threshold. Thus, these findings suggest fluorescence phenomena for broad-continuum spectra, and plasma emission for multiple-line spectra as an underlying photodynamic process. Regardless of the activating energy fluence, spectral analysis of 308 nm activated photoemission provides accurate information about the laser target under standardized in vitro conditions. It is demonstrated that direct contact ablation and simultaneous spectral imaging of the target tissue via the same optical fiber is feasible.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Using a pulsed XeCl excimer laser (308 nm) and a pulsed Er:YAG laser (2,940 nm), we investigated skin ablation as a function of pulse number, radiant energy, and repetition rate. In vitro analysis of lesions performed in freshly excised human skin were consistent with in vivo results obtained from experiments on pig skin. Pulsed 308 nm laser radiation caused considerable nonspecific thermal tissue injury followed by an inflammatory reaction and impaired healing of lesions in vivo. These findings were especially pronounced with higher repetition rates, which would be required for efficient destruction of larger lesions. On the other hand, the 2.94 microns Er:YAG laser radiation produced clean and precise lesions with only minimal adjacent injury. In vivo skin ablation caused intraoperative bleeding with deeper penetration. The Er:YAG laser offers a promising surgical tool for careful removal of superficial epidermal lesions, if higher repetition rates, and an appropriate laser beam delivery system are available for clinical use.  相似文献   

19.
This paper reports on the initial clinical experience with 308 nm XeCl-excimer laser coronary angioplasty (ELCA) in the Academic Medical Center in Amsterdam and on calculations of light fluence rate distributions resulting from laser beams incident on tissue.Monte Carlo numerical computations were used to compute the light fluence rate distributions of a finite 308 nm excimer laser beam with various diameters incident on a liquid-tissue interface. It was found that light scattering is an important component in the resulting light distribution in aortic tissue. The calculations predict that there will be hardly any broadening of the beam outside the laser beam area. Therefore, the distributions from different fibres in multifibre catheters will not overlap unless the fibres are closely packed together. As a consequence of scattering the fluence rate at the surface of the tissue was larger than the incident power density and showed a considerable decrease from the centre to the edge of the beam. However, the physics of tissue ablation by fibres in contact with tissue are different and at present not well understood.The clinical results of the first 18 patients treated with the Dymer 200+ excimer laser (Advanced Interventional Systems, Irvine, CA, USA) are given. Six patients had abrupt closure solved by balloon angioplasty, but complicated by a small myocardial infarction. One patient had emergency by-pass surgery for abrupt closure after laser followed by balloon angioplasty (probably a dissection and thrombus). In one patient we perforated in a bend of a RCA with a 2.0 catheter following a second pass. We had two in hospital deaths (4 and 14 days after treatment). At 6 months follow-up, eight patients had restenosis or occlusion at the lased segment.However, the results of the first 1000 patients enrolled in the American ELCA-Registry are more promising. In the light of these results it can be concluded that a randomized trial balloon angioplasty versus excimer laser angioplasty appears to be indicated.  相似文献   

20.
Acute in vitro histologic studies have shown that the pulsed xenon chloride excimer laser causes precise microablation without the surrounding thermal tissue injury associated with frequently used continuous-wave lasers such as the argon, carbon dioxide, and neodymium:yttrium aluminum garnet lasers. However, the in vivo healing response of artery wall to excimer laser injury is not known. Accordingly, a xenon chloride excimer laser (308 nm, 40 nsec pulse width, 39 mJ/mm2/pulse) was transmitted via a 600 micron fused silica fiber to create 420 craters of varying depths (30 to 270 micron) in 21 normal canine femoral and carotid arteries. At 2 hours, 2 days, 10 days, and 42 days after excimer laser ablation, the artery segments were perfusion fixed in situ and analyzed by light, scanning, and transmission electron microscopy. At 2 hours, craters were covered by a carpet of platelets and entrapped red blood cells. Fibrin and exposed collagen fibers were seen at the crater base. There was a sharp demarcation of the crater-artery wall interface without lateral laser tissue injury. At 2 days, adherent platelets persisted with thrombus covering the base of the craters. Early healing responses were present, consisting of polymorphonucleated leukocytes and new endothelial cells, which extended over the crater rims. At 10 days, no thrombi were seen, and healing continued with almost complete reendothelialization. Macrophages, fibroblasts, fibrin, and entrapped red blood cells were present below the reendothelialized surface. At 42 days, healing was complete with obliteration of the craters by fibrointimal ingrowth. The surface was completely covered by a smooth monolayer of axially aligned endothelial cells. There were no aneurysms or surface hyperplastic responses. These favorable healing responses in normal canine arteries suggest that pulsed lasers with high tissue absorption coefficients, such as the xenon chloride excimer laser, may be suitable energy sources for clinical laser angioplasty procedures. However, further studies in atherosclerotic animals are required before human clinical responses can be accurately predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号