首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination is efficacious for newborns or adults with no previous exposure to environmental mycobacteria. To determine the relative contribution and the nature of gammadelta T-cell receptor-positive T cells in newborns, compared to CD4(+) T cells, in immunity induced by M. bovis BCG vaccination, 4-week-old specific-pathogen-free pigs were vaccinated with M. bovis BCG and monitored by following the gammadelta T-cell immune responses. A flow cytometry-based proliferation assay and intracellular staining for gamma interferon (IFN-gamma) were used to examine gammadelta T-cell responses. Pigs were found to mount Th1-like responses to M. bovis BCG vaccination as determined by immunoproliferation and IFN-gamma production. The gammadelta T-cell lymphoproliferation and IFN-gamma production to stimulation with mycobacterial antigens were significantly enhanced by M. bovis BCG vaccination. The relative number of proliferating gammadelta T cells after stimulating peripheral blood mononuclear cells with Mycobacterium tuberculosis H37Rv culture filtrate protein was higher than that of CD4(+) T cells at an early time point after M. bovis BCG vaccination, but CD4(+) T cells were found to be more abundant at a later time point. Although the gammadelta T-cell responses were dependent on the presence of CD4(+) T cells for the cytokine interleukin-2, the enhanced gammadelta T cells were due to the intrinsic changes of gammadelta T cells caused by M. bovis BCG vaccination rather than being due solely to help from CD4(+) T cells. Our study shows that gammadelta T cells from pigs at early ages are functionally enhanced by M. bovis BCG vaccination and suggests an important role for this T-cell subset in acquired immunity conferred by M. bovis BCG vaccination.  相似文献   

2.
Price SJ  Hope JC 《Immunology》2009,126(2):201-208
Evidence suggests that gammadelta T cells form part of the innate immune response to Mycobacterium bovis infection. Dendritic cells (DCs) are capable of secreting high levels of interleukin-12 (IL-12) following infection with mycobacteria and can induce interferon-gamma (IFN-gamma) secretion by natural killer and gammadelta T cells We investigated the innate interactions occurring between WC1(+)gammadelta T cells and M. bovis-infected DCs. Following coculture with M. bovis-infected DCs, secretion of IFN-gamma and expression of CD25 and major histocompatibility complex class II on WC1(+)gammadelta T cells were significantly enhanced. Reciprocal enhancement of IL-12 secretion by the DCs was also observed and this interaction was found to be contact dependent. We hypothesize that there is an early, transient signal between the WC1(+)gammadelta T cells and the DCs, which promotes the synthesis of biologically active IL-12, and which is dependent upon cell-cell contact. Reciprocal signals including IL-12 are then delivered to WC1(+)gammadelta cells, which leads to the enhanced secretion of IFN-gamma, and the up-regulation of activation markers and antigen presentation molecules by the WC1(+)gammadelta T cells. These interactions are likely to form a critical part of the T helper type 1-conditioning response of DCs to M. bovis.  相似文献   

3.
Price SJ  Sopp P  Howard CJ  Hope JC 《Immunology》2007,120(1):57-65
Gammadelta T-cell receptor(+) T lymphocytes are an important element of the innate immune system. Early production of interferon (IFN)-gamma by gammadelta T cells may have a role in linking innate and adaptive immune responses and contribute to T helper-1 bias. We investigated the role of cytokines in the activation and induction of IFN-gamma secretion by bovine workshop cluster 1(+) (WC1(+)) gammadelta T cells. The effects of culture with interleukin (IL)-12, IL-18, IL-15 and IL-2 were investigated; these cytokines are known to influence murine and human gammadelta T cells. We report that bovine WC1(+)gammadelta T cells are synergistically stimulated by IL-12 and IL-18 to secrete large quantities of IFN-gamma. Neonatal calves were shown to have significantly higher numbers of circulating WC1(+)gammadelta T cells than adult animals. In addition, the response of peripheral blood WC1(+)gammadelta T cells was significantly higher in neonatal calves compared with adult animals. However, in adult animals the response of lymph node WC1(+)gammadelta T cells to IL-12/IL-18 was more pronounced than that of peripheral blood WC1(+)gammadelta T cells. We hypothesize that the induction of IFN-gamma secretion from WC1(+)gammadelta T cells by IL-12 and IL-18 is likely to be an important element of the innate response to pathogens such as Mycobacterium bovis. The high numbers of WC1(+)gammadelta T cells in neonatal calves, and their inherent ability to respond to inflammatory cytokines, could be a key factor in the enhanced responses seen in calves to BCG vaccination.  相似文献   

4.
It is generally accepted that protective immunity against tuberculosis is generated through the cell-mediated immune (CMI) system, and a greater understanding of such responses is required if better vaccines and diagnostic tests are to be developed. gammadelta T cells form a major proportion of the peripheral blood mononuclear cells (PBMC) in the ruminant system and, considering data from other species, may have a significant role in CMI responses in bovine tuberculosis. This study compared the in vitro responses of alphabeta and gammadelta T cells from Mycobacterium bovis-infected and uninfected cattle. The results showed that, following 24 h of culture of PBMC with M. bovis-derived antigens, the majority of gammadelta T cells from infected animals became highly activated (upregulation of interleukin-2R), while a lower proportion of the alphabeta T-cell population showed activation. Similar responses were evident to a lesser degree in uninfected animals. Study of the kinetics of this response showed that gammadelta T cells remained significantly activated for at least 7 days in culture, while activation of alphabeta T cells declined during that period. Subsequent analysis revealed that the majority of activated gammadelta T cells expressed WC1, a 215-kDa surface molecule which is not expressed on human or murine gammadelta T cells. Furthermore, in comparison with what was found for CD4(+) T cells, M. bovis antigen was found to induce strong cellular proliferation but relatively little gamma interferon release by purified WC1(+) gammadelta T cells. Overall, while the role of these cells in protective immunity remains unclear, their highly activated status in response to M. bovis suggests an important role in antimycobacterial immunity, and the ability of gammadelta T cells to influence other immune cell functions remains to be elucidated, particularly in relation to CMI-based diagnostic tests.  相似文献   

5.
Protective immunity against tuberculosis is considered to be essentially cell mediated, and an important role for CD8(+) T lymphocytes has been suggested by several studies of murine and human infections. The present work, using an experimental model of infection with Mycobacterium bovis in cattle, showed that live M. bovis elicits the activation of CD8(+) T cells in vitro. However, a sonic extract prepared from M. bovis (MBSE) and protein purified derivative (PPDb) also induced a considerable degree of activation of the CD8(+) T cells. Analysis of proliferative responses of peripheral blood mononuclear cells, purified CD8(+) T cells, and CD8(+) T-cell clones to M. bovis and to soluble antigenic preparations (MBSE, PPDb) showed that the responses of all three types of cells were always superior for live mycobacteria but that strong responses were also obtained with complex soluble preparations. Furthermore, while cytotoxic capabilities were not investigated, the CD8(+) T cells were found to produce and release gamma interferon in response to antigen (live and soluble), which indicated one possible protective mechanism for these cells in bovine tuberculosis. Finally, it was demonstrated by metabolic inhibition with brefeldin A and cytochalasin D at the clonal level that an endogenous pathway of antigen processing is required for presentation to bovine CD8(+) cells and that presentation is also dependent on phagocytosis of the antigen.  相似文献   

6.
Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.  相似文献   

7.
Few data are available regarding the induction of memory T-lymphocyte responses in cattle following Bacille Calmette Guérin (BCG) vaccination. Studies of the immune response induced by BCG vaccination provide an insight into the basis of antimycobacterial immunity that could be exploited for the development of more effective vaccination strategies. We used autologous dendritic cells (DC) infected with Mycobacterium bovis Bacille Calmette Guérin (BCG) or pulsed with purified protein derivative from M. bovis (PPD-B) or M. avium (PPD-A) to assess responses of CD4+, CD8+ and WC1+ gammadelta TCR+ lymphocytes from BCG vaccinated and nonvaccinated cattle. Mycobacteria-specific CD4+ and CD8+, but not WC1+ gammadelta TCR+, memory T lymphocytes were demonstrated in BCG-vaccinated cattle. CD4+ and CD8+ lymphocytes proliferated and produced interferon (IFN)-gamma in response to BCG-infected or PPD-B-pulsed DC. Proliferative responses were greater for CD4+ than CD8+ lymphocytes, although secretion of IFN-gamma was higher from the CD8+ T cells. Responses to PPD-A-pulsed DC were lower, with no CD8+ response. Lymphocytes from nonvaccinated calves were also stimulated to proliferate by BCG-infected DC, although the magnitude of proliferation was lower. The findings suggest that immunity to M. bovis induced by BCG vaccination in cattle may involve CD8+ memory T cells which produce IFN-gamma, as well as CD4+ memory T cells.  相似文献   

8.
9.
It is accepted that cell-mediated immune responses predominate in mycobacterial infections. Many studies have shown that CD4(+) T cells produce Th1 cytokines, such as gamma interferon (IFN-gamma), in response to mycobacterial antigens and that the cytolytic activity of CD8(+) cells toward infected macrophages is important. However, the extent and manner in which gamma delta T cells participate in this response remain unclear. In ruminants, gamma delta T cells comprise a major proportion of the peripheral blood mononuclear cell population. We have previously shown that WC1(+) gamma delta T cells are involved early in Mycobacterium bovis infection of cattle, but their specific functions are not well understood. Here we describe an in vivo model of bovine tuberculosis in which the WC1(+) gamma delta T cells were depleted from the peripheral circulation and respiratory tract, by infusion of WC1(+)-specific monoclonal antibody, prior to infection. While no effects on disease pathology were observed in this experiment, results indicate that WC1(+) gamma delta T cells, which become significantly activated (CD25(+)) in the circulation of control calves from 21 days postinfection, may play a role in modulating the developing immune response to M. bovis. WC1(+)-depleted animals exhibited decreased antigen-specific lymphocyte proliferative response, an increased antigen-specific production of interleukin-4, and a lack of specific immunoglobulin G2 antibody. This suggests that WC1(+) gamma delta TCR(+) cells contribute, either directly or indirectly, toward the Th1 bias of the immune response in bovine tuberculosis--a hypothesis supported by the decreased innate production of IFN-gamma, which was observed in WC1(+)-depleted calves.  相似文献   

10.
DNA vaccines whose DNA encodes a variety of antigens from Mycobacterium tuberculosis have been evaluated for immunogenicity and protective efficacy. CD8(+) T-cell responses and protection achieved in other infectious disease models have been optimized by using a DNA immunization to prime the immune system and a recombinant virus encoding the same antigen(s) to boost the response. A DNA vaccine (D) and recombinant modified vaccinia virus Ankara (M) in which the DNA encodes early secreted antigenic target 6 and mycobacterial protein tuberculosis 63 synthesized, and each was found to generate specific gamma interferon (IFN-gamma)-secreting CD4(+) T cells. Enhanced CD4(+) IFN-gamma T-cell responses were produced by both D-M and M-D immunization regimens. Significantly higher levels of IFN-gamma were seen with a D-D-D-M immunization regimen. The most immunogenic regimens were assessed in a challenge study and found to produce protection equivalent to that produced by Mycobacterium bovis BCG. Thus, heterologous prime-boost regimens boost CD4(+) as well as CD8(+) T-cell responses, and the use of heterologous constructs encoding the same antigen(s) may improve the immunogenicity and protective efficacy of DNA vaccines against tuberculosis and other diseases.  相似文献   

11.
Johne's disease of cattle is widespread and causes significant economic loss to producers. Control has been hindered by limited understanding of the immune response to the causative agent, Mycobacterium avium subsp. paratuberculosis, and lack of an effective vaccine and sensitive specific diagnostic assays. The present study was conducted to gain insight into factors affecting the immune response to M. avium subsp. paratuberculosis. A persistent proliferative response to M. avium subsp. paratuberculosis purified protein derivative and soluble M. avium subsp. paratuberculosis antigens was detected in orally infected neonatal calves 6 months postinfection (p.i.) by flow cytometry (FC). CD4(+) T cells with a memory phenotype (CD45R0(+)) expressing CD25 and CD26 were the predominant cell type responding to antigens. Few CD8(+) T cells proliferated in response to antigens until 18 months p.i. gammadelta T cells did not appear to respond to antigen until 18 months p.i. The majority of WC1(+) CD2(-) and a few WC1(-) CD2(+) gammadelta T cells expressed CD25 at time zero. By 18 months, however, subsets of gammadelta T cells from both control and infected animals showed an increase in expression of CD25, ACT2, and CD26 in the presence of the antigens. Two populations of CD3(-) non-T non-B null cells, CD2(+) and CD2(-), proliferated in cell cultures from some control and infected animals during the study, with and without antigen. The studies clearly show multicolor FC offers a consistent reliable way to monitor the evolution and changes in the immune response to M. avium subsp. paratuberculosis that occur during disease progression.  相似文献   

12.
Five recombinant antigens (Ags; 85A, 85B, 85C, superoxide dismutase [SOD], and 35-kDa protein) were purified from Mycobacterium avium subsp. paratuberculosis and evaluated for their ability to stimulate peripheral blood mononuclear cells (PMBCs) from fecal-culture-positive cows (low and medium shedders) and culture-negative healthy cows. Recombinant Ags 85A, 85B, and 85C induced significant lymphocyte proliferation as well as the production of gamma interferon (IFN-gamma), interleukin-2 (IL-2), IL-12, and tumor necrosis factor alpha (TNF-alpha), but not IL-4, from low and medium shedders. The 85 antigen complex did not stimulate PMBC proliferation from culture-negative healthy cows. The 35-kDa protein also induced significant lymphocyte proliferation as well as the production of IFN-gamma and IL-4 from low and medium shedders. CD4(+) T cells and CD25(+) (IL-2R) T cells were stimulated the most by 85A and 85B, while the 35-kDa protein primarily stimulated CD21(+) B cells involved in humoral immune responses. Interestingly, SOD was less immunostimulatory than other antigens but strongly induced gammadelta(+) T cells, which are thought to be important in the early stages of infection, such as pathogen entry. These data provide important insight into how improved vaccines against mycobacterial infections might be constructed.  相似文献   

13.
gammadelta T lymphocytes recognize non-peptidic microbial antigens without antigen processing and major histocompatibility complex (MHC) restriction, representing an early defence mechanism against invading pathogens. As a defective response to non-peptidic antigens was observed in human immunodeficiency virus-positive (HIV+) persons, the aims of this study were twofold: to analyse the incidence of gammadelta T-cell anergy in HIV+ positive patients with opportunistic infections/co-infections (HIV-OIC), and to investigate the role of highly active antiretroviral therapy (HAART) on gammadelta T-cell functions. Peripheral gammadelta T-cell distribution and in vitro reactivity to a non-peptidic mycobacterial antigen, isopentenyl pyrophosphate (IPP), were analysed. gammadelta T-cell subset distribution was altered more in HIV-OIC patients than in asymptomatic HIV+ subjects (HIV-ASY). Specifically, the Vdelta2/Vdelta1 ratio was inverted as a consequence of a decrease in Vdelta2 T-cell number. Moreover, IPP-stimulated Vdelta2 T cells from the HIV-OIC group displayed a major defect in interferon-gamma (IFN-gamma) production. Interestingly, HAART induced a sustained recovery of naive CD45RA+ and CD62L+ T cells and restored gammadelta T-cell function. Accordingly, in vitro CD45RA depletion resulted in gammadelta T-cell hyporesponsiveness. Altogether, the incidence of gammadelta T-cell anergy was increased in HIV-OIC patients and dependent on CD45RA helper function. Moreover, HAART was able to restore gammadelta T-cell reactivity, extending the immune recovery to non-peptide microbial antigens.  相似文献   

14.
Limited studies have addressed the ability of gammadelta T cells to become memory populations. We previously demonstrated that WC1.1(+) gammadelta T cells from ruminants vaccinated with killed Leptospira borgpetersenii proliferate and produce IFN-gamma in recall responses. Here we show that this response is dependent upon antigen-responsive CD4 T cells, at least across transwell membranes; this requirement cannot be replaced by IL-2. The response was also dependent upon in vivo priming, since gammadelta T cells from leptospira vaccine-naive animals did not respond to antigen even when co-cultured across membranes from antigen-responsive PBMC. Gammadelta T cells were the major antigen-responding T cell population for the first 4 wks following vaccination and replicated more rapidly than CD4 T cells. Primed WC1(+) gammadelta T cells circulated as CD62L(hi)/CD45RO(int)/CD44(lo), characteristics of T(CM) cells. When stimulated with antigen, they decreased CD62L, increased CD44 and CD25, and had no change in CD45RO expression. These changes paralleled those of the leptospira antigen-responsive CD4 T cells but differed from those of gammadelta T cells proliferating to mitogen stimulation. This system for in vivo gammadelta T cell priming is unique, since it relies on a killed antigen to induce memory and may be pertinent to designing vaccines that require type 1 pro-inflammatory cytokines.  相似文献   

15.
Mycobacterium bovis infection of cattle represents a natural host-pathogen interaction and, in addition to its economic and zoonotic impact, represents a model for human tuberculosis. Extravasation and trafficking of activated lymphocytes to inflammatory sites is modulated by differential expression of multiple surface adhesion molecules. However, effects of M. bovis infection on adhesion molecule expression have not been characterized. To determine these changes, peripheral blood mononuclear cells from M. bovis-infected cattle were stimulated with M. bovis purified protein derivative (PPD) or pokeweed mitogen (PWM) and evaluated concurrently for proliferation and activation marker expression. Stimulation with PPD or PWM increased CD25 and CD44 mean fluorescence intensity (MFI) and decreased CD62L MFI on CD4(+) cells from infected animals. CD62L MFI on PPD- and PWM-stimulated gammadelta T-cell receptor-positive (TCR(+)) and CD8(+) cells was also reduced compared to that of nonstimulated gammadelta TCR(+) and CD8(+) cells. Using a flow cytometry-based proliferation assay, it was determined that proliferating cells, regardless of lymphocyte subset, exhibited increased expression of CD25 and CD44 and decreased expression of CD62L compared to cells that had not proliferated. In contrast to proliferation, activation-induced apoptosis of CD4(+) cells resulted in a significant down regulation of CD44 expression. Lymphocytes obtained from lungs of M. bovis-infected cattle also had reduced expression of CD44 compared to lymphocytes from lungs of noninfected cattle. These alterations in surface molecule expression upon activation likely impact trafficking to sites of inflammation and the functional capacity of these cells within tuberculous granulomas.  相似文献   

16.
Mycobacterium tuberculosis lipid antigens produce significant T cell responses in healthy tuberculin reactor [purified protein derivative (PPD-positive] individuals. In the present study, proliferation and interferon (IFN)-gamma/interleukin (IL)-4 responses were analysed to M. tuberculosis total lipid antigens in T lymphocytes from 25 patients with multi-drug-resistant tuberculosis (MDR-TB). The obtained results were compared with those of 30 asymptomatic healthy PPD-positive and 30 healthy tuberculin skin test negative (PPD-negative) subjects. Peripheral blood mononuclear cells (PBMCs) and T cells (CD4(+) and CD8(+)) were stimulated using autologous immature dendritic cells. Proliferation responses were assessed using 3-{4,5-dimethylthiazol-2-yl}-2,5 diphenyl tetrazolium bromide (MTT). IFN-gamma/IL-4 concentrations in the supernatant of the CD4(+) and CD8(+)T cells were measured by enzyme-linked immunosorbent assay. Proliferation assay showed that the peripheral blood mononuclear cells and CD4(+) T cells from the MDR-TB patients responded significantly less to the M. tuberculosis total lipid antigens than to the CD4(+) T cells in the PPD-positive subjects. Total lipid antigen-specific proliferative responses in the CD8(+) T cells from the MDR-TB patients were minimally detected and the responses were similar to those of the PPD-positive subjects. IFN-gamma production by the CD4(+) T cells stimulated by total lipid antigens from the MDR-TB patients was decreased significantly compared with the PPD-positive individuals, whereas IL-4 production in the patients was elevated. IFN-gamma and IL-4 production in the CD8(+) T cells of the MDR-TB patients was similar to those of the PPD-positive subjects. In conclusion, it is suggested that stimulated CD4(+) T cells by M. tuberculosis total lipid antigens may be shifted to T helper 2 responses in MDR-TB patients.  相似文献   

17.
Cell-mediated immune responses are critical for protective immunity to mycobacterial infections. Recent progress in defining mycobacterial antigens has determined that region of difference 1 (RD1) gene products induce strong T-cell responses, particularly the early secretory antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP10). However, comprehensive analysis of the immune response towards these antigens is incompletely characterized. To evaluate recall responses to ESAT-6 and CFP10, peripheral blood mononuclear cells from M. bovis-infected cattle were stimulated in vitro with a recombinant ESAT-6 (rESAT-6)-CFP10 fusion protein and compared to responses induced by M. bovis-derived purified protein derivative. Following antigenic stimulation, activation marker expression was evaluated. Significant proliferative responses (P < 0.05) were evident in CD4(+), CD8(+), immunoglobulin M-positive, and CD172a(+) cell fractions after 6 days of culture. Expression of CD25 and CD26 was increased (P < 0.05) on CD4(+), CD8(+), and gammadelta T-cell-receptor-positive cells. CD4(+) and CD8(+) cells also exhibited significant changes (P < 0.05) in expression of CD45 isoforms. Using a flow cytometry-based proliferation assay, it was determined that CD45R expression is downregulated (P < 0.05) and that CD45RO expression is upregulated (P < 0.05) on proliferating (i.e., activated) CD4(+) cells. Collectively, data indicate that recall immune responses directed toward the rESAT-6-CFP10 fusion protein or purified protein derivative are comparable and that recall to mycobacterial antigens correlates with a CD45RO(+) phenotype.  相似文献   

18.
T cell-derived cytokines play an important role in the pathogenesis of allergic asthma, but little is known about the cytokine profile of their different subsets. The aim of the present study was to investigate the cytokine production potential of CD4(+), CD8(+), or gammadelta(+) T cells derived from the bronchoalveolar space of mild atopic asthmatic subjects (n = 11) and nonatopic control subjects (n = 9) before and 24 h after segmental allergen challenge. The cytokine production was determined using the technique of intracellular cytokine detection by flow cytometry. Comparing asthmatic with control subjects we found no difference in the percentage of CD4(+), CD8(+), or gammadelta T cells in the bronchoalveolar lavage fluid before and after allergen challenge. Before allergen challenge the proportion of cells producing the cytokines interferon (IFN)-gamma, interleukin (IL)-2, IL-4, IL-5, and IL-13 was not different in CD4(+) and CD8(+) cells. The major difference between the groups was an increased percentage of positive-staining cells for the T helper-(Th)2-cytokines IL-5 and IL-13 in the gammadelta T-cell subset. After allergen challenge, all T-cell subsets revealed a decreased proportion of cells producing the Th1-type cytokines IFN-gamma and IL-2. The percentage of IL-4- and IL-5-positive cells did not change in all subsets, and there was a decreased proportion of IL-13- positive cells in the CD4(+) subset. These findings indicate an increased Th2-cytokine profile in gammadelta T cells. After allergen challenge, the dysbalance between Th1 and Th2 cytokines was further accentuated by a reduction in Th1 cytokine-producing T cells.  相似文献   

19.
We have previously shown that CD8(+)gammadelta T cells decrease late allergic airway responses, airway eosinophilia, T helper 2 cytokine expression and increase interferon-gamma (IFN-gamma) expression. We hypothesized that the effects of CD8(+)gammadelta T cells were IFN-gamma mediated. Brown Norway rats were sensitized to ovalbumin on day 1. Cervical lymph node CD8(+)gammadelta T cells from sensitized animals were treated with antisense oligodeoxynucleotide (5 micromol/l) to inhibit IFN-gamma synthesis or control oligodeoxynucleotide and 3.5 x 10(4) CD8(+)gammadelta T cells were injected intraperitoneally into sensitized recipients on day 13. Rats were challenged with aerosolized ovalbumin on day 15 and lung resistance was monitored over an 8 hr period, after which bronchoalveolar lavage was performed. Control oligodeoxynucleotide treated gammadelta T cells decreased late airway responses and eosinophilia in bronchoalveolar lavage. There was a complete recovery of late airway responses and a partial recovery of airway eosinophilia in recipients of antisense oligodeoxynucleotide treated cells. Macrophage ingestion of eosinophils was frequent in rats administered gammadeltaT cells but reduced in recipients of antisense oligodeoxynucleotide treated cells. These results indicate that CD8(+)gammadelta T cells inhibit late airway responses and airway eosinophilia through the secretion of IFN-gamma. Defective or altered gammadelta T-cell function may account for some forms of allergic asthma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号