首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.Key Words: Adenosine receptor, Alzheimer’s disease, amyloid beta, caffeine, cognition, neuromodulation.  相似文献   

2.
3.
Extracellular vesicles (EVs) are physiological vesicles secreted from most eukaryotes and contain cargos of their cell of origin. EVs, and particularly a subset of EV known as exosomes, are emerging as key mediators of cell to cell communication and waste management for cells both during normal organismal function and in disease. In this review, we investigate the rapidly growing field of exosome biology, their biogenesis, cargo loading, and uptake by other cells. We particularly consider the role of exosomes in Alzheimer’s disease, both as a pathogenic agent and as a disease biomarker. We also explore the emerging role of exosomes in chronic traumatic encephalopathy. Finally, we highlight open questions in these fields and the possible use of exosomes as therapeutic targets and agents.  相似文献   

4.
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects approximately 24 million people worldwide. A number of different risk factors have been implicated in AD, however, neuritic (amyloid) plaques are considered as one of the defining risk factors and pathological hallmarks of the disease. Complement proteins are integral components of amyloid plaques and cerebral vascular amyloid in Alzheimer brains. They can be found at the earliest stages of amyloid deposition and their activation coincides with the clinical expression of Alzheimer''s dementia. This review emphasizes on the dual key roles of complement system and complement regulators (CRegs) in disease pathology and progression. The particular focus of this review is on currently evolving strategies for design of complement inhibitors that might aid therapy by restoring the fine balance between activated components of complement system, thus improving the cognitive performance of patients. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of AD.Key Words: Alzheimer’s disease, neurodegeneration, inflammation, β-amyloid peptide, complement, complement regulators, CD59, complement therapeutics.  相似文献   

5.
6.
S41Intracellularsignalingresponsetooxida tiveandnitrosativestress?YoungJoonSURH(NationalResearchLaboratoryofMolecularCarcino genesisandChemoprevention,CollegeofPharmacy,SeoulNationalUniversity,Seoul151742,Korea;E mail:surh@plaza.snu.ac.kr)Reactiveoxygenspecies(ROS)andreactiveni trogenspecies(RNS)cancausecellulardamageim plicatedinpathogenesisofawiderangeofhumandis orders,includingcancer,autoimmunedisease,diabe tes,cardiovasculardiseaseandneurodegenerativedis ease.Whileexcessiveoxidat…  相似文献   

7.
Dementia has become an all-important disease because the population is aging rapidly and the cost of health care associated with dementia is ever increasing. In addition to cognitive function impairment, associated behavioral and psychological symptoms of dementia (BPSD) worsen patient’s quality of life and increase caregiver’s burden. Alzheimer’s disease is the most common type of dementia and both behavioral disturbance and cognitive impairment of Alzheimer’s disease are thought to be associated with the N-methyl-D-aspartate (NMDA) dysfunction as increasing evidence of dysfunctional glutamatergic neurotransmission had been reported in behavioral changes and cognitive decline in Alzheimer’s disease. We review the literature regarding dementia (especially Alzheimer’s disease), BPSD and relevant findings on glutamatergic and NMDA neurotransmission, including the effects of memantine, a NMDA receptor antagonist, and NMDA-enhancing agents, such as D-serine and D-cycloserine. Literatures suggest that behavioral disturbance and cognitive impairment of Alzheimer’s disease may be associated with excitatory neurotoxic effects which result in impairment of neuronal plasticity and degenerative processes. Memantine shows benefits in improving cognition, function, agitation/aggression and delusion in Alzheimer’s disease. On the other hand, some NMDA modulators which enhance NMDA function through the co-agonist binding site can also improve cognitive function and psychotic symptoms. We propose that modulating NMDA neurotransmission is effective in treating behavioral and psychological symptoms of Alzheimer’s disease. Prospective study using NMDA enhancers in patients with Alzheimer’s disease and associated behavioral disturbance is needed to verify this hypothesis.  相似文献   

8.
Microglial activation is an important pathogenic component of neurodegenerative disease processes. This state of increased inflammation is associated not only with neurotoxic consequences but also neuroprotective effects, e.g., phagocytosis and clearance of amyloid in Alzheimer’s disease. In addition, activation of microglia appears to be one of the major mechanisms of amyloid clearance following active or passive immunotherapy. Imaging techniques may provide a minimally invasive tool to elucidate the complexities and dynamics of microglial function and dysfunction in aging and neurodegenerative diseases. Imaging microglia in vivo in live subjects by confocal or two/multiphoton microscopy offers the advantage of studying these cells over time in their native environment. Imaging microglia in human subjects by positron emission tomography scanning with translocator protein-18 kDa ligands can offer a measure of the inflammatory process and a means of detecting progression of disease and efficacy of therapeutics over time.  相似文献   

9.
10.
Journal of Neuroimmune Pharmacology - This study examines the link between peripheral immune changes in perpetuation of the Alzheimer’s disease (AD) neuropathology and cognitive deficits. Our...  相似文献   

11.
There is an urgent need for new ways to treat Alzheimer’s disease (AD), the most common cause of dementia in the elderly. Current therapies are modestly effective at treating the symptoms, and do not significantly alter the course of the disease. Over the years, a range of epidemiological and experimental studies have demonstrated interactions between diabetes mellitus and AD. As both diseases are leading causes of morbidity and mortality in the elderly and are frequent co-morbid conditions, it has raised the possibility that treating diabetes might be effective in slowing AD. This is currently being attempted with drugs such as the insulin sensitizer rosiglitazone. These two diseases share many clinical and biochemical features, such as elevated oxidative stress, vascular dysfunction, amyloidogenesis and impaired glucose metabolism suggesting common pathogenic mechanisms. The main thrust of this review will be to explore the evidence from a pathological point of view to determine whether diabetes can cause or exacerbate AD. This was supported by a number of animal models of AD that have been shown to have enhanced pathology when diabetic conditions were induced. The one drawback in linking diabetes and insulin to AD has been the postmortem studies of diabetic brains demonstrating that AD pathology was not increased; in fact decreased pathology has often been reported. In addition, diabetes induces its own distinct features of neuropathology different from AD. There are common pathological features to be considered including vascular abnormalities, a major feature arising from diabetes; there is increasing evidence that vascular abnormalities can contribute to AD. The most important common mechanism between insulin-resistant (type II) diabetes and AD could be impaired insulin signaling; a form of toxic amyloid can damage neuronal insulin receptors and affect insulin signaling and cell survival. It has even been suggested that AD could be considered as “type 3 diabetes” since insulin can be produced in brain. Another common feature of diabetes and AD are increased advanced glycation endproduct-modified proteins are found in diabetes and in the AD brain; the receptor for advanced glycation endproducts plays a prominent role in both diseases. In addition, a major role for insulin degrading enzyme in the degradation of Aβ peptide has been identified. Although clinical trials of certain types of diabetic medications for treatment of AD have been conducted, further understanding the common pathological processes of diabetes and AD are needed to determine whether these diseases share common therapeutic targets.  相似文献   

12.
Immunotherapeutics targeting amyloid-β (Aβ) have had mixed results in clinical trials. The present study aims to evaluate the safety and clinical efficacy of immunotherapeutic agents targeting Aβ in Alzheimer’s disease. Randomised controlled trials of at least two weeks duration were included in the review. Fourteen randomised controlled trials (n = 5554) were identified in a systematic search of eight electronic databases. Upon pooling of data, there was no increased risk of any adverse event, serious adverse events, or death with the exception of a near fivefold increase in amyloid-related imaging abnormalities (ARIA; OR 4.79, 95% CI 1.24–18.55; p = 0.02). Of the cognitive indicators, the Mini-Mental State Examination (MMSE) showed a small statistically significant improvement (diff in means =0.44; p = 0.02), while the others (ADAS-cog, ADCS-ADL, and CDR-sb) showed no change. Therefore, immunotherapeutic agents have been relatively well tolerated, with some promise for cognitive improvements if the occurrence of ARIA can be mitigated.  相似文献   

13.
Alzheimer's disease (AD) is the most common causes of dementia accounting for 50-60% of all cases. The pathological hallmarks of AD are the formation of extracellular plaques consisting of amyloid-β protein, intracellular neurofibrillary tangles of hyperphosphorylated tau proteins and presence of chronic neuroinflammation causing progressive decline in memory and cognitive functions. The current therapeutic strategies to improve memory deficits aim at preventing the formation and accumulation of amyloid-β and tau phosphorylation. Beyond the plaque and tangle-related targets, other aspects of pathophysiology including molecular transport mechanism, oxidative damage, inflammation and glucose and lipid metabolism may also provide opportunities to slow down the progression of memory loss. A novel therapeutic approach to the treatment of AD is through the exploration of nuclear receptor agonists, peroxisome proliferator-activated receptors (PPARs), which have been clinically used as antidiabetic and dyslipidemic agents. The findings that PPAR agonists may possess antiamyloidogenic, anti-inflammatory, insulin-sensitizing, and cholesterol-lowering potential suggest that they could be interesting candidates for AD drugs. Through this review, we will discuss the probable pathophysiological mechanisms that may elicit the defending role of these receptors in brains of AD patients.  相似文献   

14.

Purpose

Alzheimer’s disease (AD) may disturb functions of the blood-brain barrier and change the disposition of drugs to the brain. This study assessed the disease-induced changes in drug transporters in the brain capillaries of transgenic AD mice.

Methods

Eighteen drug transporters and four tight junction-associated proteins were analyzed by RT-qPCR in cortex, hippocampus and cerebellum tissue samples of 12–16-month-old APdE9, Tg2576 and APP/PS1 transgenic mice and their healthy age-matched controls. In addition, microvessel fractions enriched from 1-3-month-old APdE9 mice were analyzed using RT-qPCR and Western blotting. Brain transport of methotrexate in APdE9 mice was assessed by in vivo microdialysis.

Results

The expression profiles of studied genes were similar in brain tissues of AD and control mice. Instead, in the microvessel fraction in APdE9 mice, >2-fold alterations were detected in the expressions of 11 genes but none at the protein level. In control mice strains, >5-fold changes between different brain regions were identified for Slc15a2, Slc22a3 and occludin. Methotrexate distribution into hippocampus of APdE9 mice was faster than in controls.

Conclusions

The expression profile of mice carrying presenilin and amyloid precursor protein mutations is comparable to controls, but clear regional differences exist in the expression of drug transporters in brain.
  相似文献   

15.
16.
17.
Cerebrovascular disease may lead to a wide range of cognitive changes, referred to collectively as vascular cognitive impairment. Stroke increases the risk of cognitive impairment and dementia, and may contribute to the progression of Alzheimer's disease (AD). Apart from clinical stroke itself, vascular risk factors are associated with the development of cognitive impairment and dementia. Animal models involving a temporary or permanent interruption of blood flow in the common carotid arteries develop nonprogressive cognitive impairment. Oxidative stress during cerebral hypoperfusion in animal models plays a key role in neuronal death and may thus contribute to the development of cognitive impairment in cerebrovascular disease. Genetic and pharmacological interventions to inhibit the major source of reactive oxygen species, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, are neuroprotective in experimental cerebral ischemia. Recent studies have demonstrated that inhibition of NADPH oxidase activity can mitigate cognitive impairment in rodent models of cerebral hypoperfusion. In this article, we review the evidence linking cognitive impairment and/or AD with NADPH oxidase-dependent oxidative stress, including the renin-angiotensin system.  相似文献   

18.
Pharmaceutical Research - We have recently demonstrated the brain-delivery of an Amyloid-ß oligomer (Aßo)-binding peptide-therapeutic fused to the BBB-crossing single domain antibody FC5....  相似文献   

19.
As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition.  相似文献   

20.

Background:

Benzodiazepines are frequently prescribed in patients with Alzheimer’s disease. Unfortunately, studies evaluating their benefits and risks in these patients are limited.

Methods:

Clinical trials focusing on the effect of benzodiazepines on cognitive functions, disease progression, behavioral symptoms, sleep disturbances, and the general frequency of benzodiazepine use were included in this review. Published articles from January 1983 to January 2015 were identified using specific search terms in MEDLINE and PubMed Library according to the recommendations of The Strengthening the Reporting of Observational Studies in Epidemiology initiative.

Results:

Of the 657 articles found, 18 articles met predefined selection criteria and were included in this review (8 on frequency, 5 on cognitive functions, 5 on behavioral and sleep disturbances). The frequency of benzodiazepine use ranged from 8.5% to 20%. Five studies reported accelerated cognitive deterioration in association with benzodiazepine use. Two studies reported clinical efficacy for lorazepam and alprazolam to reduce agitation in Alzheimer’s disease patients. No evidence was found for an improvement of sleep quality using benzodiazepines.

Conclusion:

This systematic review shows a relatively high prevalence of benzodiazepine use but limited evidence for clinical efficacy in Alzheimer’s disease patients. However, there is a paucity of methodologically high quality controlled clinical trials. Our results underscore a need for randomized controlled trials in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号