首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anticancer drug cis-diammindichloroplatin (CDDP, cisplatin) causes severe side effects like peripheral sensitive neuropathy. The toxicity of CDDP has been linked to changes in intracellular calcium homeostasis ([Ca2+]i). Voltage activated calcium channel currents (ICa(V)) are important for the regulation of [Ca2+]i; therefore, this study was designed to examine the effect of CDDP on ICa(V) in comparison to voltage activated potassium (IK(V)) and sodium (INa(V)) channel currents using the whole cell patch clamp method on dorsal root ganglion neurons of rats. In small neurons (or=?25 microm) were less sensitive to CDDP. The peak ICa(V) was reduced by 14.1+/-2.3% and IK(V) by 12.8+/-3.4% (100 microM). The sensitivity of INa(V) in large neurons to CDDP was not different compared to small neurons. We conclude that the reduction of ICa(V) in small cells may be responsible for the neurotoxic side effects CDDP causes in sensory neurons.  相似文献   

2.
Thrombin is a multifunctional protease. Recent studies on cultured neuronal cells have suggested a function for thrombin in the development and maintenance of the nervous system. Thrombin has been found to induce neurite retraction and reverse stellation in neuroblastoma cell lines and rat astrocytes, respectively. The major focus of our study was to investigate the potential role of thrombin in peripheral nervous system development using the rat embryonic dorsal root ganglion model. We found a dose dependent inhibition of neurite outgrowth from explant dorsal root ganglion cultures upon exposure to 2 to 200 nM thrombin. This effect was reversed by the specific thrombin inhibitor, hirudin. A synthetic peptide that imitates the fully active receptor, thrombin receptor activating peptide, was also found to inhibit neurite outgrowth from dorsal root ganglia. bis-Benzimide stained neuronal cultures did not show any evidence of cell death after exposure to thrombin or thrombin receptor activating peptides. Immunohistochemical studies revealed specific staining of the thrombin receptor on neurons, with intense labeling along neurites. Enriched neuronal cultures exposed to thrombin and thrombin receptor activating peptides revealed rapid activation of phospholipase Cγ-1, a second messenger associated with the thrombin receptor. These findings are the first to describe the localization of the thrombin receptor to dorsal root ganglion neurons. We propose that receptor activation is associated with thrombin induced inhibition of neurite outgrowth.  相似文献   

3.
We have recently demonstrated that ethanol and longer-chain alcohols (n-alcohols) enhance gamma-aminobutyric acid (GABA)-induced chloride currents before desensitization takes place. The potencies of n-alcohols increase with lengthening of the carbon chain. We now report that n-alcohols induce chloride currents by themselves in rat dorsal root ganglion neurons in primary culture. The whole cell variation of the patch clamp techniques was used to record currents as induced by external application of alcohols and other test compounds. Ethanol, n-butanol, n-hexanol and n-octanol induced inward currents with their potencies increasing in that order. The potencies were approximately one order of magnitude less than those to augment GABA-induced currents. The maximum amplitudes of currents induced by the alcohols were less than those produced by GABA. The n-octanol-induced currents were carried largely by chloride ions because the reversal potentials were changed according to the Nernst chloride potential as the internal chloride concentration was changed. Bicuculline and picrotoxin suppressed the n-octanol-induced current, and chlordiazepoxide and pentobarbital augmented the n-octanol-induced current. Therefore, the alcohol-induced chloride currents flow through the chloride channels associated with the GABAA receptors. When applied after the GABA-induced current was desensitized to a lower level, n-octanol suppressed rather than augmented the current. Thus, n-alcohols mimic barbiturates in augmenting the GABA-induced currents and in generating chloride currents by themselves. These actions of both agents may play a role in causing anxiolytic, sedative and/or anesthetic effects.  相似文献   

4.
Cisplatin causes apoptosis of dorsal root ganglia (DRG) neurons. The amount of platinum binding to DNA correlates with cisplatin toxicity in cancer cellsGenomic DNA platinum content of cultured embryonic DRG neurons and PC12 cells was assayed using inductively coupled plasma mass spectrometry (ICP-MS). Throughout these studies, "cisplatin" refers to the specific drug; "platinum" to the bound form of the drug that is measured in ICP-MS.. Cisplatin binds neuronal DNA more than a neuron-like dividing cell line (PC12); 10-fold at 24 h and 24-fold greater at 72 h. Difference in platinum accumulation was not due to dividing versus post-mitotic state, or to a difference in rate of repair. There was overall greater accumulation of platinum in DRG neurons. In vivo DNA-Platinum binding in adult (300 g) rat DRG was greater than in multiple other tissues. Concomitant treatment with high-dose NGF prevented cisplatin-mediated neuronal apoptosis in vitro but did not reduce adduct formation. Our results show that NGF does not alter platination of DNA, indicating that it interrupts the platinum death pathway after adduct formation. In addition, disproportionate platinum accumulation may explain why a drug aimed at killing rapidly dividing cells causes sensory neurotoxicity.  相似文献   

5.
The physiological properties of rat sensory neurons infected with herpes simplex type 1 viruses and maintained in cell culture were studied using intracellular recording techniques. Two syncytial (cell fusing) and two nonsyncytial strains of virus were examined; individual strains of virus had different effects on neuronal excitability. The nonsyncytial viruses caused a loss of tetrodotoxin-sensitive low-threshold action potentials and blocked hyperpolarization-activated inward rectification, but did not alter the resting membrane potential, depolarization-activated outward rectification, or render the cells leaky. These effects develop progressively over the period 5-15 hr postinfection. One syncytial strain of virus induced spontaneous electrical activity that appeared to be the result of discrete electrical coupling between sensory neuron processes; as a result, action potential discharge is synchronized in coupled neurons. A second syncytial strain of virus rendered neurons inexcitable; however, in these experiments the input resistance fell to low values, possibly as a result of extensive coupling between sensory neurons. Viral replication in sensory neurons was demonstrable with indirect immunofluorescence using an antibody to herpes simplex viruses and correlated with the onset of virally induced changes in excitability. Virally triggered changes in excitability were blocked by the specific herpes virus antimetabolite acyclovir, suggesting that viral adsorption and penetration are by themselves insufficient to evoke changes in excitability. These results suggest that herpes viruses have selective effects on the excitable mechanisms in sensory neurons that are not simply the result of a general loss of membrane conductances or the disruption of transmembrane ion gradients.  相似文献   

6.
7.
Liang SD  Xu CS  Zhou T  Liu HQ  Gao Y  Li GL 《Brain research》2005,1040(1-2):92-97
Tetramethylpyrazine (TMP) is one of the alkaloids contained in Ligustrazine which has been used in traditional Chinese medicine as an analgesic for injury and dysmenorrhea. ATP can elicit the sensation of pain. This study observed the effects of TMP on ATP-activated current (IATP) in rat DRG neurons. TMP (0.1-1 mM) concentration-dependently inhibited ATP (100 microM)-activated current in rat DRG neurons. The inhibitory time of ATP (100 microM)-activated current appeared at 15 s after preapplication of TMP and reached its peak at about 45 s. The dose-response curves for IATP in the absence and presence of 1 mM TMP showed that TMP (1 mM) shifted the concentration-response curve of IATP downward markedly and the two EC50 values were very close (75 vs. 82 microM), while the threshold value remained unchanged. Therefore, the inhibitory effect of TMP on IATP may be noncompetitive. TMP did not alter the reversal potential (0 mV) of ATP-activated current, indicating that the site of TMP action is on or near the exterior surface of channel protein and not within the channel pore. Externally applied TMP (1 mM) increases the inhibitory effect of chelerythrine (PKC inhibitor) contained in pipette solution on IATP. The site of TMP action may be the binding of TMP to an allosteric site on the large extracellular region of ATP receptor-ion channel complex (P2X receptors) or PKC site of the N-terminus of P2X receptors. The mechanism of TMP action may be the allosteric regulation via acting on the large extracellular region of ATP receptor-ion channel complex (P2X receptors) and promoting the phosphorylation of PKC site of the N-terminus of P2X receptors.  相似文献   

8.
Calretinin immunostaining was performed on chick lumbosacral dorsal root ganglia during embryonic development. Calretinin-immunopositive neurons were first observed at around the 9th day of incubation. Quantitative evaluation revealed a close correlation between the number of immunopositive cells and the duration of incubation. Morphometric measurements disclosed that calretinin-immunoreactive cells belong in the large or intermediate categories of dorsal root ganglion neurons. It was concluded that the appearance of calretinin immunopositivity in spinal ganglion cells during development may be associated with both the morphological and functional maturation of this particular population of primary sensory neurons.  相似文献   

9.
The myelin-associated glycoprotein (MAG) has been postulated to play a crucial role during myelin formation. Evidence supporting this hypothesis was provided by infecting rat Schwann cells with a retrovirus expressing MAG antisense RNA; these Schwann cells showed reduced levels of MAG expression and failed to myelinate DRG neurons in vitro. However, when MAG expression was disrupted by generating MAG-deficient mice, normal myelin sheaths were formed in peripheral nerves in vivo. In the present study we investigated whether myelination is compromised in MAG-deficient Schwann cells in vitro, i.e., under similar conditions where Schwann cells expressing MAG antisense RNA failed to myelinate. We show that MAG-deficient Schwann cells do myelinate DRG neurons in vitro and express the myelin-specific glycolipid galactocerebroside (Gal-C) and the myelin proteins P0 and MBP. Furthermore, myelin sheaths appear morphologically normal with both compacted and uncompacted aspects when investigated by electron microscopy. Quantitative analysis revealed that the number of myelin sheaths was similar in cultures from MAG-deficient and wild-type mice. These findings support the view that MAG is not essential for myelin formation in the PNS. GLIA 22:213–220, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Following spinal root injury, dorsal root ganglia suffer mechanical trauma and compromised blood supply. Little is known about the consequences for neuronal survival. Here we used cyanide treatment in vitro to examine effects of moderate hypoxia on adult rat dorsal root ganglion cells identified by GAP-43 immunostaining. 400 microM-4 mM cyanide caused sustained increases in intracellular Ca2+. Cyanide at 2 mM led to a significant increase in apoptosis, detected using TUNEL labelling and confirmed by ultrastructural analysis, and a further increase when cultures were left overnight in fresh medium. Our study shows that dorsal root ganglion neurons die by apoptosis following hypoxia and that cell death increases over time. Cyanide response provides a simple assay for testing neuroprotective agents and examining underlying mechanisms.  相似文献   

11.
Recognition of specific targets by cultured dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
We have assessed the effects of different target cell populations on axonally transported proteins by the use of compartmental cell culture systems that separate the soma from the growing axons of rat sensory neurons. The labeling of 3 rapidly transported proteins diminishes when the growing axon contacts spinal cord cells (which are normal in vivo targets), and remains unaffected by contact with fibroblasts or heart cells. Medium conditioned by spinal cord cells does not exert this effect. Thus, specific classes of cells may be distinguished as target tissue by sensory neurons in vitro. Such recognition is accompanied by specific molecular changes in axonally transported proteins.  相似文献   

12.
Intracellular magnesium concentration ([Mg2+]i) of cultured dorsal root ganglion (DRG) neurons was measured using the magnesium indicator Mag-Fura-2/AM. [Mg2+]i was 0.48±0.08 mM (mean±SEM, n=23) at rest, and it increased 3-fold by depolarization with a 60-mM K+ solution. The [Mg2+]i increase was observed in the absence of extracellular Mg2+, but the increase disappeared in the absence of extracellular Ca2+. 50 μM cadmium or 100 μM verapamil, a Ca2+ channel blocker, also diminished the rise of [Mg2+]i. The additional measurement of an intracellular Ca2+ concentration ([Ca2+]i) indicated that the [Mg2+]i rise requires a threshold concentration of [Ca2+]i to be reached; above 60 nM. The present results indicate that depolarization induces a Ca2+-influx through voltage dependent Ca channels and this causes the release of Mg2+ from intracellular stores into the cytoplasm.  相似文献   

13.
In order to understand the relationship of supporting cells to the differentiation of neurons in culture, we have used morphometry to study myelination of dorsal root ganglion (DRG) neurons by central or peripheral supporting cells. Dissociated DRG cultures from 15-day rat embryos, free of Schwann cells and fibroblasts, were prepared, and supporting cells were added from spinal cord or DRG; myelination commenced after 2 weeks. Control cultures received no supporting cells. At 7, 14, and 24 days, a total of 22 cultures were processed for electron microscopy. Three fascicles from defined points were sampled from each culture. In cultures containing glial cells, smaller fibers (p less than 0.001) were myelinated (mean of median diameter, 1.13 +/- 0.13 (SD) micron) than in cultures containing Schwann cells (1.67 +/- 0.17 micron), although there was no difference (p greater than 0.1) in the degree of myelination expressed as number of myelin lamellae/fiber. A new finding concerned the relationship of axonal diameter to the presence or absence of myelinating cells. In control cultures without supporting cells or in areas where supporting cells were absent, the range of neurite diameter (0.05 to 1.25 micron) and the median diameter (mean of median, 0.24 +/- 0.03 micron) were similar at different times (7, 14, and 24 days), demonstrating a stable population of neurite diameters throughout the period. In myelinated fascicles, a different distribution of neurite diameters was present. Myelinated neurites had a greater median diameter (measured to inner border of myelin) and a different range of fiber diameters compared to bare neurites. For Schwann cells, this range was 0.7 to 3.4 micron, and the mean of median diameters was 1.67 +/- 0.17 micron; for glial cells, the range was 0.6 to 2.4 micron, and the mean of median diameters 1.13 +/- 0.13 micron. Differences between myelinated and bare fibers were all highly significant (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
ATP modulation of sodium currents in rat dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
The modulation of tetrodotoxin-sensitive (TTX-S) and slow tetrodotoxin-resistant (TTX-R) sodium currents in rat dorsal root ganglion neurons by ATP was studied using the whole-cell patch-clamp method. The effects of ATP on two types of sodium currents were either stimulatory or inhibitory depending on the kinetic parameters tested. At a holding potential of -80 mV ATP suppressed TTX-S sodium currents when the depolarizing potential was positive to -30 mV but it increased them when the depolarizing potential was negative to -30 mV. At the same holding potential slow TTX-R sodium currents were always increased by ATP regardless of the depolarizing potential. In both types of sodium currents ATP shifted both the conductance-voltage relationship curve and the steady-state inactivation curve in the hyperpolarizing direction, and accelerated the time-dependent inactivation. ATP decreased the maximum conductance of TTX-S sodium currents but increased that of slow TTX-R sodium currents. The results suggest that ATP would decrease the excitability of neurons with TTX-S sodium channels but would increase that of neurons with slow TTX-R sodium channels. The effects of ATP on sodium currents were preserved in the presence of a G-protein inhibitor, GDP-beta-S, or purinergic antagonists, suramin and Reactive Blue-2, suggesting that purinergic receptors might not be involved in ATP modulation of sodium currents.  相似文献   

15.
16.
大鼠背根神经节细胞的分离及特性探讨   总被引:2,自引:0,他引:2  
目的探讨大鼠背根神经节(dorsal root ganglion,DRG)细胞的分离方法以及细胞形态和电生理特征。方法采用显微外科技术获取大鼠DRG体,用双酶法急性分离大鼠DRG获得DRG细胞,全细胞膜片钳技术记录动作电位和钠电流。结果本实验能得到完整圆形或椭圆长条形的大鼠DRG体。正常的单个DRG细胞呈圆形或椭圆形,大小不等,胞膜清晰,折光性好,隐约可见细胞核。在DRG细胞上记录的动作电位都具有从0期到4期,呈正立锐角三角形,静息电位小,动作电位时程短。DRG细胞的钠通道最大电流密度在-30mV左右,几乎能被,TTX完全抑制,具有可逆性恢复。结论本实验采用分离方法简单易行,DRG细胞容易获得和辨认,适合膜片钳技术要求,电生理特征明确可靠,值得推崇。  相似文献   

17.
Kim HI  Kim TH  Song JH 《Brain research》2005,1045(1-2):134-141
Resveratrol, a phytoalexin found in grapevines, exerts neuroprotective, cancer chemopreventive, antiinflammatory and cardioprotective activities. Studies have also shown that resveratrol exhibits analgesic effects. Cyclooxygenase inhibition and K+ channel opening have been suggested as underlying mechanisms for the resveratrol-induced analgesia. Here, we investigated the effects of resveratrol on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na+ currents in rat dorsal root ganglion (DRG) neurons. Resveratrol suppressed both Na+ currents evoked at 0 mV from -80 mV. TTX-S Na+ current (K(d), 72 microM) was more susceptible to resveratrol than TTX-R Na+ current (K(d), 211 microM). Although the activation voltage of TTX-S Na+ current was shifted in the depolarizing direction by resveratrol, that of TTX-R Na+ current was not. Resveratrol caused a hyperpolarizing shift of the steady-state inactivation voltage and slowed the recovery from inactivation of both Na+ currents. However, no frequency-dependent inhibition of resveratrol on either type of Na+ current was observed. The suppression and the unfavorable effects on the kinetics of Na+ currents in terms of the excitability of DRG neurons may make a great contribution to the analgesia by resveratrol.  相似文献   

18.
Kim YS  Shin YK  Lee C  Song J 《Brain research》2000,881(2):190-198
To elucidate the local anesthetic mechanism of diphenhydramine, its effects on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium currents in rat dorsal root ganglion (DRG) neurons were examined by the whole-cell voltage clamp method. Diphenhydramine blocked TTX-S and TTX-R sodium currents with K(d) values of 48 and 86 microM, respectively, at a holding potential of -80 mV. It shifted the conductance-voltage curve for TTX-S sodium currents in the depolarizing direction but had little effect on that for TTX-R sodium currents. Diphenhydramine caused a shift of the steady-state inactivation curve for both types of sodium currents in the hyperpolarizing direction. The time-dependent inactivation became faster and the recovery from the inactivation was slowed by diphenhydramine in both types of sodium currents. Diphenhydramine produced a profound use-dependent block when the cells were repeatedly stimulated with high-frequency depolarizing pulses. The use-dependent block was more pronounced in TTX-R sodium currents. The results show that diphenhydramine blocks sodium channels of sensory neurons similarly to local anesthetics.  相似文献   

19.
Capsaicin induces apoptosis in some types of neurons, but the exact molecular mechanism remains unclear. In this study, capsaicin was systemically administrated in newborn rats and the dorsal root ganglion (DRG) neurons were examined for caspase-immunoreactivity. Capsaicin-induced neuronal apoptosis was revealed by TUNEL. TUNEL-positive neurons rapidly increased, reaching the peak at 24 h post-injection when 10.6% of DRG neurons were apoptotic. Neurons expressing immunoreactivity for activated caspases-9 and -3 concomitantly increased. At 24 h, 15.9% and 17.7% of DRG neurons exhibited immunoreactivity for caspase-9 and caspase-3, respectively. DNA fragmentation signal and caspase-immunoreactivity were detected in less than 0.5% of DRG neurons of vehicle control rats. The immunoreactivity and TUNEL-positivity returned to the vehicle control level by 120 h. Double label immunohistochemistry revealed co-expression of caspase-9 and DNA fragmentation or caspase-3 and DNA fragmentation. These results suggest that the caspase cascade is involved in the primary neuronal apoptosis induced by neurotoxin capsaicin.  相似文献   

20.
Acetylcholinesterase (AChE) has been shown to be transiently expressed in the developing nervous system during periods of neuronal migration and axonal outgrowth. We are investigating the possible interaction of substratum with AChE activity in dorsal root ganglion neurons (DRGN) cultured on substrata with varying degrees of permissiveness for neurite outgrowth: (1) extracellular matrix substrata: reconstituted basal lamina Matrigel (MGEL), laminin (LAM) and type I collagen (COL), and (2) organotypic substrata: unfixed, frozen sections of sciatic nerve (SN) and spinal cord (SC). In group 1, histochemical staining for AChE in DRGN was lowest on MGEL where outgrowth was most vigorous, intermediate on LAM, and highest on COL where neurite outgrowth was reduced by 55% compared to Matrigel and highly fasciculated. A similar trend was seen when the cultures were assayed biochemically, 2.84 +/- 0.14 nmoles ACh hydrolyzed/ganglion/hr (MGEL), 4.42 +/- 0.19 (LAM), 5.79 +/- 0.37 (COL). In group 2, SN supported an expansive outgrowth with lower AChE activity than in DRGN grown on SC where outgrowth was minimal. These studies show that the levels of AChE activity can be modulated by substratum, perhaps in proportion to the permissiveness of the substratum to neuritic outgrowth. These results are discussed in relation to possible non-cholinergic roles of AChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号