首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhou XM  Wong BC  Fan XM  Zhang HB  Lin MC  Kung HF  Fan DM  Lam SK 《Carcinogenesis》2001,22(9):1393-1397
Aspirin- and non-steroidal anti-inflammatory drug (NSAID)-induced apoptosis is one of the important mechanisms for their anti-tumour effect in gastric cancer. We aimed at determining the role of bcl-2 family proteins and caspases in the apoptotic process. Gastric cancer cell lines AGS (wild-type p53) and MKN-28 (mutant p53) were used. Cell proliferation was measured by MTT assay. Apoptosis was determined by acridine orange staining. Protein expressions were determined by western blotting. Aspirin and indomethacin inhibited cell proliferation and induced apoptosis in both cells. AGS cells were more sensitive compared with MKN-28 cells. The pro-apoptotic proteins bax and bak were overexpressed after treatment, while the protein level of bcl-2 remained unchanged. Apoptosis was accompanied by an increase in caspase-3 activity and cleavage of caspase-3 and poly(ADP-ribose) polymerase. Inhibition of caspase-3 rescued aspirin-induced apoptosis. Our results suggest that one of the major pathways which mediates the anti-tumour response of aspirin and indomethacin in gastric cancer cells is through up-regulation of bax and bak and activation of caspase-3. Bax and bak are important in the chemoprevention of gastric cancer.  相似文献   

2.
X-linked inhibitor of apoptosis (XIAP) is the most potent member of the inhibitor of apoptosis protein (IAP) gene family in terms of its ability to inhibit caspases and suppress apoptosis. Recent evidence has suggested that XIAP is a key determinant in chemoresistance of cancer cells. To explore a novel approach for ameliorating chemotherapy of gastric cancer, the antisense expression vector for the XIAP gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53) and MKN-28 (mutant-type p53). This transfer resulted in significant downregulation of XIAP expression, decreased in vitro cell viabilities, and induced apoptosis. In transferred cells, inactive caspase-3 precursors were cleaved into the active subunits (p20 and p17) during apoptosis induced by downregulation of XIAP. The inhibitory effects of cisplatin and mitomycin C on the growth of XIAP downregulated cancer cells were significantly enhanced. In addition, this process occurred only in wild-type p53 (MKN-45), but not in mutant-type p53 (MKN-28) gastric cancer cells. The data presented suggest that downregulation of XIAP via antisense RNA can lead to apoptosis of gastric cancer cells in vitro, correlating with cellular p53 status and activation of caspase-3. This finding could lead to a potential strategy for improving the efficiency of therapies for gastric cancer.  相似文献   

3.
12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells   总被引:11,自引:0,他引:11  
Wong BC  Wang WP  Cho CH  Fan XM  Lin MC  Kung HF  Lam SK 《Carcinogenesis》2001,22(9):1349-1354
Arachidonic acid release from membrane phospholipids is essential for tumour cell proliferation. Lipoxygenases constitute a pathway for arachidonate metabolism. The present study investigated the expression of 12-lipoxygenase and its effect on cell proliferation as well as survival in two human gastric cancer cell lines (AGS and MKN-28). RT-PCR and western blots, respectively, showed 12-LOX mRNA and protein expression in both AGS and MKN-28 cell lines. Treatment with a 12-LOX inhibitor, baicalein, significantly inhibited cancer cell proliferation, but a metabolite of 12-LOX activity, 12 hydroxyeicosatetraenoic acid (12-HETE) reversed baicalein-induced growth inhibition. Furthermore, the blockade of the 12-LOX pathway through a 12-LOX inhibitor and antisense induced apoptosis of gastric cancer cell lines. The biochemical characteristics of apoptosis were p53-independent combined with a decrease in bcl-2 expression. Caspase-7 was proteolytically activated and responsible for the apoptosis execution.  相似文献   

4.
We examined in the present study whether human gastric cancer cells express peroxisome proliferator-activated receptor gamma (PPARgamma), the effect of PPARgamma activation by troglitazone, a selective ligand, on cellular growth, and the mechanism of the growth arrest by troglitazone in gastric cancer cells. RT-PCR, northern blot and western blot analysis demonstrated that all four tested human gastric cancer cell lines, MKN-28, MKN-45, MKN-74 and KATO-III, expressed PPARgamma mRNA and protein. WST-1 assay and flow cytometric analysis revealed that troglitazone inhibited the growth and induced G1 arrest in all four gastric cancer cell lines. To examine the role of p27(Kip1), a cyclin-dependent kinase inhibitor, in the G1 arrest by troglitazone, we determined p27(Kip1) protein expression by western blot analysis in gastric cancer cells that had been treated with troglitazone. Troglitazone increased p27(Kip1) in all four gastric cancer cell lines. Since it has been reported that the ubiquitin-proteasome system plays a vital role in the degradation of p27(Kip1) protein, we evaluated the hypothesis that inhibition of proteasome mediates the troglitazone-induced p27(Kip1) accumulation. Lactacystin, a proteasome inhibitor, inhibited cell growth and increased p27(Kip1) expression in MKN-74 cells. It was further demonstrated that troglitazone inhibited proteasome activity in a dose-dependent manner in MKN-74 cells. All these results suggest that troglitazone inhibited proteasome activity, followed by induction of p27(Kip1), which arrests cells at the G1 phase of the cell cycle in gastric cancer cells. The troglitazone-mediated inhibition of the proteasome suggests a novel mechanism for the anti-proliferative effect of this agent in cancer cells.  相似文献   

5.
Arsenic trioxide (As(2)O(3)) can induce clinical remission in patients suffering from acute promyelocytic leukemia, through induction of apoptosis and activation of caspases. We investigated the potential use of As(2)O(3) in human gastric cancer and its possible mechanisms. Human gastric cancer cell lines AGS and MKN-28 were treated with various concentrations (0.1 to 100 microM) of As(2)O(3) for 24 to 72 hr. Apoptosis was determined by acridine orange staining, flow cytometry and DNA fragmentation. Protein levels of p53, p21(waf1/cip1), c-myc, bcl-2 and bax were detected by Western blotting. Effects of As(2)O(3) on caspase-3 protease activity, its protein concentration and cleavage of poly(ADP)-ribose polymerase (PARP) were also studied. As(2)O(3) inhibited cell growth and induced apoptosis in both cell lines, though AGS cells were more sensitive. As(2)O(3) induced apoptosis in AGS cells in a concentration- and time-dependent manner. Treatment resulted in a marked increase in p53 protein levels as early as 4 hr. Co-incubation with p53 anti-sense oligo-nucleotide suppressed As(2)O(3)-induced intracellular p53 over-expression and apoptosis. As(2)O(3) increased the activity of caspase-3, with appearance of its 17 kDa peptide fragment, and cleavage of PARP, with appearance of the 85 kDa cleavage product, both in parallel with the induction of apoptosis. Both the tripeptide caspase inhibitor zVAD-fmk and the specific caspase-3 inhibitor DEVD-fmk partially suppressed As(2)O(3)-induced caspase-3 activation and apoptosis. As(2)O(3) inhibits cell growth and induces apoptosis in gastric cancer cells, involving p53 over-expression and activation of caspase-3. The potential use of this compound in the treatment of gastric cancer is worth further investigation.  相似文献   

6.
7.
Liu ZM  Chen GG  Ng EK  Leung WK  Sung JJ  Chung SC 《Oncogene》2004,23(2):503-513
Both heme oxygenase-1 (HO-1) and p21(WAF1/Cip1) (p21) are involved in the pathogenesis of human cancer and their functions are closely associated with apoptosis. However, how these two molecules regulate apoptosis in human gastric cancer is unknown. In this study, we studied how HO-1 and p21 were regulated in two gastric cancer cell lines, MKN-45 with wild p53 and MKN-28 with mutant p53. The cells were treated with hemin and cadmium to induce HO-1. The result showed that HO-1 protein was significantly induced by hemin and cadmium in both cells tested. Following the HO-1 expression, p21 level was also markedly induced. The cells with increased HO-1 and p21 showed obviously resistantance to apoptotic stimuli. The levels of HO-1 and p21 induced were significantly inhibited by p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580) and extracellular-regulated kinase (ERK) inhibitor (PD098059). Parallel to decreased HO-1 and p21 expression, the kinase inhibitors also significantly attenuated the resistance of the cells to apoptosis. The elevated HO-1 and p21 was further found to be associated with increase activity of the nuclear NF-kappaB and the inhibition of NF-kappaB led to the block of their induction. The elevated HO-1 and p21 were also demonstrated to be related to increased cellular inhibitor of caspase inbitory protein-2 (c-IAP2) and decreased caspapse-3 activity. It was noted that the above changes observed were not different between MKN-45 and MKN-28 cells, suggesting the functions of HO-1 and p21 were irrespective of the status of p53. In conclusion, we demonstrate that the resistance to apoptosis in gastric cancer cells with elevated HO-1 and p21 is independent of p53 status in a p38 MAPK- and ERK-mediated pathway with elevated c-IAP2 and decreased caspase-3 activity and that this pathway is sensitive to the inhibition of NF-kappaB.  相似文献   

8.
In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize HPV-positive cervical cancer cell lines to apoptotic stimuli such as rhTRAIL (recombinant human TNF-related apoptosis inducing ligand). In a panel of cervical cancer cell lines, CaSki was highly, HeLa intermediate and SiHa not sensitive to rhTRAIL-induced apoptosis. MG132 strongly sensitized HeLa and SiHa to rhTRAIL-induced apoptosis in a caspase-dependent and time-dependent manner. MG132 massively induced TRAIL receptor DR4 and DR5 membrane expression in HeLa, whereas in SiHa only DR5 membrane expression was upregulated from almost undetectable to high levels. Antagonistic DR4 antibody partially inhibited apoptosis induction by rhTRAIL and MG132 in HeLa but had no effect on apoptosis in SiHa. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in elevated levels of active p53 as demonstrated by p53 small interfering RNA (siRNA) sensitive p21 upregulation. Although p53 siRNA partially inhibited MG132-induced DR5 upregulation in HeLa and SiHa, no effect on rhTRAIL-induced apoptosis was observed. MG132 plus rhTRAIL enhanced caspase 8 and caspase 3 activation and concomitant cleavage of X-linked inhibitor of apoptosis (XIAP), particularly in HeLa. In addition, caspase 9 activation was only observed in HeLa. Downregulation of XIAP using siRNA in combination with rhTRAIL induced high levels of apoptosis in HeLa, whereas MG132 had to be added to the combination of XIAP siRNA plus rhTRAIL to induce apoptosis in SiHa. In conclusion, proteasome inhibition sensitized HPV-positive cervical cancer cell lines to rhTRAIL independent of p53. Our results indicate that not only DR4 and DR5 upregulation but also XIAP inactivation contribute to rhTRAIL sensitization by MG132 in cervical cancer cell lines. Combining proteasome inhibitors with rhTRAIL may be therapeutically useful in cervical cancer treatment.  相似文献   

9.
10.
非甾体消炎药诱导胃癌细胞凋亡及其机制的研究   总被引:2,自引:0,他引:2  
目的:明确非甾体消炎药(NSAIDs)能否诱导胃癌细胞凋亡;明确不同的p53基因表型对NSAIDs诱导的细胞凋亡是否有影响;明确NSAIDs对细胞凋亡相关基因Bcl-2及Bax表达的调控。方法:通过MTT比色法检测NSAIDs对细胞生长活力的影响;应用丫啶橙(AO)染色、Annexin-V/PI双染色、共聚焦显微镜、流式细胞术检测细胞凋亡;应用RT-PCR、Western-blot方法检测bcl-2、bax基因及蛋白水平的改变。结果:NSAIDs药物吲哚美辛(Indo)和阿司匹林(Asp)对胃癌细胞株AGS(p53 / )、MKN28(p53-/-)均有显著的生长抑制作用,且呈时间/浓度依赖性增强;在相同作用条件下,AGS细胞的凋亡率明显高于MKN28细胞,处理组MKN28细胞凋亡数量虽有所增多,但与正常对照组相比不具有统计学意义;随着药物作用时间的延长,Bcl-2基因mRNA表达逐渐减弱,Bax基因及蛋白表达逐渐增强,在药物作用6~24小时改变最为明显。结论:一定浓度的NSAIDs作用一定时间后,可诱导胃癌细胞凋亡,这为NSAIDs的抗肿瘤应用增加了理论依据;NSAIDs不能诱导p53基因突变的MKN28胃癌细胞株发生显著的凋亡,p53基因突变可能阻断了NSAIDs的凋亡诱导效应;NSAIDs可能通过调控Bcl-2、Bax的基因及蛋白水平而诱导肿瘤细胞凋亡。  相似文献   

11.
Guo H  Li M  Chen P  Blake DJ  Kong X  Hao X  Niu R  Zhang N 《Cancer letters》2011,302(1):69-75
The aim of this study was to determine the anticancer effects of seven licorice compounds in MKN-28, AGS, and MKN-45 gastric cancer cells and human gastric epithelium immortalized cells. We also explored the mechanism of action of licochalcone A (LCA), the most cytotoxic licorice compound, by analyzing its influence on cell cycle progression and apoptosis. The results indicated that LCA was the most cytotoxic licorice compound of those tested, and it inhibited gastric cancer cells growth in a dose-dependent manner, with an IC50 value of approximately 40μM. LCA affected gastric cancer cell viability by blocking cell cycle progression at the G2/M transition and inducing apoptosis. LCA treatment increased the expression of Rb and decreased the expression of cyclin A, cyclin B and MDM2 in MKN-28, AGS and MKN-45 cell lines. In addition, LCA-induced apoptosis by its effects on the expression of PARP, caspase-3, Bcl-2 and Bax. These data provide evidence that LCA has the potential to be used in the treatment of gastric cancer.  相似文献   

12.
You BR  Park WH 《Oncology reports》2011,25(6):1705-1712
MG132 as a proteasome inhibitor that can induce apoptotic cell death in various cell types including lung cancer cells. We investigated the cellular effects of MG132 on human pulmonary fibroblast (HPF) cells in relation to cell growth inhibition and death, and described the molecular mechanisms of MG132 in HPF cell death. This agent dose-dependently inhibited the growth of HPF cells with an IC50 of approximately 20 μM at 24 h and induced cell death accompanied by the loss of mitochondrial membrane potential (MMP; ?Ψm) and an increase in caspase-3 and -8 activities. MG132 increased intracellular ROS levels and GSH-depleted cell numbers. However, all the tested caspase inhibitors intensified HPF growth inhibition by MG132 and caspase-9 inhibitor also enhanced cell death and MMP (?Ψm) loss. Moreover, the administration of Bcl-2 siRNA augmented HPF cell death by MG132 whereas p53, Bax, caspase-3 and -8 siRNAs did not strongly affect cell death. In addition, each caspase inhibitor and siRNA differently affects ROS levels including O2?- regardless of cell growth inhibition and cell death levels. Caspase-8 and -9 inhibitors increased the number of GSH-depleted cells in MG132-treated HPF cells. In conclusion, MG132 induced growth inhibition and death in HPF cells in a caspase-independent manner. The growth inhibition and death of HPF cells by MG132 and/or each caspase inhibitor or apoptosis-related siRNA were not tightly related to the changes in ROS levels.  相似文献   

13.
This study deals with the apoptotic effect exerted on human retinoblastoma Y79 cells by both sodium butyrate and an inhibitor of 26S proteasome [z-Leu-Leu-Leu-CHO (MG132)] and their synergistic effect. Exposure to sodium butyrate (1-4 mM) induced an accumulation of cells in the G2-M phase that was already visible after 24 h of treatment, when morphological and biochemical signs of apoptosis appeared only in a small number of cells (5-10%). Thereafter, the apoptotic effects increased progressively with slow kinetics, reaching a maximum after 72 h of exposure, when they concerned a large fraction of cells (>75% with 4 mM sodium butyrate). Sodium butyrate stimulated the conversion of procaspase-3 into caspase-3 and also induced the cleavage of poly-(ADP-ribose) polymerase and lamin B, two hallmarks of apoptosis. All of the apoptotic signals were suppressed by benzyloxy carbonyl-Val-Ala-Asp-fluoromethylketone (a general inhibitor of caspase activities), whereas acetyl-Asp-Glu-Val-Asp aldehyde, a specific inhibitor of caspase-3 activity, only induced a partial reversion of the apoptotic effects. Sodium butyrate also decreased the Bcl-2 level, whereas it increased the Bax level and stimulated the release of cytochrome c from the mitochondria, an event that was most likely responsible for the activation of caspase-3. Finally, sodium butyrate activated 26S proteasome, the major extralysosomal degradative machinery, which is responsible for the degradation of short-lived proteins. Consequently, the levels of p53, N-myc, and IkappaBalpha (factors that play regulatory roles in apoptosis) diminished, whereas the nuclear level of nuclear factor kappaB concomitantly increased. Treatment of Y79 cells with MG132 induced apoptosis with more rapid kinetics than with sodium butyrate. The effects appeared after 8 h of incubation, reaching a maximum at 24 h, and they were accompanied by increased levels of N-myc, p53, and IkappaBalpha. MG132 also favored the release of cytochrome c from the mitochondria and increased the activity of caspase-3. When Y79 cells were exposed to combinations of sodium butyrate and MG132, the latter compound suppressed the decreasing effect induced by sodium butyrate on the levels of p53, N-myc, and IkappaBalpha and the increasing effect on the nuclear level of nuclear factor kappaB. Moreover, an increase in the level of Bax and an enhancement in the release of cytochrome c from the mitochondria were observed. Clear synergistic effects concerning the activation of both caspase-3 and apoptosis were induced by a combination of suboptimal doses of sodium butyrate and MG132. The results support the conclusion that MG132 potentiates the apoptotic effect of sodium butyrate by suppressing its stimulatory effect on 26S proteasome activity. Synergistic interactions between butyrate and inhibitors of proteasome could represent a new important tool in tumor therapy and, in particular, the treatment of retinoblastoma.  相似文献   

14.
蛋白酶体抑制剂MG132诱导HL-60细胞凋亡前G2/M期阻滞及机制   总被引:9,自引:1,他引:8  
Sun GJ  Qian JJ  Meng XB  Song Y  Zhang F  Mei ZZ  Dong Y  Sun ZX 《癌症》2004,23(10):1144-1148
背景和目的:蛋白酶体(proteasome)抑制剂能够诱导多种肿瘤细胞凋亡,是一种潜在的有应用前景的抗肿瘤剂.本研究旨在探讨蛋白酶体抑制剂MGl32(Z-Leu-Leu-Leu-CHO)诱导白血病细胞HL-60凋亡和C2/M期阻滞的机制.方法:采用荧光显微镜观察、流式细胞术和免疫印迹研究测定MG132诱导HL-60细胞凋亡和周期阻滞及机制.结果:2μmol/L的MG132能够有效地诱导HL-60细胞凋亡,用药后24 h就显现有细胞凋亡;在MG132诱导HL-60细胞凋亡出现之前有一个明显的G2/M期阻滞,加MG132后12 h时G2/M期时相百分比为63.42±2.02;24 h时加MG132组细胞凋亡为16.67±1.48,与对照组G2/M期时相百分比为7.29±3.01及细胞凋亡为0相比,两者之间有显著性差别(P<0.01);咖啡因CAF能够减少MG132诱导HL-60细胞出现的G2/M期阻滞,同时也减少凋亡细胞的比例;细胞周期检查点的负调控因子p21waf/cip1蛋白在加MG132处理后3 h有明显的表达,但并未能检测到p53和p27蛋白.结论:MG132诱导HL-60细胞凋亡之前有一个明显的G2/M期阻滞,p21蛋白表达明显上调提示:是p21waf/cip1而不是p53或其同源蛋白参与了其中的调控.  相似文献   

15.
Shin DH  Li SH  Chun YS  Huang LE  Kim MS  Park JW 《Oncogene》2008,27(13):1939-1944
Hypoxia-inducible factor-1alpha (HIF-1alpha) is destabilized via the ubiquitin-proteasome system. Thus HIF-1alpha expression is robustly upregulated by proteasome inhibition, but paradoxically its activity is reduced. In the present study, we investigated the mechanism underlying the paradoxical response of HIF-1alpha to proteasome inhibition. In both Hep3B and HEK293 cells, a proteasome inhibitor MG132 noticeably attenuated hypoxic induction of erythropoietin and VEGF mRNAs. MG132 inactivated HIF-1alpha C-terminal transactivation domain (CAD), independently of factor inhibiting HIF-1 (FIH) and inhibited p300 recruitment by HIF-1alpha. We next tested the possibility that CITED2 is involved in the HIF-1 inactivation. CITED2 was found to be degraded via the ubiquitin-proteasome system and thus was stabilized by proteasome inhibition. Both the activity and the p300 binding of HIF-1alpha were inhibited by CITED2 expression and recovered by CITED2 siRNA in the presence of MG132. These results suggest that CITED2 is stabilized by proteasome inhibition and inactivates HIF-1 by interfering with the HIF-1alpha-p300 interaction. This may be an important mode-of-action for proteasome inhibition-based cancer therapy.  相似文献   

16.
Ubiquitin-mediated protein degradation in vertebrates has been implicated in cell cycle control. In this report we explored the effects of proteasome inhibitors (MG132, lactacystin and ALLN) on cell cycle distribution. Colorectal carcinoma HCT116 cells were treated with proteasome inhibitor MG132. The results showed that MG132 inhibited cell proliferation in a dose-dependent manner. MG132 arrested HCT116 cells at G2/M phase, which was associated with drug-induced blockade of p53 degradation and/or induction of p53-related gene expression along with the accumulation of cyclin B, cyclin A and p21. MG132 treated HCT116 (wild-type) had a similar cell cycle distribution as the MG132 treated HCT116 (p53-/-) and HCT116 (p21-/-) cells, suggesting that p53 and p21 may not be essential for MG132-induced G2/M phase arrest. The release experiments from nocodazole-induced mitotic phase cells indicated that MG132 inhibits the proliferation of HCT116 cells via arrest in the G2 phase. In addition, when HCT116 cells were exposed to combination of sodium butyrate and MG132 enhanced cell growth inhibition and induction of apoptosis were observed.  相似文献   

17.
Oral squamous cell carcinoma (OSCC) cells are relatively resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis during culture. We investigated the role of a proteaosome inhibitor in the survival and apoptosis of these cells. We found that the proteasome inhibitor MG132 markedly accelerated TRAIL-mediated apoptosis in OSCC cell lines HSC-2 and HSC-3. Addition of TRAIL to MG132-treated cells resulted in Bid cleavage. Furthermore, the inhibitors of caspase-3, caspase-8 and caspase-9 reduced the accelerative effect of MG132 on TRAIL-mediated apoptosis. These results suggest that the pro-apoptotic effect of a proteasome inhibitor on TRAIL-mediated apoptosis may contribute to both extrinsic and intrinsic pathways. MG132 enhanced the expression of the TRAIL receptors DR4 and DR5, and neutralization of DR5 receptors showed a marked reduction of TRAIL-mediated apoptosis, whereas that of DR4 was a partial reduction. MG132 also markedly reduced cellular FLICE-inhibitory protein (c-FLIP), cellular inhibitor of apoptosis protein-1 (cIAP-1), X-linked IAP (XIAP) and survivin. Therefore, MG132 provides partial regulation of TRAIL-mediated apoptosis in OSCC cells via modulation of DR5, c-FLIP, cIAP-1, XIAP and survivin. The proteasome inhibitor MG132 may therefore represent a novel strategy for overcoming resistance to TRAIL-mediated apoptosis in OSCC cells.  相似文献   

18.
The ubiquitin-proteasome system plays a critical role in the regulation of programmed cell death. Proteasome inhibitors induce apoptosis in various cancer cells and have antitumor effects in murine tumor models. In the present study, we investigated whether the cell-permeable proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal) reduced the growth of a human pancreatic cancer cell line through induction of apoptosis in vitro. The effects of MG132 (0.125-1.000 microM) on the growth of the human pancreatic cancer cell line BxPC-3 were analyzed by cell count and MTT assay. Apoptosis was determined by FACS analysis after annexin V and propidium iodide staining and the enrichment of intracellular nucleosomes. The proteasome inhibitor MG132 decreased cell growth of the human pancreatic cancer cell line BxPC-3 in a dose- and time-dependent manner. This effect was at least in part mediated by the induction of apoptosis. A combination therapy with standard cytotoxic agents and proteasome inhibitors could potentially be a novel therapeutic strategy in treatment of pancreatic cancer.  相似文献   

19.
Bae SH  Ryoo HM  Kim MK  Lee KH  Sin JI  Hyun MS 《Oncology reports》2008,19(4):1027-1032
The proteasome plays a pivotal role in controlling cell proliferation, apoptosis, and differentiation in a variety of tumor cells. Bortezomib is a boronic acid dipeptide derivative, which is a selective and potent inhibitor of the proteasome and has prominent effects in vitro and in vivo against several solid tumors. We examined the anti-proliferative and apoptotic effects of bortezomib in three gastric cancer cell lines (SNU638, MUGC-3 and MKN-28), along with its antitumor combination effects with other chemotherapeutic agents. Tumor cell growth inhibition and apoptosis was measured by MTT assay and FACS analysis, respectively. Apoptosis- and cell cycle-associated protein expression levels were measured by Western blot assay. Bortezomib induced the suppression of tumor cell growth and apoptosis in a dose-dependent manner with an inhibitory dose (ID)50 of approximately 0.5 microg/ml in all gastric cancer cell lines tested. Further combination treatment with cisplatin and docetaxel, in particular with docetaxel displayed dramatically increased tumor cell growth suppression in all three gastric cancer cell lines, as compared to single drug treatment alone. This was concomitant with the induction patterns of apoptotic cells. Bortezomib treatment increased the Bax protein expression. Moreover, combination treatment of bortezomib plus docetaxel resulted in a dramatic increase in the Bax expression. In contrast, Bcl-2 expression was decreased by combination treatment with bortezomib plus docetaxel in SNU638 cells. Finally, bortezomib, docetaxel and to a greater degree bortezomib plus docetaxel increased the expression levels of p27 proteins even without influencing p53 expression levels. Bortezomib has profound effects on tumor cell growth inhibition and induction of apoptosis in human gastric cancer cells, suggesting that bortezomib may be an effective therapeutic drug for patients with gastric cancer. Further combination studies with other chemotherapeutic drugs, in particular docetaxel showing more tumor cell growth inhibition and apoptosis suggest that combining bortezomib with docetaxel might be more effective for displaying tumor cell growth inhibitory effects in gastric cancer cells through regulation of Bcl-2, Bax and p27 proteins in vitro.  相似文献   

20.
The proteasome pathway is important for the turnover of many regulatory proteins. This pathway has recently become a target for antitumor agents and several research groups have demonstrated that inhibitors with specificities for the proteasome are potent apoptosis-inducing agents. Many mechanisms by which proteasome inhibitors exert their effects have been suggested, including inhibition of NF-kappa B activity and stabilization of the p53 tumor suppressor protein. We investigated the ability of inhibitors with specificities for the proteasome and for another protein degradation enzyme, calpain, to sensitize a murine B-cell lymphoma with constitutive NF-kappa B1 homodimer activity and high expression of Bcl-2 protein to radiation-induced apoptosis. Protease inhibitors tested were calpain inhibitor I, calpain inhibitor II, calpeptin, MG132, and Lactacystin. All five inhibitors induced apoptosis and sensitized cells to radiation despite the maintenance of Bcl-2 protein levels throughout the course of treatment. An electrophoretic migration shift assay for NF-kappa B1 activity provided evidence that reversal of NF-kappa B activity was not required for induction of cell death; however, p53 levels were elevated for all inhibitors tested. HL-60 cells, devoid of p53, could not be sensitized to radiation by MG132 treatment, suggesting that p53 was important for cell death induced by combined treatment with protease inhibitors and radiation. We concluded that protease inhibitors are capable of overcoming the protective effects of Bcl-2 to induce apoptosis and suggest that protease inhibitor treatment, when combined with ionizing radiation, leads to p53-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号