首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
hMLH1 and hMSH2 expression in human hepatocellular carcinoma   总被引:10,自引:0,他引:10  
The role of microsatellite instability (MSI) in the pathogenesis of hepatocellular carcinoma (HCC) is incompletely defined. Although high-frequency MSI (MSI-H) is infrequently seen in HCC, some studies have suggested a role for MSI in HCC development. While MSI has been clearly defined for a subset of tumors, in particular colorectal, gastric and endometrial cancers, generally accepted criteria have not been developed for other tumors. Colorectal cancers (CRC) are classified as MSI-H if >30-40% of >5 microsatellite loci analyzed show instability. The MSI-H phenotype is associated with defective DNA mismatch repair (MMR) and is observed in the majority of tumors from patients with hereditary non-polyposis colon cancer (HNPCC) and also in 15% of sporadic CRCs. Inactivating mutations of the hMLH1 or hMSH2 genes lead to defects in MMR in HNPCC. In sporadic CRCs, MMR is usually due to hypermethylation of the hMLH-1 promoter. The role of defective MMR in hepatocellular carcinogenesis is controversial. Immunohistochemistry for hMLH1 and hMSH2 reliably indicates hMLH1 or hMSH2 loss in MSI-H CRC tumors. To investigate the role of defective MMR in HCC carcinogenesis, we performed immunohistochemistry for hMLH1 and hMSH2 on 36 HCCs. BAT26, a microsatellite marker that reliably predicts MSI-H was also examined. All 36 of the tumors stained positively for both hMLH1 and hMSH2, strongly suggesting an absence of either inactivating mutations of hMLH1 and hMSH2 or promoter hypermethylation of hMLH1. None of the tumors showed MSI at the BAT26 locus. These findings suggest that defective MMR does not contribute significantly to hepatocellular carcinogenesis.  相似文献   

2.
Microsatellite instability is uncommon in breast cancer.   总被引:7,自引:0,他引:7  
In some tumors, defects in mismatch repair enzymes lead to errors in the replication of simple nucleotide repeat segments. This condition is commonly known as microsatellite instability (MSI) because of the frequent mutations of microsatellite sequences. Although the MSI phenotype is well recognized in some colon, gastric, pancreatic, and endometrial cancers, reports of MSI in breast cancer are inconsistent. We report here our experience with >10,000 amplifications of simple nucleotide repeats in noncoding genomic regions using DNA from 267 cases of breast cancer, including cases that represent all major histological types of breast cancer. We rarely (10 reactions) found unexpected bands in amplifications of tumor DNA that were not present in amplifications of normal DNA. Moreover, repeats of these reactions did not confirm microsatellite instability in a single case. We also evaluated the simple nucleotide repeats in the transforming growth factor type II receptor, insulin-like growth factor type II receptor, BAX, and E2F-4 genes, which are frequently mutated in tumors with microsatellite instability. No mutations of these genes were found in any of the 30 breast cancer cell lines and 61 primary breast cancer samples examined. These results indicate that mismatch repair errors characteristic of the MSI phenotype are uncommon in human breast cancer.  相似文献   

3.
Defects in the mismatch repair system lead to microsatellite instability (MSI), a feature observed in ~ 15% of all colorectal cancers (CRCs). Microsatellite mutations that drive tumourigenesis, typically inactivation of tumour suppressors, are selected for and are frequently detected in MSI cancers. Here, we evaluated somatic mutations in microsatellite repeats of 790 genes chosen based on reduced expression in MSI CRC and existence of a coding mononucleotide repeat of 6-10 bp in length. All the repeats were initially sequenced in 30 primary MSI CRC samples and whenever frameshift mutations were identified in >20%, additional 70 samples were sequenced. To distinguish driver mutations from passengers, we similarly analyzed the occurrence of frameshift mutations in 121 intronic control repeats and utilized a statistical regression model to determine cut-off mutation frequencies for repeats of all types (A/T and C/G, 6-10 bp). Along with several know target genes, including TGFBR2, ACVR2, and MSH3, six novel candidate driver genes emerged that harbored significantly more mutations than identical control repeats. The mutation frequencies in 100 MSI CRC samples were 51% in G8 of GLYR1, 47% in T9 of ABCC5, 43% in G8 of WDTC1, 33% in A8 of ROCK1, 30% in T8 of OR51E2, and 28% in A8 of TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in tumors carrying biallelic mutations, supporting a loss of function hypothesis. This is a large scale, unbiased effort to identify genes that when mutated are likely to contribute to MSI CRC development.  相似文献   

4.
《Seminars in oncology》2019,46(3):261-270
Deficient DNA mismatch repair causes a robust mutator phenotype known as microsatellite instability (MSI). MSI is a feature of Lynch syndrome-related cancers and is also found in approximately 15% of sporadic gastric, colorectal, and endometrial cancers. Epigenetic inactivation of the MLH1 gene is often associated with sporadic MSI cancers. Recent next-generation sequencing (NGS)-based analyses have comprehensively characterized MSI-positive (MSI+) cancers, and several approaches for detecting the MSI phenotype of tumors using NGS have been developed. The FDA has recently granted accelerated approval to an anti-PD-1 antibody, pembrolizumab, for use in pediatric and adult patients with MSI+ solid tumors. Genome-wide analyses using NGS have revealed that hypermutation defined as >10 somatic mutations per megabase appears to be more prevalent than previously estimated, affecting approximately 17% of adult cancers. These results potentially expand the use of immunotherapy, which is thought to be effective in cancers with an increased mutational burden. Therefore, evaluation of MSI and MSI-associated molecular changes in tumors has emerged as clinically important. MSI is a valuable diagnostic marker of Lynch syndrome and a potential predictive marker for chemotherapy and immunotherapy efficacy. Here, we provide an update on MSI-associated cancers, focusing on findings obtained by genome-wide analyses using NGS, and the predictive role of MSI in immune checkpoint immunotherapy.  相似文献   

5.
Background: Lynch Syndrome (LS) is a familial cancer condition caused by germline mutations in DNA mismatch repair genes. Individuals with LS have a greatly increased risk of developing colorectal cancer (CRC) and it is therefore important to identify mutation carriers so they can undergo regular surveillance. Tumor DNA from LS patients characteristically shows microsatellite instability (MSI). Our aim here was to screen young CRC patients for MSI as a first step in the identification of unrecognized cases of LS in the Saudi population. Materials and Methods: Archival tumor tissue was obtained from 284 CRC patients treated at 4 institutes in Dammam and Riyadh between 2006 and 2015 and aged less than 60 years at diagnosis. MSI screening was performed using the BAT-26 microsatellite marker and positive cases confirmed using the pentaplex MSI analysis system. Positive cases were screened for BRAF mutations to exclude sporadic CRC and were evaluated for loss of expression of 4 DNA mismatch repair proteins using immunohistochemistry. Results: MSI was found in 33/284 (11.6%) cases, of which only one showed a BRAF mutation. Saudi MSI cases showed similar instability in the BAT-26 and BAT-25 markers to Australian MSI cases, but significantly lower frequencies of instability in 3 other microsatellite markers. Conclusions: MSI screening of young Saudi CRC patients reveals that approximately 1 in 9 are candidates for LS. Patients with MSI are strongly recommended to undergo genetic counselling and germline mutation testing for LS. Other affected family members can then be identified and offered regular surveillance for early detection of LS-associated cancers.  相似文献   

6.
Gastroesophageal cancers are a major cause of death worldwide and treatment outcomes remain poor. Adequate predictive biomarkers have not been identified.Microsatellite instability (MSI) as a result of mismatch repair deficiency is present in four to twenty percent of gastroesophageal cancers and has been associated with favorable survival outcomes compared to microsatellite stable tumors. This prognostic advantage may be related to immunosurveillance, which may also explain the favorable response to immune checkpoint inhibition observed in MSI high (MSI-H) tumors. The value of conventional cytotoxic treatment in MSI-H tumors is unclear and results on its efficacy range from detrimental to beneficial effects.Here the recent data on MSI as a predictive factor for outcome of gastroesophageal cancer treatment is reviewed.  相似文献   

7.
Mutations in the hMVSH3 gene in sporadic colon cancer with microsatellite instability (MSI) were investigated, since several mismatch repair genes were known to be mutated in cancers with MSI, but only deletions in the (A)8 region in the hMSH3 gene have been reported. We also analyzed the relationships between hMSH3 mutations and the spectrum of MSI. We screened MSI in 79 sporadic colon cancer samples using mono- and dinucleotide repeat markers and the samples with MSI were further analyzed for tri- and tetranucleotide repeat instability and mutations in the hMSH3 gene by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. Five (6%) out of 79 tumors were MSI-H and 15 (19%) were MSI-L. Two MSI-H tumors showed insertion in the (C)8 region in the hMSH6 gene and one tumor showed insertion and deletion in the (A)8 region in the hMSH3 gene, and two of the three above tumors showed MSI in tri-and tetranucleotide repeats. One MSI-L tumor showed somatic alteration in a 9-bp repeat sequence in hMSH3. No frameshift mutations were found in the (A)7 and (A)6 regions in hMSH3. Thus, we confirmed that the (A)8 region in hMSH3 is a hot spot and mutations in the (A)7 and (A)6 regions in hMSH3 are not common. The hMSH3 mutation may enhance genomic instability in some colorectal cancers.  相似文献   

8.
Background mutation frequency in microsatellite-unstable colorectal cancer   总被引:2,自引:0,他引:2  
Microsatellite instability (MSI) is observed in approximately 12% of colorectal cancers. Genes containing a mononucleotide microsatellite in the coding sequence are particularly prone to inactivation in MSI tumorigenesis, and much work has been conducted to identify genes with high repetitive tract mutation rates in these tumors. Much less attention has been paid to background mutation frequencies, and no work has focused on nontranscribed regions. Here, we studied 114 nontranscribed intergenic A/T and C/G repeats 6 to 10 bp in length, located distant from known genes, to examine background mutation frequencies in MSI colorectal cancers. A strong correlation with tract length was observed, and mutation frequencies of up to 87% were observed in 8 to 10 bp tracts. Subsequently, to compare the background mutation rate in transcribed and nontranscribed noncoding repeats, we screened nine randomly selected intronic C/G8 repeats. In addition, the coding repeats of seven suggested MSI target genes, and nine previously published intronic A8 and G8 repeats were analyzed. Intronic repeats seemed to mutate less frequently than nontranscribed intergenic repeats. Our results show that strand slippage mutations in mismatch repair-deficient cells are as abundant in short intergenic repeats as in many proposed MSI target genes. However, under mismatch repair deficiency, strand slippage mutations in transcribed sequences seem to be repaired more efficiently than in intergenic nontranscribed sequences. The mechanisms causing these differences are not yet understood and should be a subject for further studies. For MSI target gene identification, repeats in transcribed sequences seem to be the most appropriate reference group for coding region repeat mutations.  相似文献   

9.
Background: Colorectal cancers (CRCs) tumors are diagnosed by microsatellite instability (MSI) due to accumulation of insertion/deletion mutations in tandem repeats of short DNA motifs (1–6 bp) called microsatellites. Microsatellite instability (MSI) is not only a hallmark marker for screening of hereditary nonpolyposis colorectal cancer (HNPCC), but also a prognostic and predictive marker for sporadic colorectal cancer. Our objective was to determine and study of five mononucleotide microsatellite markers status among Iranian patients with HNPCC and sporadic colorectal cancer. Material and Methods: In the current investigation 80 sporadic CRC and 80 HNPCC patients were evaluated for MSI. The pentaplex panel including 5 quasimonomorphic mononucleotide repeats (NR-21, BAT-26, BAT-25, NR-27 and NR-24) was used. Results: Our findings showed that the NR-21 was the most frequent instable marker among the other markers. 53% and 25.6% specimens had instability in sporadic CRC and HNPCC, respectively. Furthermore, the frequencies of instability BAT-25 was determined in 20% sporadic CRC and 23% HNPCC samples. Interestingly our results demonstrated that the frequency of instability NR-24 was similar 20% sporadic CRC and 20.5% HNPCC. Moreover, percentage of NR-27 in HNPCC was 19.2 and 0% in sporadic CRC. Finally, BAT-26 was instable in 21.8% HNPCC patients while we could find 6.6% instability for BAT-26 in sporadic cases. Conclusion: It seems that among 5 mononucleotides markers NR-21 was the most useful marker for diagnosis HNPCC and sporadic cancer. Following NR-21, BAT-25 and NR-24 are the most reliable markers. Therefore using a triplex panel including 3 aforementioned MSI markers should be more promising markers for identifying MSI status in both patients with HNPCC and/or sporadic colorectal cancer.  相似文献   

10.
Microsatellite instability (MSI) phenotype, caused by a deficiency of DNA mismatch repair genes, has been detected in a subset of tumors in the gastrointestinal tract. However, it is not clear how MSI is involved in the tumorigenesis of hepatocellular carcinomas (HCC). Results with HCC are controversial, with positive results published with American and European tumors, but negative with Japanese tumors. We report the absence of MSI in 39 Korean HCCs after analysis with 6 mononucleotide- and over 150 dinucleotide-repeat markers. Only one such dinucleotide-repeat (D2S213) exhibited a reproducible shift in mobility, representing a somatic mutation present in only some of the tumor cells. This may be the result of a spontaneous error of replication due to the intrinsic mutability of these unstable sequences and without any connection to true genomic instability. In support of this interpretation, no frameshift mutations were found at the coding repeats of target genes for the microsatellite mutator phenotype including TGF-betaRII, BAX, hMSH3, and hMSH6. In contrast, we observed frequent allelic losses on chromosomes 4q, 8p, 16q, and 17p by the analysis of dinucleotide repeats (microallelotyping), reflecting a high degree of tumor chromosomal instability, which was significantly associated to the tumor differentiation (p=0.036, Fisher's exact test). These results suggest that, unlike chromosomal instability, widespread MSI plays no role in the development or progression of HCC.  相似文献   

11.
Widespread microsatellite instability (MSI) due to the defective DNA mismatch repair underlies the pathogenesis of the majority of hereditary non-polyposis colorectal cancer and a subset of various sporadic malignant tumors. Using 5 microsatellite markers and the criteria of MSI proposed by the National Cancer Institute (NCI) workshop, we analyzed 205 gastric adenocarcinomas for MSI. Based on the number of markers showing instability per tumor, the tumors were divided into three groups; those with two or more of the five markers displaying instability (high MSI, MSI-H), those with one of five markers displaying instability (low MSI, MSI-L), and those with no instability (microsatellite stable, MSS). Among 205 tumors, 30 (15%) were MSI-H, 15 (7%) were MSI-L, and 160 (78%) were MSS. All of the 30 MSI-H tumors demonstrated instability at BAT26, a sensitive marker for the widespread MSI, while none of the 15 MSI-L tumors did. MSI-H tumors were significantly associated with distal location and well or moderate differentiation, but MSI-L tumors were indistinguishable from MSS tumors. Bax frameshift mutations were detected in 60% of the 30 MSI-H tumors, while not in any of the 15 MSI-L tumors. These results suggest that microsatellite analysis using the criteria proposed by the NCI workshop may be appropriate for gastric cancers because it unveils real differences in genotype and phenotype.  相似文献   

12.
PURPOSE: To compare microsatellite instability (MSI) testing with immunohistochemical (IHC) detection of hMLH1 and hMSH2 in colorectal cancer. PATIENTS AND METHODS: Colorectal cancers from 1,144 patients were assessed for DNA mismatch repair deficiency by two methods: MSI testing and IHC detection of hMLH1 and hMSH2 gene products. High-frequency MSI (MSI-H) was defined as more than 30% instability of at least five markers; low-level MSI (MSI-L) was defined as 1% to 29% of loci unstable. RESULTS: Of 1,144 tumors tested, 818 showed intact expression of hMLH1 and hMSH2. Of these, 680 were microsatellite stable (MSS), 27 were MSI-H, and 111 were MSI-L. In all, 228 tumors showed absence of hMLH1 expression and 98 showed absence of hMSH2 expression: all were MSI-H. CONCLUSION: IHC in colorectal tumors for protein products hMLH1 and hMSH2 provides a rapid, cost-effective, sensitive (92.3%), and extremely specific (100%) method for screening for DNA mismatch repair defects. The predictive value of normal IHC for an MSS/MSI-L phenotype was 96.7%, and the predictive value of abnormal IHC was 100% for an MSI-H phenotype. Testing strategies must take into account acceptability of missing some cases of MSI-H tumors if only IHC is performed.  相似文献   

13.
Recent progress in the field of molecular biology has allowed us to identify at least two different molecular mechanisms implicated in colorectal carcinogenesis (CRC): chromosomal instability (CIN) and genetic instability. Even though the two molecular mechanisms differ, their signalling pathways, implicated in malignant transformation of colonic epithelial cells, appear to be similar. The most frequent group of CRC, which represents 80% of sporadic CRC, is characterized by allelic losses on the short arm of chromosome 17 and 8 and on the long arm of chromosome 5, 18 and 22. These allelic losses are associated with mutations in TP53, APC, SMAD2 and SMAD4 genes. All of these alterations are grouped under the phenotype CIN. A genetic instability termed MSI (microsatellite instability), which results from a mismatch repair (MMR) deficiency, appears in 12-15% of CRC cases. The presence of MMR deficiency leads to the accumulation of mutations in genes controlling cell cycle and apoptosis (TGFBRII, BAX or CASPASE5). More recently, the existence of a third phenotype was suggested. The main alteration associated with this group of tumors is the hypermethylation of the promoter region of numerous genes, leading to their inactivation. An activating mutation of BRAF is frequently associated with this phenotype. As described above, CRC shows genetic heterogeneity, however the consequences in terms of signalling pathway alterations are similar. For example, the activation of Wnt signalling pathways can result from the inactivation of the APC gene in the CIN phenotype or from an activating mutation in the β-catenin gene in MSI tumors. The inactivation of TGFβ pathways is also present in both tumor types and is driven by SMAD4, and more rarely by a SMAD2 inactivating mutation in CIN tumors, or by the existence of a frame-shift mutation occurring in a polyG coding track of the TGFβ (transforming growth factor) receptor type II in MSI tumors. The RAS-MAP kinase pathway is activated by KRAS mutations in CIN tumors or by BRAF mutations in MSI tumors. The p53 pathway is inactivated by TP53 inactivation in CIN tumors or by BAX inactivating mutations in MSI tumors.  相似文献   

14.
Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths in western countries. CRC are commonly divided in cancers showing microsatellite stability (MSS) or microsatellite instability (MSI). A more novel classification is dependent on promoter hypermethylation of CpG islands (the CpG island methylator phenotype, CIMP), where cancers show high, low or negative methylation status. SMAD4, located on chromosome 18q, has been thoroughly investigated during the last years. Loss of SMAD4 expression has been reported to correlate with poor CRC patient prognosis. In this study, we analyze the impact of SMAD4 expression on prognosis in relation to MSI screening status and CIMP status. Four hundred and seventy-nine paraffin-embedded specimens of CRC were examined for nuclear SMAD4 expression using immunohistochemistry. The tumors were scored loss (-), moderate (+) and high (++) expressing tumors. Loss of SMAD4 correlated significantly with decreased survival in all colon cancer patients. High SMAD4 expression, however, was significantly associated with increased survival, especially in colon cancer patients, which has undergone potential curative surgery. In addition, in MSI tumors and CIMP-high tumors, high SMAD4 expression was significantly related to increase in survival, while loss of SMAD4 resulted in a significantly poorer prognosis. SMAD4 expression was not correlated to prognosis in rectal cancer cases. We conclude, loss of SMAD4 indicates a poor prognosis in colon cancer patients. The novel findings that high SMAD4 expression predicts a better prognosis suggests that SMAD4 immunohistochemistry could constitute a prognostic marker in combination with CIMP and MSI screening status.  相似文献   

15.
Inactivation of DNA-mismatch repair underlies the genesis of microsatellite unstable (MSI) colon cancers. hPMS2 is one of several genes encoding components of the DNA-mismatch repair complex, and germline hPMS2 mutations have been found in a few kindreds with hereditary nonpolyposis colorectal carcinoma (HNPCC), in whom hereditary MSI colon cancers develop. However, mice bearing null hPMS2 genes do not develop colon cancers and hPMS2 mutations in sporadic human colon cancers have not been described. Here we report that in Vaco481 colon cancer the hPMS2 gene is inactivated by somatic mutations of both hPMS2 alleles. The cell line derived from this tumor is functionally deficient in DNA mismatch repair. This deficiency can be biochemically complemented by addition of a purified hMLH1-hPMS2 (hMutLalpha) complex. The hPMS2 deficient Vaco481 cancer cell line demonstrates microsatellite instability, an elevated HPRT gene mutation rate, and resistance to the cytotoxicity of the alkylator MNNG. We conclude that somatic inactivation of hPMS2 can play a role in development of sporadic MSI colon cancer expressing the full range of cancer phenotypes associated with inactivation of the mismatch repair system.  相似文献   

16.
Mutations in the hMSH3 gene in sporadic colon cancer with microsatellite instability (MSI) were investigated, since several mismatch repair genes were known to be mutated in cancers with MSI, but only deletions in the (A)8 region in the hMSH3 gene have been reported. We also analyzed the relationships between hMSH3 mutations and the spectrum of MSI. We screened MSI in 79 sporadic colon cancer samples using mono- and dinucleotide repeat markers and the samples with MSI were further analyzed for tri- and tetranucleotide repeat instability and mutations in the hMSH3 gene by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. Five (6%) out of 79 tumors were MSI-H and 15 (19%) were MSI-L. Two MSI-H tumors showed insertion in the (C)8 region in the hMSH6 gene and one tumor showed insertion and deletion in the (A)8 region in the hMSH3 gene, and two of the three above tumors showed MSI in tri-and tetranucleotide repeats. One MSI-L tumor showed somatic alteration in a 9-bp repeat sequence in hMSH3. No frameshift mutations were found in the (A)7 and (A)6 regions in hMSH3. Thus, we confirmed that the (A)8 region in hMSH3 is a hot spot and mutations in the (A)7 and (A)6 regions in hMSH3 are not common. The hMSH3 mutation may enhance genomic instability in some colorectal cancers.  相似文献   

17.
Background: Early onset sporadic colorectal cancer (CRC) is a biologically and clinically distinct entity hypothesized to exhibit differences in histological features and microsatellite instability (MSI) as compared to typical onset CRC. This study compared the MSI status, mismatch repair enzyme deficiency and clinicopathological features of early onset (aged 45 years) with controls (>45 years). Materials and Methods: A total of 30 cases and 30 controls were analyzed for MSI status using the Bethesda marker panel. Using antibodies against hMLH1, hMSH2 and hMSH6, mismatch repair protein expression was assessed by immunohistochemistry. Molecular characteristics were correlated with clinicopathological features. Results: The early onset sporadic CRCs were significantly more poorly differentiated tumors, with higher N2 nodal involvement and greater frequency of signet ring phenotype than the typical onset cases. MSI was observed in 18/30 cases, with 12/18 designated as MSI-high (MSI-H) and 6/18 designated as MSI-low (MSI-L). In the control group, 14 patients exhibited MSI, with 7 MSI-H and 7 MSI-L. MSI tumors in both cases and controls exhibited loss of hMLH1, hMSH2 and hMSH6. MSS tumors did not exhibit loss of expression of MMR proteins, except hMLH1 protein in 3 controls. No statistically significant difference was noted in MSI status or expression of MMR proteins in cases versus controls. Conclusions: Microsatellite status is comparable between early and typical onset sporadic CRC patients in Pakistan suggesting that differences in clinicopathological features between these two subsets are attributable to other molecular mechanisms.  相似文献   

18.
The frequency of microsatellite instability (MSI) is reportedly extremely low in breast cancer, despite widespread clinical expectations that many patients would be responsive to immune‐checkpoint inhibitors (ICI). Considering that some triple‐negative breast cancers (TNBC) responded well to ICI in a clinical trial and that a high density of tumor‐infiltrating lymphocytes (TILs) is frequently observed in other cancers with high levels of microsatellite instability (MSI‐H), we hypothesized that some TNBC with a high density of TILs would be MSI‐H. Medullary carcinoma (MedCa) of the breast, a rare histological type, is characterized by a high density of TILs. Considering that MedCa of the colon is often MSI‐H, we suspected that MedCa in breast cancer might also include MSI‐H tumors. Therefore, we conducted MSI tests on such breast cancers with a high density of TILs. The MSI status of 63 TIL‐high TNBC and 38 MedCa tumors, all from Asian women who had undergone curative surgery, were determined retrospectively. DNA mismatch repair (MMR) proteins and PD‐L1 expression were also investigated immunohistochemically. All samples were microsatellite stable, being negative for all microsatellite markers. TIL‐high TNBC with low MLH1 protein had higher levels of PD‐L1 in stromal immune cells (P = .041). MedCa tumors showed significantly higher PD‐L1 expression in immune cells than in TIL‐high TNBC (<.001). We found that MSI‐H tumors were absent in TIL‐high breast cancers. Examination of MMR proteins, not a purpose of Lynch syndrome screening, may merit further studies to yield predictive information for identifying patients who are likely to benefit from ICI.  相似文献   

19.
Lynch Syndrome is an autosomal dominant condition characterized by early onset colorectal cancer (CRC) and is associated with cancers of the gastrointestinal and reproductive tracts. Germline mutations in DNA mismatch repair (MMR) genes have been causally associated with cancers of Lynch Syndrome. We investigated the occurrence of prostate cancer (PCa) in families with a history of colorectal cancer to assess prostate cancer as a feature of the Lynch Syndrome spectrum. Family pedigrees containing at least one CRC case as well as those meeting guidelines for Lynch Syndrome were identified and tumors were requested from participants who underwent radical prostatectomy (RP). Selected families were analyzed for association with type of PCa and clinical characteristics of aggressive disease. Microsatellite Instability (MSI) analysis was preformed on available tumors and correlated to loss of expression in MMR genes by immunohistochemical (IHC) staining. 95 individuals were identified as members of potential Lynch Syndrome families who underwent RP and 35 tumors from 31 families were received for MSI analysis. Two tumors from two unrelated families with known MMR mutations were MSI-high and one additional case from a third family was MSI-low. The remainder of the prostate cancer cases demonstrated no evidence of MSI. PCa incidence in families enriched for hereditary PCa with a history of Lynch Syndrome cancers is not strongly suggestive of the presence of an MMR mutation. However prostate tumors in known MMR mutation carriers did display MSI and loss of gene expression suggesting that PCa may arise in Lynch Syndrome due to defective DNA mismatch repair.  相似文献   

20.
For primary colorectal cancers (CRCs), tumor stage has been the best predictor of survival after resection and the key determinant of patient management. However, considerable stage-independent variability in clinical outcome is observed that is likely due to molecular heterogeneity. This is particularly important in early stage CRCs where patients can be cured by surgery alone and only a proportion derives benefit from adjuvant chemotherapy. Thus, the identification of molecular prognostic markers to supplement conventional pathologic staging systems has the potential to guide patient management and influence outcomes. CRC is a heterogeneous disease with molecular phenotypes reflecting distinct forms of genetic instability. The chromosomal instability pathway (CIN) is the most common phenotype, accounting for 85% of all sporadic CRCs. Alternatively, the microsatellite instability (MSI) phenotype represents ~15% of all CRCs and is caused by deficient DNA mismatch repair (MMR) as a consequence of germline mutations in MMR genes or, more commonly, epigenetic silencing of the MLH1 gene with frequent mutations in the BRAF oncogene. MSI tumors have distinct phenotypic features and are consistently associated with a better stage-adjusted prognosis compared with microsatellite stable (MSS) tumors. Among non-metastatic CRCs, the difference in prognosis between MSI and MSS tumors is larger for stage II than stage III patients. On the other hand, the predictive impact of MMR status for adjuvant chemotherapy remains a contentious issue in that most studies demonstrate a lack of benefit for 5-fluorouracil (5-FU)-based adjuvant chemotherapy in stage II MSI-H CRCs, whereas it remains unclear in MSI-H stage III tumors. Here, we describe the molecular aspects of the MMR system and discuss the implications of MMR-deficient/MSI-H status in the clinical management of patients with early stage CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号