首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Development of postmitotic neurons is influenced by two groups of polypeptide factors. Neurotrophic factors promote neuronal survival both in vivo and in vitro. Neuronal differentiation factors influence transmitter phenotypes without affecting neuronal survival. The list of neurotrophic factors is increasing partly because certain growth factors and cytokines have been shown to possess neurotrophic activities and also because new neurotrophic factors including new members of the nerve growth factor (NGF) family have been identified at the molecular level. In vitro assays using recombinant neurotrophic factors and distributions of their mRNAs and proteins have indicated that members of a neurotrophic gene family may play sequential and complementary roles during development and in the adult nervous system. Most of the receptors for neurotrophic factors contain tyrosine kinase domains, suggesting the importance of tyrosine phosphorylation and subsequent signal transduction for their effects. Molecules such as LIF (leukemia inhibitory factor) and CNTF (ciliary neurotrophic factor) have been identified as neuronal differentiation factors in vitro. At the moment, however, it remains to be determined whether or not the receptors for a group of neuronal differentiation factors constitute a gene family or contain domains of kinase or phosphatase activity. Synergetic combinations of neurotrophic and neuronal differentiation factors as well as their receptors may contribute to the generation of neural specificity and diversity.  相似文献   

3.
目的:体外原代培养脂肪源性干细胞(adipose-derived stem cell,ADSC),并在细胞水平检测各种神经营养因子(neurotrophic factor,NF)的表达情况,探讨ADSC是否可以作为神经损伤修复的种子细胞。方法:体外原代培养和鉴定ADSC,应用RT-PCR方法检测ADSC细胞神经营养因子,包括神经生长因子(nerve growth factor,NGF)、脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)、神经营养素-3(neurotrophin 3,NT-3);免疫组织化学法检测粘附因子(nerve cell adhesion molecule,NCAM)表达情况。结果:ADSC可以向脂肪和骨两方面分化;RT-PCR结果显示ADSC细胞NGF、BDNF、NT-3 mRNA水平明显升高;同时免疫荧光法检测到了高水平的NCAM。结论:ADSC具有干细胞分化潜能,并且能够表达NF和NCAM。  相似文献   

4.
Human embryonic stem (hES) cells have the potential to form various cell types, including neural cells for the treatment of diseases such as Parkinson's, spinal cord injury, and glaucoma. Here, we have investigated the neuronal differentiation of hES cells on three-dimensional scaffolds fabricated from degradable poly(alpha-hydroxy esters) including poly(lactic-co-glycolic acid) and poly(L-lactic acid). When cultured in vitro, neural rosette-like structures developed throughout the scaffolds with differentiation dependent on factors in the medium (e.g., retinoic acid [RA], nerve growth factor [NGF], and neurotrophin 3 [NT-3]) and the differentiation stage of the cells. Specifically, enhanced numbers of neural structures and staining of nestin (a marker of neural precursors) and beta(III)-tubulin (indicative of neural differentiation) were observed with hES cell-seeded polymer scaffolds when cultured with both NGF and NT-3 when compared with control medium. In addition, vascular structures were found throughout the engineered tissues when cultured with the neurotrophins, but not in the presence of RA.  相似文献   

5.
目的体外检测神经营养因子及其受体在造血干细胞的表达情况。方法造血干细胞由小鼠股骨的骨髓细胞培养纯化而来,并用免疫组织化学CD34+鉴定。RT-PCR的方法在mRNA水平检测造血干细胞表达神经营养因子及其受体的情况。结果造血干细胞可以表达多种神经营养因子及其受体,包括NGF、BDNF、NT-3、EGF、PDGF、CNTF、VEGF、TGF-β1、Trk-A、TrkC,其中NGF、BDNF、NT-3、TrkC有强阳性表达;EGF、PDGF、CNTF、TGF-β1、VEGF、Trk-A有表达但相对较NGF、BDNF、NT-3、TrkC弱;GDNFI、GF-1及TrkB无表达。结论造血干细胞能不同程度的表达多种重要的神经营养因子及其相关受体,可能是一种潜在的移植治疗中枢神经系统损伤的良好细胞来源。  相似文献   

6.
The distribution of nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) in substantia nigra pars compacta (SNc) of Parkinson's disease (PD) brains was investigated by immunofluorescence. Cases studied included four 69–77 year old neurologically normal male controls and four 72–79 year old male PD patients. Integrated optical densities (IODs) of immunofluorescence over individual neuromelanin-containing neurons and in areas of neuropil and the number of neurons on H & E stained adjacent sections were quantitated with the use of the BioQuant Image Analyzer. Data were statistically analyzed by ANOVA, including the unpaired two-tailed Student t-test and the Mann–Whitney test. The results showed 55.8% (P<0.0001) dropout of SNc neurons in PD brains compared to age-matched controls. Despite considerable neuronal dropout, immunofluorescent NTFs in the PD brains showed differential reductions that were consistent within the group as compared to age-matched controls: reductions were GDNF, 19.4%/neuron (P<0.0001), 20.2%/neuropil (P<0.0001); CNTF, 11.1%/neuron (P<0.0001), 9.4%/neuropil (P<0.0001); BDNF, 8.6%/neuron (P<0.0001), 2.5%/neuropil. NGF, NT-3 and NT-4 showed no significant differences within surviving neurons or neuropil. Since the depletion of GDNF both within surviving neurons and neuropil was twice as great as that of CNTF and BDNF and since the other NTFs showed no changes, GDNF, of the tested NTFs, is probably the most susceptible and the earliest to decrease in the surviving neurons of SNc. These observations suggest a role for decreased availability of GDNF in the process of SNc neurodegeneration in PD.  相似文献   

7.
Yang MS  Jou I  Inn-Oc H  Joe E 《Neuroscience letters》2001,297(2):133-136
We have asked whether treatment of PC12 cells with cyclic adenosine monophosphate (cAMP) and epidermal growth factor (EGF) results, like treatment with cAMP and nerve growth factor (NGF), in irreversible neuronal differentiation characterized by irreversible neurite extension, loss of serum-dependence, and death by apoptosis after trophic factor withdrawal. Although EGF alone, unlike NGF, did not cause morphological differentiation or prevent cell death, synergy between a cAMP-mediated signal transduction pathway and a pathway activated by the EGF receptor tyrosine kinase resulted in the same irreversible differentiation. EGF/cAMP-differentiated cells required cAMP to survive, but NGF, through a TrkA-dependent mechanism, could substitute for cAMP. The cyclin-dependent kinase inhibitors olomoucine and roscovitine also promoted survival of the irreversibly differentiated cells, by a mechanism that must be determined, since cell death was not associated with nuclear (3)H-thymidine accumulation, an index of mitotic activity.  相似文献   

8.
背景:星形胶质细胞被激活后表现出神经干细胞的特性,细胞表面的神经营养因子(表皮生长因子、睫状神经营养因子)受体超表达,通过改善复杂的内环境,有利于定向诱导神经干细胞向神经元的分化。 目的:构建大鼠pSecTag2/Hygro B-EGF、pSecTag2/Hygro B-CNTF真核表达质粒,检测其在cos-7细胞中的共表达。 方法:采用反转录-聚合酶链反应技术从大鼠颌下腺、坐骨神经组织总RNA中扩增出表皮生长因子、睫状神经营养因子基因功能区,将上述基因片段分别连接到真核表达载体pSecTag2/Hygro B,聚合酶链反应初步筛选、双酶切鉴定后送测序。将构建成功的两种重组载体单独及共转染cos-7细胞,Western blot法鉴定重组表皮生长因子、睫状神经营养因子蛋白的瞬时表达。 结果与结论:反转录-聚合酶链反应结果证实成功获得大鼠表皮生长因子、睫状神经营养因子cDNA。DNA序列分析证实2种真核表达载体中的表皮生长因子、睫状神经营养因子序列与GenBank中目的序列一致。脂质体介导转染cos-7细胞48 h后,Western blot鉴定重组表皮生长因子、睫状神经营养因子蛋白在cos-7细胞中的表达,分别在Mr6 000,22 000处出现阳性条带。提示大鼠表皮生长因子、睫状神经营养因子基因的真核表达载体pSecTag2/Hygro B-EGF、pSecTag2/Hygro B-CNTF构建成功,共转染cos-7细胞后能够共表达重组表皮生长因子、睫状神经营养因子蛋白。  相似文献   

9.
This study investigates the survival properties and changes in the morphological phenotype of adrenal medullary (chromaffin and neuronal) cells cultured from embryonic chicks at different developmental ages (embryonic days E8 to E16) in response to nerve growth factor (NGF) and ciliary neuronotrophic factor (CNTF). The 4-day survival of medullary cells from all embryonic ages except E8 was about 80% of the seeded cells and was only slightly enhanced by the addition of saturating doses of CNTF (10 ng/ml). With no factors, after 4 days 10-30% of the surviving medullary cells extended neurites. NGF (100 ng/ml) and, even more, CNTF (10 ng/ml) and their combination substantially increased the proportions of neurite-bearing cells (up to 70%). The effect of the factors were maximal at E10 and E12 and declined at older developmental ages. Neurite growth was virtually unaffected by NGF and CNTF at E8. These results show that in vitro survival and neurite growth of chick adrenal medullary cells in response to trophic factors is developmentally regulated.  相似文献   

10.
In this study, nanofibrous matrices of polycaprolactone (PCL) and PCL/collagen with immobilized epidermal growth factor (EGF) were successfully fabricated by electrospinning for the purpose of damaged skin regeneration. Nanofiber diameters were found to be 284 ± 48 nm for PCL and 330 ± 104 nm for PCL/collagen matrices. The porosities were calculated as 85% for PCL and 90% for PCL/collagen matrices. The covalent immobilization of EGF onto the nanofibrous matrices was verified by the increase of surface atomic nitrogen ratio from 1.0 to 2.4% for PCL and from 3.7 to 4.7% for PCL/collagen. Moreover, EGF immobilization efficiencies of PCL and PCL/collagen matrices were determined as 98.5 and 99.2%, respectively. Human dermal keratinocytes (HS2) were cultivated on both neat and EGF immobilized PCL and PCL/collagen matrices to investigate the effects of matrix chemical composition and presence of EGF on cell proliferation and differentiation. EGF immobilized PCL/collagen matrices exerted early cell spreading and rapid proliferation. Statistically high expression levels of loricrin in HS2 cells cultivated on EGF immobilized PCL/collagen matrices were (p < 0.001) regarding superior differentiation ability of these cells compared to HS2 cells cultured on neat PCL and PCL/collagen matrices. In conclusion, this novel EGF immobilized PCL/collagen nanofibrous matrix could potentially be considered as an alternative dermal substitutes and wound healing material for skin tissue engineering applications.  相似文献   

11.
Neurotrophic factors present as concentration gradients are neurotropic cues that direct axonal growth toward their targets. Multiple factors work together in vivo to ensure axons reach the proper targets, likely interacting with one another via intracellular signalling pathways. Nerve growth factor (NGF) and neurotrophin-3 (NT-3) are neurotrophins known to guide axons as well as promote axonal growth following injury to both the spinal cord and peripheral nerve. These molecules interact with neurons through different tyrosine kinase receptors. In this study, the receptors for these growth factors were shown to be co-localized on E10 chick dorsal root ganglion (DRG) cells, providing an opportunity for synergism. Well-defined concentration gradients of NGF and NT-3 were immobilized for the first time in a cell-penetrable, cell-adhesive scaffold of poly(2-hydroxyethylmethacrylate) and poly(L-lysine). An NGF concentration gradient of 310 ng/mL/mm was required to guide chick DRG neurites. A lower concentration gradient of 200 ng/mL/mm of NGF was shown to elicit guidance when an NT-3 concentration gradient of 200 ng/mL/mm was also present, indicating a synergistic response in the DRG neurons. These gradient scaffolds may be useful for guided regeneration following injury to the spinal cord or peripheral nerve and may also elucidate the mechanism for intracellular signaling of neurotrophic factors.  相似文献   

12.
Classic ideas on mechanisms for axon sprouting and nerve regeneration from peripheral nerves suggest that there is a prominent role for neurotrophin support. There has been comparatively less attention towards features of the regenerative process that develop from the proximal nerve trunk without the support of target tissues or the denervated trunk of a peripheral nerve. We studied early (2–14 d) expression of local growth factors in proximal nerve stump tips of transected sciatic nerves in rats. Immunohistochemical labelling was used to address specific deposition of BDNF, NGF, NT-3, bFGF, CNTF and IGF-1. We observed a unique localisation of BDNF, and to a much lesser extent, NGF in mast cells of injured nerve trunks but they were also observed in intact uninjured nerves. Macrophages did not express either BDNF or NGF. CNTF and IGF-1 were expressed in Schwann cells of intact nerves and stumps. We did not observe bFGF or NT-3 expression in any of the samples we studied. Mast cells may represent an important reservoir of BDNF in peripheral nerves.  相似文献   

13.
Cao X  Shoichet MS 《Neuroscience》2003,122(2):381-389
Neurotrophic factors direct axonal growth toward the target tissue by a concentration gradient, which is mediated through different tyrosine kinase cell surface receptors. In this study, well-defined concentration gradients of neurotrophic factors (NFs) allowed us to study the synergistic effect of different NFs (e.g. nerve growth factor [NGF], neurotrophin-3 [NT-3] and brain-derived neurotrophic factor [BDNF]) for axonal guidance of embryonic lumbar dorsal root ganglion cells (DRGs). Effective guidance of DRG axons was achieved with a minimum NGF concentration gradient of 133 ng/ml/mm alone, or combined NGF and NT-3 concentration gradients of 80 ng/ml/mm each. Interestingly, the combined concentration gradients of NGF and BDNF did not show any significant synergism at the concentration gradients studied. The synergism observed between NGF and NT-3 indicates that axons may be guided over a 12.5 mm distance, which is significantly greater than that of 7.5 mm calculated by us for NGF alone or that of 2 mm observed by others.  相似文献   

14.
联合应用EGF和NGF对成年大鼠海马神经干细胞分化的影响   总被引:11,自引:4,他引:7  
目的探讨联合应用表皮生长因子(EGF)和神经生长因子(NGF)对成年大鼠海马神经干细胞(NSCs)分化的影响。方法用含碱性成纤维生长因子(bFGF)、表皮生长因子、B27的无血清细胞培养技术体外培养成年大鼠海马神经干细胞,单克隆培养细胞行Nestin免疫细胞化学染色,诱导分化1w后细胞行GFAP和NSE免疫细胞化学染色;根据培养基中所加营养因子的不同将第4代细胞分为4组培养:EGF组、EGF+NGF组、NGF组、对照组,此4组细胞培养1w后行NSE免疫细胞化学染色,计数阳性细胞比例后进行统计学分析。结果单克隆培养后克隆球表达Nestin,诱导分化1w后细胞表达NSE、GFAP。与空白对照组相比,EGF组、NGF组和EGF+NGF组细胞分化为神经元的比例较高(P<0.05),其中EGF+NGF组细胞的比例最高。结论单独或联合应用EGF、NGF可以促进成年大鼠海马神经干细胞向神经元分化。  相似文献   

15.
16.
目的探讨在表皮生长因子(EGF)培养条件下,相同浓度神经生长因子(NGF)与脑源性神经生长因子(BDNF)对成年大鼠海马神经干细胞向神经元分化比例的差异。方法用含碱性成纤维生长因子(bFGF)、EGF、B27的无血清细胞培养技术体外培养成年大鼠海马神经干细胞,单细胞克隆后行Nestin免疫细胞化学染色,诱导分化1周,行GFAP和NSE免疫细胞化学染色;根据培养液中所加营养因子的不同将单细胞克隆传代细胞分为5组培养:EGF组、NGF组、BDNF组、EGF+NGF组、EGF+BDNF组,此5组细胞培养1周,进行NSE免疫细胞化学染色,计数阳性细胞比例后进行统计学分析。结果:单细胞克隆培养后克隆球细胞表达Nestin,诱导分化1周,细胞表达NSE、GFAP;与EGF组、NGF组、BDNF组相比,EGF+NGF组和EGF+BDNF组细胞分化为神经元的比例较高(P<0.05),其中EGF+BDNF组细胞的比例最高。结论在EGF培养条件下,BDNF促进成年大鼠海马神经干细胞向神经元分化的能力高于NGF。  相似文献   

17.
18.
本研究采用免疫组织化学方法观察了NGF家族(NGF、NT-3、BDNF)和非NGF家族的CNTF以及NGF家族因子受体trkA、trkB、trkC在正常大鼠脊髓腰段的分布和胎鼠脊髓移植体在移植后4周的表达。在正常大鼠脊髓腰段,各神经营养因子及受体反应物主要存在于脊髓灰质,特别是前角的运动神经元。但在脊髓后角的分布稍有不同,BDNF阳性细胞的胞浆染色较深,胞核不染色;而NT-3的胞核染色较胞浆为深,核仁不染色。在胎鼠脊髓移植体,NGF、BDNF、CNTF和NT-3及受体trkA、trkB、trkC均有不同程度的染色。本实验结果揭示了在正常大鼠脊髓神经元内各神经营养因子及受体的表达,提示神经营养因子除具有靶源性来源以外,还有神经元自分泌的产物。而在胎鼠移植体内和其周围组织神经营养因子及其受体的表达,可能是在移植体内的移植细胞自分泌和成鼠脊髓损伤的刺激所引起的,这在移植体的存活和发育中有重要作用。  相似文献   

19.
Peripheral nerve regeneration and neurotrophic factors   总被引:17,自引:0,他引:17  
The role of neurotrophic factors in the maintenance and survival of peripheral neuronal cells has been the subject of numerous studies. Administration of exogenous neurotrophic factors after nerve injury has been shown to mimic the effect of target organ-derived trophic factors on neuronal cells. After axotomy and during peripheral nerve regeneration, the neurotrophins NGF, NT-3 and BDNF show a well defined and selective beneficial effect on the survival and phenotypic expression of primary sensory neurons in dorsal root ganglia and of motoneurons in spinal cord. Other neurotrophic factors such as CNTF, GDNF and LIF also exert a variety of actions on neuronal cells, which appear to overlap and complement those of the neurotrophins. In addition, there is an indirect contribution of GGF to nerve regeneration. GGF is produced by neurons and stimulates proliferation of Schwann cells, underlining the close interaction between neuronal and glial cells during peripheral nerve regeneration. Different possibilities have been investigated for the delivery of growth factors to the injured neurons, in search of a suitable system for clinical applications. The studies reviewed in this article show the therapeutic potential of neurotrophic factors for the treatment of peripheral nerve injury and for neuropathies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号