首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Central dopaminergic systems are known to be implicated in the pathophysiology of schizophrenia and recent in vivo dopamine receptor imaging studies have focused on the measurement of extrastriatal dopamine receptor. However, there are only a limited number of ligands that can measure the low-density D2 receptor in extrastriatal regions and their sensitivity to endogenous dopamine in extrastriatal regions has not yet been fully examined. In this study, the effect of endogenous dopamine on the extrastriatal binding of [(11)C]FLB 457 was examined in the rhesus monkey after facilitation with 1 mg/kg of methamphetamine (MAP) and was compared with the effect on the striatal binding of [(11)C]raclopride. The indices of receptor binding were obtained by four methods using cerebellum as a reference region. The bindings of [(11)C]FLB 457 in the frontal cortex, temporal cortex, and thalamus were not significantly changed after MAP treatment, while the striatal binding of [(11)C]raclopride was decreased by more than 20%. These results suggest that [(11)C]FLB 457 is not sensitive to endogenous dopamine in the extrastriatal regions of rhesus monkeys, despite a sufficient dose of MAP to decrease the binding of [(11)C]raclopride in the striatum.  相似文献   

2.
[(11)C]FLB 457 is a very high-affinity radiotracer that allows the measurement of dopamine D(2/3) receptor availability in regions of the brain where densities are very low, such as the cerebral cortex. It is not known if [(11)C]FLB 457 binding is sensitive to the concentration of endogenous dopamine in humans in a manner analogous to [(11)C]raclopride and [(123)I]IBZM in the striatum. To test this possibility, extrastriatal [(11)C]FLB 457 binding was measured at baseline and after the oral administration of 40 to 60 mg of the psychostimulant methylphenidate (MP) in 12 healthy volunteers using positron emission tomography (PET) in a balanced-order, double-blind design. The dynamic PET data were quantified using a two-tissue compartment model with a metabolite-corrected arterial plasma input function. Two volunteers were excluded because of excessive head movement. In the remainder, MP caused significant reductions in the volume of distribution (VD) in temporal and frontal cortical regions and thalamus, suggesting that [(11)C]FLB 457 binding is sensitive to endogenous dopamine concentration. Moreover, the change in [(11)C]FLB 457 binding after MP correlated with the dose of MP (in mg/kg body weight) in all regions assessed. We conclude that MP in doses within the therapeutic range for the treatment of attention deficit hyperactivity disorder causes increases in dopamine concentrations in extrastriatal regions and that [(11)C]FLB 457 PET may be a useful tool for the assessment of change in dopamine concentration in these areas in humans.  相似文献   

3.
Positron emission tomography (PET) has hitherto been used to examine D2 dopamine receptor binding in the striatum, a region with a high density of receptors. Research has been hampered by the lack of suitable radioligands for detection of the low-density D2 dopamine receptor populations in the limbic and cortical dopamine systems that are implicated in the pathophysiology of schizophrenia. [11C]FLB 457 is a new radioligand with the very high affinity of 20 pmol/L (K(i)) for the D2 and D3 dopamine receptor subtypes. This study in eight healthy subjects was designed to evaluate the suitability of [11C]FLB 457 for quantification of extrastriatal D2/D3 dopamine receptors. PET-data were acquired in the three-dimensional mode and the arterial input function was corrected for labeled metabolites. The standard three-compartment model and four derived approaches were applied to calculate and compare the binding potentials. Besides the striatum, conspicuous radioactivity was found in extrastriatal regions such as the thalamus, the anterior cinguli, and the temporal and frontal cortices. The time activity curves could be described by the three compartment model. The different approaches gave similar binding potential values and the rank order between regions was consistent with that found in vitro. The short time of a PET measurement using [11C]FLB 457 (63 minutes) seemed not to be sufficient for reliable determination of the high binding potential in the striatum. These results are of principal importance because they show the potential for PET quantification of minute receptor populations in the human brain.  相似文献   

4.
The very high-affinity position emission tomography (PET) radioligand [(11)C]FLB 457 was developed in order to study extrastriatal tissues, where the density of dopamine D(2)/D(3) receptors is one to two orders of magnitude lower than in the striatum. The present study investigated the validity of using the cerebellum as a reference region. Ten healthy volunteers underwent a 90-min dynamic PET study after the bolus injection of [(11)C]FLB 457. The total volume of distribution (VD(t)) was estimated for the thalamus, hippocampus, frontal cortex, and cerebellum using a two-tissue compartmental model with a metabolite-corrected arterial plasma input function. VD(t) was sensitive to co-injected stable FLB 457 in all regions, including the cerebellum. Ex vivo saturation studies were also conducted in 17 rats where the dose of stable ligand was varied over five orders of magnitude. Specific binding was estimated to account for more than half of the rat cerebellar uptake of [(11)C]FLB 457, questioning the latter as an estimate of nonspecific binding in human PET studies. To check whether the cerebellum is a reference region, the binding potential (BP) was calculated either from the VD(t) ratio or using the simplified reference tissue model (SRTM). A non-negligible density of D(2)/D(3) receptors in the cerebellum was shown to lead to underestimation of BP as well as erroneous estimation of differential occupancies. Binging potential estimates from the SRTM were found to be sensitive to changes in cerebral blood flow, providing further evidence for caution in the use of the cerebellum as a reference region in measures of [(11)C]FLB 457 binding.  相似文献   

5.
OBJECTIVE: The authors' goal was to test the hypothesis of extrastriatal D(2) receptor selectivity as the mechanism of action of clozapine. METHOD: Positron emission tomography (PET) was used to examine extrastriatal as well as striatal dopamine D(2) receptor occupancy in four patients treated with clozapine and three patients treated with haloperidol. The reference radioligand [(11)C]raclopride was used for determination of D(2) receptor occupancy in the striatum. The radioligand [(11)C]FLB 457 was chosen for determination of D(2) receptor occupancy in the thalamus, the temporal cortex, and the frontal cortex. RESULTS: In patients treated with haloperidol the D(2) receptor occupancy was high in all examined brain regions. In clozapine-treated patients the D(2) receptor occupancy was relatively low in both the striatum and the extrastriatal regions. CONCLUSIONS: The results from the present study give no support for the hypothesis of regional selectivity as the mechanism of action for clozapine.  相似文献   

6.
OBJECTIVE: To investigate whether dopamine D2 and D3 receptor subtypes (D2/3Rs) outside the caudate-putamen are affected in PD. BACKGROUND: Alterations in striatal D2-like dopamine receptors in PD have been extensively demonstrated using PET, but there are no studies focusing on extrastriatal D2/3Rs. METHODS: Fourteen unmedicated patients with idiopathic early PD with predominantly left-sided symptoms, 14 levodopa-medicated patients with advanced PD, and 20 normal age-matched controls were examined using PET. PET scanning was performed with a novel high-affinity D2/3R radioligand ([11C]FLB 457) and a PET scanner in three-dimensional mode. RESULTS: In advanced PD, the binding potential of [11C]FLB 457 in the dorsolateral prefrontal cortex was decreased by 40% (p < 0.01), in the anterior cingulate cortex by 20% (p < 0.01), and in the medial thalamus by 17% (p < 0.05) compared with healthy controls. In early PD, the extrastriatal [11C]FLB 457 binding potentials were not significantly different compared with the control group. However, the binding potential in the anterior cingulate cortex (29%; p < 0. 05) was higher in early PD compared with advanced PD. CONCLUSIONS: These results imply that the D2/3 receptor subtypes outside the striatum are affected in advanced PD but not in the early stages of the disease, and that this receptor decline is present in the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus.  相似文献   

7.
Detecting fluctuations in synaptic dopamine levels in extrastriatal brain regions with [11C]FLB 457 and positron emission tomography (PET) is a valuable tool for studying dopaminergic dysfunction in psychiatric disorders. The evaluation of reference region modeling approaches would eliminate the need to obtain arterial input function data. Our goal was to explore the use of reference region models to estimate amphetamine-induced changes in [11C]FLB 457 dopamine D2/D3 binding. Six healthy tobacco smokers were imaged with [11C]FLB 457 at baseline and at 3 hours after amphetamine (0.4  to 0.5 mg/kg, per os) administration. Simplified reference tissue models, SRTM and SRTM2, were evaluated against the 2-tissue compartmental model (2TC) to estimate [11C]FLB 457 binding in extrastriatal regions of interest (ROIs), using the cerebellum as a reference region. No changes in distribution volume were observed in the cerebellum between scan conditions. SRTM and SRTM2 underestimated binding, compared with 2TC, in ROIs by 26% and 9%, respectively, with consistent bias between the baseline and postamphetamine scans. Postamphetamine, [11C]FLB 457 binding significantly decreased across several brain regions as measured with SRTM and SRTM2; no significant change was detected with 2TC. These data support the sensitivity of [11C]FLB 457 for measuring amphetamine-induced dopamine release in extrastriatal regions with SRTM and SRTM2.  相似文献   

8.
The use of PET and SPECT endogenous competition‐binding techniques has contributed to the understanding of the role of dopamine (DA) in several neuropsychiatric disorders. An important limitation of these imaging studies is the fact that measurements of changes in synaptic DA have been restricted to the striatum. The ligands previously used, such as [11C]raclopride and [123I]IBZM, do not provide sufficient signal‐to‐noise ratio to quantify D2 receptors in extrastriatal areas, such as cortex, where the concentration of D2 receptors is much lower than that in the striatum. Recently, we published a comparison study of the ability of two high‐affinity DA D2 radioligands [11C]FLB 457 and [11C]fallypride to measure amphetamine‐induced changes in DA transmission in the human cortex. Our findings support the use of [11C]FLB 457 to measure changes in cortical synaptic DA induced by amphetamine. The goal of this study is to examine the effects of DA depletion with α‐methyl‐para‐tyrosine (α‐MPT) on [11C]FLB 457 binding in the cortex. Six healthy volunteers underwent two PET scans, first under control conditions and subsequently after DA depletion. The simplified reference tissue model as well as kinetic modeling with an arterial input function was used to derive the binding potential (BPND) in seven cortical regions. We found no effect of DA depletion with α‐MPT on [11C]FLB 457 binding in any of the regions examined. In contrast to the measurement of DA release, the combination of low D2 receptor density and low basal DA levels in the cortex greatly reduce the power to detect alterations in [11C]FLB 457 binding secondary to DA depletion. Synapse 64:879–885, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
The use of PET and SPECT endogenous competition binding techniques has contributed to the understanding of the role of dopamine in several neuropsychiatric disorders. An important limitation of these imaging studies is the fact that measurements of acute changes in synaptic dopamine have been restricted to the striatum. The ligands previously used, such as [11C]raclopride and [123I]IBZM, do not provide sufficient signal to noise ratio to quantify D2 receptors in extrastriatal areas, such as cortex, where the concentration of D2 receptors is much lower than in the striatum. Given the importance of cortical DA function in cognition, a method to measure cortical dopamine function in humans would be highly desirable. The goal of this study was to compare the ability of two high affinity DA D2 radioligands [11C]FLB 457 and [11C]fallypride to measure amphetamine‐induced changes in DA transmission in the human cortex. D2 receptor availability was measured in the cortical regions of interest with PET in 12 healthy volunteers under control and postamphetamine conditions (0.5 mg kg?1, oral), using both [11C]FLB 457 and [11C]fallypride (four scans per subjects). Kinetic modeling with an arterial input function was used to derive the binding potential (BPND) in eight cortical regions. Under controlled conditions, [11C]FLB 457 BPND was 30–70% higher compared with [11C]fallypride BPND in cortical regions. Amphetamine induced DA release led to a significant decrease in [11C]FLB 457 BPND in five out the eight cortical regions evaluated. In contrast, no significant decrease in [11C]fallypride BPND was detected in cortex following amphetamine. The difference between [11C]FLB 457 and [11C]fallypride ability to detect changes in the cortical D2 receptor availability following amphetamine is related to the higher signal to noise ratio provided by [11C]FLB 457. These findings suggest that [11C]FLB 457 is superior to [11C]fallypride for measurement of changes in cortical synaptic dopamine. Synapse 63:447–461, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Most antiparkinsonian drugs are known to act through central dopamine D(2) receptor agonism. A previous longitudinal positron emission tomography (PET) study has indicated that, in the striatum of Parkinson's disease (PD) patients, dopamine D(2) receptor binding declines at a relatively fast annual rate of 2-4% (compared to the rate of <1%/year in healthy individuals). In the present study, the examination of longitudinal changes in D(2) receptors was extended to extrastriatal brain regions in PD. Eight early PD patients were examined twice with PET, approximately 3 years apart, using a high-affinity extrastriatal D(2)/D(3) receptor tracer, [(11)C]FLB 457. Both the MRI-referenced region-of-interest method and the voxel-based statistical analysis method were used independently in the analysis. Regional D(2)-like availabilities (binding potentials) in the left dorsolateral prefrontal cortex, the left temporal cortex and the left and right medial thalami were significantly decreased at the second examination by 20-37% (corresponding to an annual decline of 6-11%). Thus, the annual loss of extrastriatal D(2) availability in PD is up to three times faster than the rate previously reported in the putamen. Our longitudinal study shows first evidence concerning cortical D(2) receptor loss in the progression of PD, although it is not possible to distinguish between the effects of the therapy and the disease.  相似文献   

11.
The objective was to investigate the association between extrastriatal dopamine D(2)/D(3) receptor binding and performance on the Wisconsin Card Sorting Test (WCST), a measure of executive functioning. Thirty-two healthy volunteers performed the WCST and underwent positron emission tomography and a high-affinity D(2)/D(3) receptor tracer, [(11)C]FLB 457. All WCST error parameters, in particular nonperseverative errors, correlated positively with [(11)C]FLB 457 binding in the cognitive division of the right anterior cingulate cortex. An independent voxel-based receptor parametric mapping analysis confirmed these findings. The results indicate that executive functioning in healthy volunteers is modulated by D(2)/D(3) receptors in the anterior cingulate cortex.  相似文献   

12.
OBJECTIVES: Antipsychotic medications improve psychosis but often induce a state of dysphoria in patients. Blockade of the dopamine D(2) receptors, which is thought to mediate their efficacy, has also been implicated in producing this adverse subjective experience. The authors present the first double-blind controlled study to examine the relationship between striatal and extrastriatal dopamine D(2) receptor binding potential and occupancy values and adverse subjective experience. METHOD: Patients with recent-onset psychosis (N=12) were randomly assigned to low or high doses of olanzapine or risperidone. Subjective experiences, motor side effects, and striatal and extrastriatal dopamine D(2) receptors (determined with [(11)C]raclopride and [(11)C]FLB 457 PET scans, respectively) were evaluated after 2 weeks of continuous antipsychotic treatment. RESULTS: Higher dopamine D(2) receptor occupancy and binding potentials in the striatal (dorsal and ventral), temporal, and insular regions were associated with subjective experience. The finding was confirmed with two convergent methods of analysis (region-of-interest and voxel-based statistics), and the same relationship was observed using two different dopamine receptor measures (observed binding potential values and age- and sex-corrected occupancy values). CONCLUSIONS: Higher D(2) receptor occupancy is associated with negative subjective experience in patients taking risperidone or olanzapine. These negative subjective effects may be related to the high discontinuation rates seen in usual practice. Understanding the neurobiological mechanism of these negative subjective experiences and developing antipsychotics with novel (i.e., non D(2)) mechanisms may be critical in improving the treatment of psychosis.  相似文献   

13.
The availability of dopamine D(2/3) binding sites in brain of six male and six female G?ttingen minipigs was measured in a baseline condition and after challenge with amphetamine sulfate (1mg/kg, i.v.) in PET studies with [(11)C]raclopride. Maps of the binding potential (pB; B(max)/K(d)) of [(11)C]raclopride were spatially normalized and co-registered to a common stereotaxic coordinate system for pig brain. The pB maps were then analyzed by volume of interest and voxel-wise comparisons of gender and condition. The mean baseline pB tended to be 10-20% higher in striatum of the female group, but this gender difference was not significant. Variance of the mean baseline pB was higher in the males (44%) than in females (30%), but there was no correlation between pB and individual plasma cortisol or testosterone concentrations. Using statistical parametric mapping, we detected a focus in the right posterior putamen where the magnitude of the amphetamine-evoked decrease in pB was greater in the male than in the female group. Thus, the spatial pattern of reactivity of dopamine D(2/3) receptor availability to amphetamine challenge is not identical in male and female pigs. Within the entire population, the decline in pB evoked by amphetamine (Delta pB) was greater in the ventral striatum (-28%) than in the caudate nucleus (-17%), consistent with earlier reports in monkeys and humans. The magnitude of Delta pB correlated highly with the baseline pB values in all divisions of the striatum. Based upon the principles of competitive binding, the slope of this empirical relationship, f(i), is equal to the fraction of [(11)C]raclopride binding sites sensitive to endogenous dopamine; the magnitude of this fraction ranged from 0.29 in the caudate to 0.36 in the ventral striatum.  相似文献   

14.
[(18)F]fallypride is a new positron emission tomography (PET) dopamine D(2) receptor radiotracer that provides visualization of D(2) receptors in both striatal and extrastriatal areas. Here, the vulnerability of [(18)F]fallypride binding to endogenous dopamine (DA) levels was evaluated by examining the effect of amphetamine on [(18)F]fallypride binding in striatal and extrastriatal regions. Data were acquired in three male baboons at three different doses of i.v. amphetamine, using two different [(18)F]fallypride administration protocols (single bolus and bolus plus constant infusion). Scans were performed following a single bolus of [(18)F]fallypride under control conditions and following 1 mg/kg i.v. amphetamine and with an [(18)F]fallypride bolus plus constant infusion design under control, 0.5 mg/kg, and 0.3 mg/kg amphetamine i.v. conditions. Significant decreases in [(18)F]fallypride binding potential were seen in striatum (-49%, -18%, and -14%), thalamus (-25%, -23%, and -14%), and hippocampus (-36%, -24%, and -12%) following 1 mg/kg, 0.5 mg/kg, and 0.3 mg/kg doses of amphetamine, respectively. Additional analyses were performed suggesting that these results were not artifacts of nonreceptor-related effects such as regional flow changes or partial volume effects. In conclusion, [(18)F]fallypride binding is vulnerable to endogenous competition by DA in striatum as well as extrastriatal regions, suggesting that this ligand may be suitable for the study presynaptic DA function in striatal and extrastriatal areas.  相似文献   

15.
We studied in healthy humans the contribution of cerebral dopamine D2/D3 receptors to individual differences in response characteristics to painful stimulation. Positron emission tomography was used to measure the dopamine D2/D3 binding potential (D2/D3 BP) with [(11)C]raclopride in the striatum (n = 8) and with [(11)C]FLB 457 in the extrastriatal regions (n = 11). Sensitivity to cutaneous heat pain was assessed by a traditional threshold method and by an analysis based on the signal detection theory which allows the separation of an individual subject's discriminative capacity from the response criterion, i.e. the area under the receiver operating characteristic curve provides a measure of the sensory discriminability (sensory factor) and the response criterion gives an estimate of the subject's response bias or attitude (nonsensory factor). The pain threshold and response criterion were inversely correlated with the D2/D3 BP in the right putamen, whereas the discriminative capacity was not significantly correlated with the D2/D3 BP in any brain region. The correlation of the D2/D3 BP in the putamen with the pain threshold and the subject's response criterion may rather be explained by a dopaminergic effect on nonsensory factors determining the subject's attitude towards pain than by a dopaminergic effect on the subject's discriminative capacity. Alternatively, striatal dopamine D2/D3 receptors could control a modulatory pathway producing a parallel shift in the stimulus-response function for sensory signals, mimicking a change in the subject's response criterion.  相似文献   

16.
According to the ternary complex model of G-protein linkage to receptors, agonists increase the affinity of the receptors for the G protein. The model predicts that an endogenous agonist's constant of inhibition toward an agonist radioligand is lower than that toward an antagonistic radioligand. The authors hypothesized that competition from endogenous dopamine in striatum of living mice should have a greater effect on the binding of the D2,3 partial agonist N-[3H]propylnorapomorphine than on the binding of the D2,3 antagonist [(11)C]raclopride. The baseline binding potential (pB(0)), defined as the ratio of bound-to-unbound ligand in the absence of competition from endogenous dopamine, was simultaneously measured in mouse striatum for [(11)C]raclopride (pB(0) = 8.5) and N-[(3)H]propylnorapomorphine (p'B(0) = 5.3). The baseline was established by treatment with alpha-methyl-p-tyrosine and reserpine. Relative to these baseline values in saline-treated mice, the pB of N-[(3)H]propylnorapomorphine decreased 52% whereas the pB of [(11)C]raclopride decreased only 30%, indicating greater sensitivity of the former compound to inhibition by synaptic dopamine. Furthermore, amphetamine decreased the pB of N-[(3)H]propylnorapomorphine to a greater extent (73%) than that of [(11)C]raclopride (43%) relative to the reserpine condition. For both radioligands, the occupancy of the dopamine receptors by endogenous agonist obeyed Michaelis-Menten kinetics over a wide range of agonist concentrations established by the pharmacologic treatments. The apparent inhibition constant of endogenous dopamine depended on the dopamine occupancy and decreased to a value 1.66 times greater for N-[(3)H]propylnorapomorphine than for [(11)C]raclopride at its highest occupancies. The results are consistent with the hypothesis that agonist binding is more sensitive than antagonist binding to competition from endogenous dopamine. Therefore, dopamine agonist ligands may be superior to benzamide antagonist ligands for the estimation of dopamine receptor occupancy by endogenous synaptic dopamine. The analysis of the effect of dopamine occupancy on the inhibition of N-[(3)H]propylnorapomorphine binding indicated a limited supply of G protein with a maximum ternary complex fraction of 40% of maximum agonist binding capacity.  相似文献   

17.
BACKGROUND: Measuring changes in dopamine (DA) levels in humans using radioligand-displacement studies and positron emission tomography (PET) has provided important empirical findings in disease and normal neurophysiology. These studies are based on the assumption that DA exerts a competitive inhibition on radioligand binding. To test this, we used PET and a Scatchard approach to investigate whether the decrease in [11C]raclopride binding following amphetamine results from competitive or noncompetitive interactions with DA. METHODS: Scatchard analyses of [11C]raclopride/PET data were used to quantify changes in apparent D2-receptor density (Bmax) and radioligand apparent affinity (K'D) at baseline and after amphetamine pretreatment (2 mg/kg; intravenous) in cats. RESULTS: Amphetamine induced a 46% decrease in [11C]raclopride binding in the striatum of five cats. Scatchard analyses revealed that this decrease in binding was due to a 28% decrease in Bmax and a concomitant 35% increase in K'D. CONCLUSIONS: Competition with DA is an insufficient explanation for the decrease in [11C]raclopride binding observed after amphetamine. Noncompetitive interactions, likely representing D2-receptor internalization, also play an important role in this phenomenon. This finding may have important implications for the interpretation of amphetamine-raclopride PET studies in schizophrenia because dysregulation of the agonist-induced internalization of D2 receptors was recently suggested in this disorder.  相似文献   

18.
PET measurements of stimulant-induced dopamine (DA) release are typically performed with antagonist radioligands that bind to both the high- and low-affinity state of the receptor. In contrast, an agonist radioligand binds preferentially to the high-affinity state and is expected to have greater sensitivity to DA, which is the endogenous agonist. [(11)C]MNPA, (R)-2-CH(3)O-N-n-propylnorapomorphine (MNPA), is a D(2) agonist radioligand with subnanomolar affinity to the D(2) receptor. The aim of the present study is to assess and compare the sensitivity of the agonist radioligand [(11)C]MNPA and antagonist radioligand [(11)C]raclopride to synaptic DA levels. Four cynomolgus monkeys were examined with [(11)C]MNPA and [(11)C]raclopride (16 PET measurements with each tracer) at baseline and after pretreatment with various doses of amphetamine. The effect of amphetamine was calculated by the change in binding potential (BP) analyzed with the multilinear reference tissue model (MRTM2). Amphetamine caused a reduction in [(11)C]MNPA BP of 4% at 0.1, 23% at 0.2, 25% at 0.5, and 46% at 1.0 mg/kg. [(11)C]Raclopride BP was reduced to a lesser extent by 2% at 0.1, 16% at 0.2, 15% at 0.5, and 23% at 1.0 mg/kg. The data were used to estimate the in vivo percentage of high-affinity state receptors to be approximately 60%. These results demonstrate that [(11)C]MNPA is more sensitive than [(11)C]raclopride to displacement by endogenous DA, and that it may provide additional information about the functional state of the D(2) receptor in illnesses such as schizophrenia and Parkinson's disease.  相似文献   

19.
BACKGROUND: A decrease in dopamine type 2 receptors (D2) and mesolimbic dopamine transmission predisposes animals to consume alcohol. This study measured D2 receptors and dopamine transmission in human alcohol-dependent (AD) subjects using positron emission tomography (PET) and [11C]raclopride. METHODS: Fifteen AD and 15 healthy control (HC) subjects were scanned before and after a psychostimulant challenge (amphetamine .3 mg/kg intravenous). The outcome measures for baseline D2 receptor availability were binding potential (BP) and the equilibrium partition coefficient (V3'). Amphetamine-induced [11C]raclopride displacement was measured as the difference in V3' between the two scans. RESULTS: [11C]raclopride BP was significantly reduced by 16.6% in the limbic striatum, 19.2% in the associative striatum, and 21.3% in the sensorimotor striatum in AD subjects compared with HC. The alcohol-dependent subjects showed a blunting of amphetamine-induced dopamine release in the limbic striatum: [11C]raclopride displacement was -5.2% +/- 3.6% in AD subjects compared with -13.0% +/- 8.8% in HC. However, no significant difference in [11C]raclopride displacement was seen in the associative (-4.6% +/- 5.8% in AD subjects vs. -6.7 +/- 5.4% in HC) and sensorimotor (-12.3% +/- 7.3% in AD subjects vs. -13.7 +/- 7.5% in HC) subdivisions of the striatum between the two groups. CONCLUSIONS: Alcohol dependence was associated with a decrease in D2 receptors in each striatal subdivision, whereas amphetamine-induced dopamine release was reduced in the limbic striatum only.  相似文献   

20.
The D(2) receptors exist in either the high- or low-affinity state with respect to agonists, and while agonists bind preferentially to the high-affinity state, antagonists do not distinguish between the two states. [(11)C]-(+)-PHNO is a PET D(2) agonist radioligand and therefore provides a preferential measure of the D(2) (high) receptors. In contrast, [(11)C]raclopride is an antagonist radioligand and thus binds with equal affinity to the D(2) high- and low-affinity states. The aim was to compare the brain uptake, distribution and binding characteristics between [(11)C]-(+)-PHNO and [(11)C]raclopride in volunteers using a within-subject design. Both radioligands accumulated in brain areas rich in D(2)/D(3)-receptors. However, [(11)C]-(+)-PHNO showed preferential uptake in the ventral striatum and globus pallidus, while [(11)C]raclopride showed preferential uptake in the dorsal striatum. Mean binding potentials were higher in the putamen (4.3 vs. 2.8) and caudate (3.4 vs 2.1) for [(11)C]raclopride, equal in the ventral-striatum (3.4 vs. 3.3), and higher in the globus pallidus for [(11)C]-(+)-PHNO (1.8 vs. 3.3). Moreover [(11)C]-(+)-PHNO kinetics in the globus pallidus showed a slower washout than other regions. One explanation for the preferential binding of [(11)C]-(+)-PHNO in the globus pallidus and ventral-striatum could be the presence of a greater proportion of high- vs. low-affinity receptors in these areas. Alternatively, the observed distribution could also be explained by a preferential binding of D(3)-over-D(2) with [(11)C]-(+)-PHNO. This differential binding of agonist vs. antagonist radioligand, especially in the critically important region of the limbic striatum/pallidum, offers new avenues to investigate the role of the dopamine system in health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号