首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methoxychlor (MXC) reduces fertility in female rodents, decreases antral follicle numbers, and increases atresia through oxidative stress pathways. MXC also inhibits antral follicle growth in vitro. The mechanism by which MXC inhibits growth of follicles is unknown. The growth of follicles is controlled, in part, by cell cycle regulators. Thus, we tested the hypothesis that MXC inhibits follicle growth by reducing the levels of selected cell cycle regulators. Further, we tested whether co-treatment with an antioxidant, N-acetyl cysteine (NAC), prevents the MXC-induced reduction in cell cycle regulators. For in vivo studies, adult cycling CD-1 mice were dosed with MXC or vehicle for 20 days. Treated ovaries were subjected to immunohistochemistry for proliferating cell nuclear antigen (PCNA) staining. For in vitro studies, antral follicles isolated from adult cycling CD-1 mouse ovaries were cultured with vehicle, MXC, and/or NAC for 48, 72 and 96 h. Levels of cyclin D2 (Ccnd2) and cyclin dependent kinase 4 (Cdk4) were measured using in vivo and in vitro samples. The results indicate that MXC decreased PCNA staining, and Ccnd2 and Cdk4 levels compared to controls. NAC co-treatment restored follicle growth and expression of Ccnd2 and Cdk4. Collectively, these data indicate that MXC exposure reduces the levels of Ccnd2 and Cdk4 in follicles, and that protection from oxidative stress restores Ccnd2 and Cdk4 levels. Therefore, MXC-induced oxidative stress may decrease the levels of cell cycle regulators, which in turn, results in inhibition of the growth of antral follicles.  相似文献   

2.
Artemisinins are safely used in the combination therapy for uncomplicated malaria, but their employment during pregnancy is still controversial. In fact, animal studies reported that the active metabolite, dihydroartemisinin (DHA), causes embryonic erythrocytes depletion, when the treatment is performed during a critical period of time. The present study investigates the effect of DHA on human developmental erythropoiesis in order to characterize the target erythroid stage and to predict the window of susceptibility in human pregnancy. As a model for human developmental erythropoiesis, peripheral blood purified, CD34+ cells were committed towards erythrocytes and DHA (0.5 or 2 μM) was added to different erythroid stages during 14 days culture. Erythroid differentiation was investigated by cytofluorimetric analysis of Glycophorin A expression, by morphological analysis and erythroid globin gene expression analysis with real-time PCR. It was found that the effect of DHA was dependent on the maturation stage of erythroid cells. In fact when DHA was added to the pro- and basophilic erythroblasts caused a significant dose-dependent inhibition of cell proliferation and a significant delay of erythroid differentiation, as measured by morphological analysis, expression of Glycophorin A by immunofluorescence and of erythroid globin genes by real-time PCR. In contrast, the inhibition of stem cells and of early progenitors was transient and masked by the subsequent exponential cell growth. No effect was observed on mature erythroid stages. This is the first demonstration that DHA affects human erythropoiesis in vitro, in a dose- and time-dependent manner; the target population seems to be the pro-erythroblast and basophilic erythroblast stage, suggesting that DHA toxicity is limited to primitive human erythropoiesis. These findings outline the relevance of DHA dosage and timing to prevent embryotoxicity and support current WHO recommendations of avoiding malaria treatment with artemisinins during the first trimester of pregnancy.  相似文献   

3.
Chalcones are discussed to represent cancer preventive food components in a human diet that is rich in fruits and vegetables. In this study, we examined chalcone (1,3-diphenyl-2-propenone) for its effect on proliferation in human breast cancer cell lines, MCF-7 and MDA-MB-231. The results showed that chalcone inhibited the proliferation of MCF-7 and MDA-MB-231 by inducing apoptosis and blocking cell cycle progression in the G2/M phase. Immunoblot assay showed that chalcone significantly decreased the expression of cyclin B1, cyclin A and Cdc2 protein, as well as increased the expression of p21 and p27 in a p53-independent manner, contributing to cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), was responsible for the apoptotic effect induced by chalcone. In addition, chalcone also triggered the mitochondrial apoptotic signaling by increasing the amount of Bax and Bak and reducing the level of Bcl-2 and Bcl-X(L), and subsequently activated caspase-9 in MCF-7 and MDA-MB-231 cells. Taken together, our study suggests that the blockade of cell cycle progression and initiation of cell apoptotic system may participate in the antiproliferative activity of chalcone in human breast cancer cells.  相似文献   

4.
Dopamine (DA) is a classical neurotransmitter modulating various brain functions by acting on its specific receptors. In addition, DA is a reactive molecule that has been implicated in neurodegeneration, especially in Parkinson's disease. Here we show that DA inhibited cell growth of dopamine transporter transfected cells by intracellularly blocking cell cycle progression. To pinpoint the site of this effect, we measured DNA distribution and 5-bromo-2'-deoxyuridine (BrdU) incorporation, as well as the levels of the key cell cycle proteins. DA increased number of cells with a G1 DNA content, decreased BrdU incorporation and simultaneously increased cyclin A but had no effect on cyclin D2, D3, E, nor on cdk4 and p21. These results narrowed down the DA effect to the beginning of S phase, suggesting inhibition of the ribonucleotide reductase, an enzyme essential for DNA synthesis. Indeed, measurement of enzyme activity in situ revealed that DA, within 1h of addition to cells labelled with [3H]cytidine, strongly reduced the cell content of [3H]2'-deoxycytidine 5'-triphophate. The time course of this DA effect preceded the cell cycle progression. This novel molecular mechanism of intracellular DA action independent of plasmamembrane receptors may be involved in processes controlling the development and survival of brain dopaminergic neurons.  相似文献   

5.
Human leukemic K562 cells can be induced in vitro to erythroid differentiation by a variety of chemical compounds, including hemin, butyric acid, 5-azacytidine, and cytosine arabinoside. Differentiation of K562 cells is associated with an increase in the expression of embryo-fetal globin genes, such as the zeta-, epsilon-, and gamma-globin genes. Therefore, the K562 cell line has been proposed as a very useful in vitro model system for determining the therapeutic potential of new differentiating compounds as well as for studying the molecular mechanism(s) regulating changes in the expression of embryonic and fetal human globin genes. Inducers of erythroid differentiation that stimulate gamma-globin synthesis could be considered for possible use in the experimental therapy of hematological diseases associated with a failure in the expression of adult beta-globin genes. In this paper, we analyzed the effects of a series of cisplatin analogs on both cell growth and differentiation of K562 cells. Among seven cisplatin analogs studied, three were found to be potent inducers of erythroid differentiation. Erythroid differentiation was associated with an increase in the accumulation of (a) hemoglobins Gower 1 and Portland and (b) gamma-globin mRNA.  相似文献   

6.
An enhanced vasoconstriction and vascular smooth muscle cell proliferation are involved in pathogenesis of hypertension. Beta3-blockers are effective for treatment of hypertensive patients. Recently the new beta1-receptor blocker nebivolol showed a different hemodynamic profile from those of other classic beta-blockers. In this study we hypothesized that nebivolol may also have different effects on smooth muscle cell proliferation compared with other beta-blockers such as atenolol. Human aortic smooth muscle cells (SMCs) were cultured, and cell growth was determined by increase in cell number. Growth-signaling molecules such as mitogen-activated protein kinase (p42mapk) and S6-kinase (p70S6K) and cell-cycle regulatory proteins (i.e., Cdk2, p27Kip1, and pRb) were analyzed by immunoblotting. In cultured human aortic SMCs, cell number was markedly increased in response to 5% fetal calf serum (FCS) over 6 days (87 +/- 11 x 10(3)/well), which was inhibited by nebivolol (10(-8)-10(-5) M; 25 +/- 2 x 10(3)/well; n = 6; p < 0.05), but not by atenolol. 5% FCS activated p42mapk, S6K, and Cdk2, but downregulated p27Kip1 and hyperphosphorylated pRb. Nebivolol prevented Cdk2 activation without influencing p42mapk, S6K, pRB, and p27Kip1. Thus, the new beta1-blocker nebivolol exhibits antiproliferative effect on human SMC through inactivation of Cdk2. This effect of nebivolol may have advantages over other beta-blockers in treatment of patients with cardiovascular disease.  相似文献   

7.
8.
Epidemiological data suggest an association between exposures to bromodichloromethane (BDCM), a trihalomethane found in drinking water as a result of drinking water disinfection, and an increased risk of spontaneous abortion. We previously hypothesized that BDCM targets the placenta and showed that the secretion of chorionic gonadotrophin (CG) was reduced in primary cultures of human term syncytiotrophoblasts exposed to BDCM. In the present study we extend this observation by evaluating the effects of BDCM on the morphological differentiation of mononucleated cytotrophoblast cells to multinucleated syncytiotrophoblast-like colonies. Addition of BDCM to cytotrophoblast cultures inhibited the subsequent formation of multinucleated colonies in a dose-dependent manner, as determined by immunocytochemical staining for desmosomes and nuclei. The effect was seen at BDCM concentrations between 0.02 and 2 mM and was confirmed by quantitative image analysis. Secretion of bioactive and immunoreactive chorionic gonadotropin was also significantly inhibited in a dose-dependent manner under these culture conditions, and cellular levels of CG were also reduced. Trophoblast viability was not compromised by exposure to BDCM. We conclude that BDCM disrupts syncytiotrophoblast formation and inhibits CG secretion in vitro. Although other tissue targets are not ruled out, these data substantiate the idea that BDCM targets the placenta and could have implications for understanding the adverse pregnancy outcomes associated with BDCM exposure in humans.  相似文献   

9.
Liriodenine was isolated from the leaves of Michelia compressa. This study was designed to assess cell cycle arrest, the production of nitric oxide (NO) and p53 expression in liriodenine-treated human hepatoma cell lines, including wild-type p53 (Hep G2 and SK-Hep-1). As evidenced by flowcytometric studies, liriodenine induced cell cycle G(1) arrest and inhibited DNA synthesis in Hep G2 and SK-Hep-1 cell lines. The p53, iNOS expression and intracellular NO level were markedly increased in Hep G2 cells after liriodenine treatment. A NO inhibitor, carboxy-PTIO inhibited the p53 expression induced by liriodenine. In addition, liriodenine could not induce obvious cytotoxicity in normal human IMR-90 cell line. These results demonstrate that NO production and p53 expression are critical factors in liriodenine-induced growth inhibition in human wild-type p53 hepatoma cells.  相似文献   

10.
Pyrogallol (PG) is a polyphenol compound and has been known to be an O(2)(-) generator. We evaluated the effects of PG on the growth of human pulmonary adenocarcinoma Calu-6 cells in relation to the cell cycle. DNA flow cytometric analysis indicated that PG induced a G2 phase arrest of the cell cycle in Calu-6 cells at 72h. PG down-regulated the expression of CDKI (p27), CDK2, CDK4 and CDK6 as well as cyclin D1, and increased cyclin A and cyclin B1 proteins. In addition, O(2)(-) levels were significantly increased in PG-treated cells. Treatment with catalase rescued Calu-6 cells from PG-induced apoptosis, and also prevented the growth inhibition as well as a G2 phase arrest by PG, which were accompanied with the down-regulation of O(2)(-) levels. In conclusion, PG inhibited the growth of Calu-6 cells by inducing the cell cycle arrest, accompanied with an increase in O(2)(-) levels.  相似文献   

11.
AIM: To investigate the effects of onychin on the proliferation of cultured rat artery vascular smooth muscle cells (VSMCs) in the presence of 10% new-born calf serum (NCS). METHODS: Rat VSMCs were incubated with onychin 150 micromol/L or genistein 10 micromol/L in the presence of 10% NCS for 24 h. The proliferation of VSMCs was measured by cell counting and MTS/PMS colorimetric assays. Cell cycle progression was evaluated by flow cytometry. Retinoblastoma (Rb) phosphorylation, and expression of cyclin D1 and cyclin E were measured by Western blot assays. The tyrosine phosphorylation of ERK1/2 was examined by immunoprecipitation techniques using anti-phospho-tyrosine antibodies. RESULTS: The proliferation of VSMCs was accelerated significantly in the presence of 10% NCS. Onychin reduced the metabolic rate of MTS and the cell number of VSMCs in the presence of 10% NCS in a dose-dependent manner. Flow cytometry analysis revealed that the G1-phase fraction ratio in the onychin group was higher than that in the 10% NCS group (85.2% vs 70.0%, P<0.01), while the S-phase fraction ratio in the onychin group was lower than that in 10% NCS group (4.3% vs 16.4%, P<0.01). Western blot analysis showed that onychin inhibited Rb phosphorylation and reduced the expression of cyclin D1 and cyclin E. The effects of onychin on proliferation, the cell cycle and the expression of cyclins in VSMCs were similar to those of genistein, an inhibitor of tyrosine kinase. Furthermore immunoprecipitation studies showed that both onychin and genistein markedly inhibited the tyrosine phosphorylation of ERK1/2 induced by 10% NCS. CONCLUSION: Onychin inhibits the proliferation of VSMCs through G1 phase cell cycle arrest by decreasing the tyrosine phosphorylation of ERK1/2, and the expression of cyclin D1 and cyclin E, and sequentially inhibiting Rb phosphorylation.  相似文献   

12.
The aims of this study were to investigate whether chemically modified non-anticoagulation heparin derivate (Periodate-Oxidized/Borohydride-Reduced modified heparin (OR-heparin)) can inhibit high glucose-induced human mesangial cell proliferation and its influence on the cell cycle. OR-heparin with low anticoagulation activity inhibited high glucose-induced early proliferation in a dose-dependent manner. OR-heparin released high glucose-arrested mesangial cells at G(1) phase, and dose-dependently increased S phase. OR-heparin also inhibited high glucose-activated ERK1/2 phosphorylation, induced p27(Kip1) expression, and suppressed reactive oxygen species (ROS) accumulation in a dose-dependent manner. Our results suggest that OR-heparin releases high glucose-arrested cells on G(1) phase and inhibits high glucose-induced mesangial cell proliferation through blocking ERK1/2 phosphorylation and delaying S phase progression, which may be in correlation with OR-heparin suppressing ROS accumulation.  相似文献   

13.
Traditional medicinal herbs are an untapped source of potential pharmaceutical compounds. This study aims to determine whether the proliferation of breast cancer cell lines could be inhibited by germacrone, a natural product isolated from Rhizoma curcuma. Germacrone treatment significantly inhibited cell proliferation, increased lactate dehydrogenase (LDH) release, and induced mitochondrial membrane potential (ΔΨm) depolarization in both MCF-7 and MDA-MB-231 cells in a dose-dependent manner. Germacrone induced MDA-MB-231 and MCF-7 cell cycle arrest at the G0/G1 and G2/M phases respectively and induced MDA-MB-231 cell apoptosis. Furthermore, germacrone treatment significantly increased Bok expression and cytochrome c release from mitochondria without affecting Bcl-2, Bcl-xL, Bax, and Bim protein expressions. In addition, germacrone treatment induced caspase-3, 7, 9, PARP cleavage. We concluded that germacrone inhibited the proliferation of breast cancer cell lines by inducing cell cycle arrest and apoptosis through mitochondria-mediated caspase pathway. These results might provide some molecular basis for the anti-tumor activity of Rhizoma curcuma.  相似文献   

14.
15.
16.
目的探究血根碱对胃癌细胞增殖、侵袭及细胞周期的影响机制。方法采用MTT法检测血根碱(3、6、9μmol·L~(-1))对胃癌SGC-7901细胞活性的抑制作用;划痕法和流式细胞术检测血根碱对细胞的迁移和周期的影响; Western blot法检测迁移及细胞周期相关蛋白MMP-2、MMP-9、cyclin D1、CDK4及p16的蛋白表达水平。结果与空白对照组相比,不同浓度的血根碱作用24 h后,随着药物浓度的增加,细胞活性明显降低,分别为82. 6%、63. 1%、46. 5%,有显著性差异(P <0. 05);流式细胞术结果显示,与空白对照组相比,血根碱(3、6、9μmol·L~(-1))处理胃癌细胞后,处于G1期的细胞比例明显升高(P <0. 05);划痕结果显示,与空白对照组相比,血根碱处理后胃癌细胞的迁移能力明显降低;血根碱作用后,MMP-2、MMP-9、cyclin D1、CDK4的蛋白表达量明显下调(P <0. 05),p16的蛋白表达量明显上调(P <0. 05)。结论血根碱在体外明显抑制SGC-7901细胞增殖,降低细胞的迁移能力,诱导细胞在G1期阻滞,其抗胃癌作用与其调控MMP-2、MMP-9、cyclin D1、CDK4及p16的蛋白表达有关。  相似文献   

17.
Piperine, an alkaloid from black and long peppers (Piper nigrum Linn & Piper longum Linn), has been reported to exhibit antitumor activities in vitro and in vivo. To further understand the antitumor mechanism of piperine, we investigated the growth inhibitory effects of piperine on human prostate cancer DU145, PC-3 and LNCaP cells. Piperine treatment resulted in a dose-dependent inhibition of the proliferation of these cell lines. Cell cycle arrest at G0/G1 was induced and cyclin D1 and cyclin A were downregulated upon piperine treatment. Notably, the level of p21Cip1 and p27Kip1 was increased dose-dependently by piperine treatment in both LNCaP and DU145 but not in PC-3 cells, in line with more robust cell cycle arrest in the former two cell lines than the latter one. Although piperine induced low levels of apoptosis, it promoted autophagy as evidenced by the increased level of LC3B-II and the formation of LC3B puncta in LNCaP and PC-3 cells. The piperine-induced autophagic flux was further confirmed by assaying LC3-II accumulation and LC3B puncta formation in the presence of chloroquine, a well-known autophagy inhibitor. Taken together, these results indicated that piperine exhibited anti-proliferative effect in human prostate cancer cells by inducing cell cycle arrest and autophagy.  相似文献   

18.
IgA nephropathy (IgAN) is an autoimmune kidney disease and is the most prevalent form of glomerular kidney disease in China and worldwide. IgA immune complex deposition accompanied by mesangial cell proliferation and mesangial matrix expansion is the most basic pathological feature of IgAN. Dihydroartemisinin (DHA), an antimalarial drug, was recently reported to be effective in treating autoimmune diseases. However, its potential therapeutic role in IgAN is relatively unstudied. The aim of this study was to investigate the pharmacological effects and the underlying mechanisms of DHA in the treatment of IgAN. In this study, renal biopsy specimens were collected for immunohistochemistry. In vitro, 25 μg/ml concentrations of aggregated IgA1 (aIgA1) was used to construct the IgAN mesangial cell model. Stimulated human mesangial cells (HMCs) were treated for 24 h with DHA (0–15 μM) and were collected for western blot analyses. Cell proliferation was assessed by Cell Counting Kit 8 (CCK8) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. In vitro, our results showed that DHA could downregulate the mammalian target of rapamycin/ribosomal protein S6 kinase beta-1 (mTOR/S6K1) signaling pathway, promote cell autophagy, and ameliorate cell proliferation in aIgA1-induced HMCs. The results suggested that DHA may represent a novel class of mTOR inhibitor and promote an anti-proliferation effect in IgAN HMCs, which provides an alternative approach for IgAN treatment.  相似文献   

19.
二氢青蒿素抑制K562细胞血管内皮生长因子的表达   总被引:15,自引:0,他引:15  
李菌  周慧君 《药学学报》2005,40(11):1041-1045
目的通过观察二氢青蒿素抑制K562细胞血管内皮生长因子(VEGF)的表达,探讨青蒿素类药物在抑制血液肿瘤血管新生方面的作用。方法运用MTT法、免疫组化分析和Western blotting分析等探讨了二氢青蒿素对K562细胞增殖以及VEGF表达方面的影响,并进一步对药物预处理后肿瘤细胞的条件培养基在促内皮细胞增殖以及促鸡胚绒毛尿囊膜(CAM)血管新生的作用进行评定。结果二氢青蒿素能有效抑制K562细胞的增殖,并显著下调K562细胞VEGF蛋白和mRNA的表达。同时,药物预处理细胞的条件培养基,其促内皮细胞增殖和促CAM血管新生的能力都有所下降,并呈药物浓度依赖性。结论二氢青蒿素能显著下调K562细胞VEGF的表达,并能抑制由其诱导的血管新生作用。  相似文献   

20.
目的研究人白细胞介素1β(interleukin-1β,IL-1β)体外诱导人黑色素瘤A375-S2细胞凋亡的机制。方法通过Hoechst33258荧光染色,观察A375-S2细胞在IL-1β作用下的形态学变化。使用琼脂糖凝胶电泳法检测IL-1β对细胞DNA降解的影响。应用流式细胞分析技术研究IL-1β对A375-S2细胞周期的影响。利用Westernβlot方法检测IL-1β对细胞线粒体内Bcl-2家族蛋白表达的调节作用。结果IL-1β(1nM)能够诱导A375-S2细胞凋亡,72h时细胞体变小,细胞核呈现固缩、断裂,并出现因凋亡引起的DNA梯状条带。IL-1β可将细胞周期阻滞在G0/G1期,并具有时间依赖性。IL-1β诱导细胞凋亡过程中,抗凋亡蛋白Bcl-2和Bcl-xL的表达减少,促凋亡蛋白Bax的表达增加。结论IL-1β通过将细胞周期阻滞在G0/G1期,上调线粒体内Bax/Bcl-2和Bax/Bcl-xL的表达比例诱导A375-S2细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号