首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work was to study the potential involvement of melanocortin system in the anorectic mechanism of fluoxetine, a selective serotonin reuptake inhibitors, in obese Zucker rats. Male obese Zucker (fa/fa) rats were administered fluoxetine (10 mg/kg; i.p.) daily for two weeks. The control group was given 0.9% NaCl solution. RT-PCR for pro-opiomelanocortin (POMC), Agouti gene related peptide (AgRP) and melanocortin receptor 4 (MC4-R) in the hypothalamus, as well as regional immunostaining for alpha-melanocyte stimulating hormone (alpha-MSH) and MC4-R were carried out. Fluoxetine administration increased POMC expression and reduced MC4-R expression in the hypothalamus, without changes in AgRP mRNA levels. Moreover, an increase in the numbers of alpha-MSH positively immunostained neural cells in the hypothalamic arcuate nucleus (ARC), as well as a significant decrease in the numbers of neural cells positively immunostained for MC4-R in the paraventricular nucleus (PVN), without changes in lateral hypothalamic area (LHA), were observed. These results suggest the involvement of alpha-MSH in central fluoxetine anorectic action.  相似文献   

2.
The melanocortin system of the hypothalamus, including the neuropeptides α-melanocyte stimulating hormone (αMSH) and agouti-related protein (AgRP), and their receptors, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), have been well-studied for their roles in the central control of feeding and body weight. In this review, we discuss the evidence demonstrating that αMSH and AgRP also act on the mesocorticolimbic and mesostriatal dopamine systems to regulate a wide variety of behaviors. In addition to the well described ability of αMSH to increase dopamine transmission and to increase grooming and rearing when injected directly into the ventral tegmental area, a growing body of evidence indicates that αMSH and AgRP can also act on dopamine pathways to regulate feeding and drug abuse, including reward-related behaviors toward food and drugs. Increasing our understanding of how αMSH and AgRP act on dopamine pathways to affect behavior may allow for identification of new strategies to combat disorders involving dysfunction of dopamine pathways, such as obesity and drug abuse.  相似文献   

3.
The hypothalamic melanocortin system is important in the central regulation of food intake and body weight. We have previously demonstrated that intracerebroventricular administration of alpha-melanocyte stimulating hormone (alpha-MSH), a nonselective MC3 and MC4 receptor agonist, stimulated plasma thyroid-stimulating hormone, and agouti-related protein (AgRP), an MC3 and MC4 receptor antagonist, suppressed it. In this study, we investigated the effects of MC3 and MC4 receptor (MC3-R and MC4-R) selective agonists and antagonists on the release of thyrotropin-releasing hormone (TRH) from hypothalamic explants in vitro. alpha-MSH stimulated TRH release from the rat hypothalamic explants (alpha-MSH 100 nm 230 +/- 22.9% basal, P < 0.005). In contrast, gamma 2-MSH, a selective MC3-R agonist, suppressed TRH release (gamma 2-MSH 10 microns 76.2 +/- 7.4% basal, P < 0.05). AgRP (83-132), a nonselective MC3/4-R antagonist, induced no change in TRH release whilst JKC-363 (cyclic [Mpr11, D-Nal14, Cys18, Asp22-NH2]-beta-MSH 11-22), a selective MC4-R antagonist, suppressed it (JKC-363 10 nm 57.2 +/- 11.5% basal, P < 0.05). Both AgRP (83-132) and JKC-363 blocked alpha-MSH stimulated TRH release but only AgRP (83-132) blocked the inhibitory effect of gamma 2-MSH on TRH release. These data suggest differential roles for the MC3 and MC4 receptors in TRH release; MC3-R agonism inhibiting and MC4-R agonism stimulating TRH release.  相似文献   

4.
Maintaining glucose levels within the appropriate physiological range is necessary for survival. The identification of specific neuronal populations, within discreet brain regions, sensitive to changes in glucose concentration has led to the hypothesis of a central glucose-sensing system capable of directly modulating feeding behaviour. Glucokinase (GK) has been identified as a glucose-sensor responsible for detecting such changes both within the brain and the periphery. We previously reported that antagonism of centrally expressed GK by administration of glucosamine (GSN) was sufficient to induce protective glucoprivic feeding in rats. Here we examine a neurochemical mechanism underlying this effect and report that GSN stimulated food intake is highly correlated with the induction of the neuronal activation marker cFOS within two nuclei with a demonstrated role in central glucose sensing and appetite, the arcuate nucleus of the hypothalamus (ARC) and lateral hypothalamic area (LHA). Furthermore, GSN stimulated cFOS within the ARC was observed in orexigenic neurons expressing the endogenous melanocortin receptor antagonist agouti-related peptide (AgRP) and neuropeptide Y (NPY), but not those expressing the anorectic endogenous melanocortin receptor agonist alpha-melanocyte stimulating hormone (α-MSH). In the LHA, GSN stimulated cFOS was found within arousal and feeding associated orexin/hypocretin (ORX), but not orexigenic melanin-concentrating hormone (MCH) expressing neurons. Our data suggest that GK within these specific feeding and arousal related populations of AgRP/NPY and ORX neurons may play a modulatory role in the sensing of and appetitive response to hypoglycaemia.  相似文献   

5.
Agouti related protein (AgRP) is a recently discovered melanocortin receptors (MCR) antagonist implicated in the control of feeding behaviour. Expression of AgRP has been shown to be localized by in situ hybridization to the arcuate nucleus and median eminence of the brain, where it acts as an antagonist to the MC3 and MC4 receptors, while in the periphery the only significant expression was located in the adrenal medulla. As AgRP is only a weak antagonist of the MC2 and MC5 receptors, which are expressed principally by adipocytes and in the adrenal cortex, the question arizes as to the function of peripheral AgRP. In this study, we investigated the expression of AgRP in the rat adrenal and suggest that it is expressed in the adrenal cortex and not as previously described in the medulla. We also show that AgRP mRNA expression is upregulated in the adrenal during fasting and in the contralateral gland following unilateral adrenalectomy but not during chronic stress. These results indicate an as yet undefined role for AgRP in the periphery and are supportive of the suggestion that a further melanocortin receptor exists.  相似文献   

6.
Weight loss inhibits thyrotropic function and reduces metabolic rate, thereby contributing to weight regain. Under negative energy balance there is an increase in the hypothalamic expression of both neuropeptide Y (NPY) and agouti related peptide (AgRP), the endogenous antagonist of melanocortin 4 (MC4) receptors. Both NPY and MC4 receptor antagonism reduce thyrotropic function centrally, but it is not known whether these pathways operate by similar or distinct mechanisms. We compared the time-course of effects of acute or chronic intracerebroventricular (ICV) administration of NPY (1.2 nmol acute bolus, or 3.5 nmol/day for 6 days) or the MC4 receptor antagonist HS014 (1.5 nmol bolus, or 4.8 nmol/day) on plasma concentrations of thyroid stimulating hormone (TSH) or free thyroxine (T4) in male rats pair-fed with vehicle-infused controls. These doses equipotently induced hyperphagia in acute studies, reduced latency to feed, and increased white adipose tissue mass after 6 days of infusion. Acute central NPY but not HS014 administration significantly reduced plasma TSH concentrations within 30–60 min and plasma free T4 levels within 90–120 min. These inhibitory effects were sustained for up to 5–6 days of continuous NPY infusion. HS014 induced a transient decrease in plasma free T4 levels that was observed only after 1–2 days of continuous ICV infusion. While both NPY and HS014 significantly increased corticosteronemia within an hour after ICV injection, the effect of NPY was significantly more pronounced and was sustained for up to 4 days of administration. Both NPY and HS014 significantly decreased the brown adipose tissue protein levels of uncoupling protein-3. We conclude that central NPY and MC4 antagonism decrease thyrotropic function via partially distinct mechanisms with different time courses, possibly involving glucocorticoid effects of NPY. MC4 receptor antagonism increases adiposity via pathways independent of increased food intake or changes in circulating concentrations of TSH, free T4 or corticosterone.  相似文献   

7.
Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post‐hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite‐associated factors was measured at 1 h post‐injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti‐related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin‐releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa.  相似文献   

8.
We have identified female sheep that have either high (HR) or low (LR) cortisol responses to adrenocorticotrophin. On a high‐energy diet, HR have greater propensity to weight gain and obesity, although the underlying mechanisms remain to be determined. Hypothalamic appetite‐regulating peptides (ARP) exert reciprocal effects on food intake and energy expenditure. We aimed to quantify the expression and function of ARP in LR and HR ewes (n = 4 per group). Gene expression for neuropeptide Y (NPY), agouti‐related peptide (AgRP) pro‐opiomelanocortin (POMC), melanin‐concentrating hormone (MCH), orexin and the melanocortin receptors (MC3R and MC4R) was measured by in situ hybridisation. Expression of NPY, AgRP and POMC was similar in HR and LR, although expression of orexin, MCH, MC3R and MC4R was higher (P < 0.05) in LR. Intracerebroventricular infusions of a low dose (50 μg/h) of NPY, α‐melanocyte‐stimulating hormone (αMSH), orexin and MCH were performed between 10.00 h and 16.00 h in meal‐fed ewes (n = 6–7 per group). Skeletal muscle and retroperitoneal (RP) fat temperatures were recorded using dataloggers. Post‐prandial thermogenesis in muscle was higher (P < 0.05) in LR. There was little effect of ARP infusion on muscle or fat temperature in either group. Infusion of these doses of NPY, MCH or orexin did not stimulate food intake in meal‐fed ewes, although αMSH reduced (P < 0.01) food intake in LR only. Using 24‐h ARP infusions with ad lib. feeding, NPY increased (P < 0.001) food intake in both groups but αMSH was only effective in LR (P < 0.05). In summary, we show that HR are resistant to the satiety effects of αMSH and this coincides with a reduced expression of both the MC3R and MC4R in the paraventricular nucleus of the hypothalamus. We conclude that an increased propensity to obesity in HR female sheep is associated with reduced melanocortin signalling.  相似文献   

9.
The melanocortinergic system plays an important role in promoting negative energy balance and preventing excessive fat deposition. This study has investigated the levels of mRNA expression of proopiomelanocortin (POMC), agouti-related protein (AgRP) and the melanocortin-4 receptor (MC4-R) in diet-induced obese (DIO) and diet-resistant (DR) mice. Thirty C57 mice were used in this study. Twenty-four mice were fed with a high-fat diet (HF: 40% of calories from fat, 20% from saturated fat) for 4 weeks and then classified as DIO and DR according to their body weight gain. Six mice were placed on a low-fat diet (LF: 10% of calories from fat, 1% from saturated fat) and were used as controls. After 22 weeks of feeding, visceral fat deposits were more than twice as heavy in the DIO mice as in the DR and LF mice, while the latter two groups had no significant difference. Using quantitative in situ hybridization techniques, this study found that the DIO mice had a significantly lower level of Arc POMC (-29%) and AgRP (-31%) mRNA expression than the DR and LF mice, respectively. The mice on high-fat diets had higher levels of AgRP mRNA expression in the bed nucleus of stria terminalis (BST), and ventral part of the lateral septal nucleus (LSV) than the LF mice. Furthermore, the DIO mice had a 40% higher level of MC4-R mRNA expression in the ventromedial hypothalamic nucleus (VMH) and posterodorsal part of the medial amygdaloid nucleus (MePD) than the LF mice. In conclusion, this study has demonstrated that differential expression of POMC, AgRP and MC4-R mRNA levels exists in DIO, DR and LF mice. These differences were shown to occur in the specific nuclei of the hypothalamus and other parts of the limbic system. These findings may assist in understanding the involvement of the melanocortinergic system in the regulation of body weight via the autonomic and limbic systems.  相似文献   

10.
Energy stores in fat tissue are determined in part by the activity of hypothalamic neurones expressing the melanocortin‐4 receptor (MC4R). Even a partial reduction in MC4R expression levels in mice, rats or humans produces hyperphagia and morbid obesity. Thus, it is of great interest to understand the molecular basis of neuromodulation by the MC4R. The MC4R is a G protein‐coupled receptor that signals efficiently through GαS, and this signalling pathway is essential for normal MC4R function in vivo. However, previous data from hypothalamic slice preparations indicated that activation of the MC4R depolarised neurones via G protein‐independent regulation of the ion channel Kir7.1. In the present study, we show that deletion of Kcnj13 (ie, the gene encoding Kir7.1) specifically from MC4R neurones produced resistance to melanocortin peptide‐induced depolarisation of MC4R paraventricular nucleus neurones in brain slices, resistance to the sustained anorexic effect of exogenously administered melanocortin peptides, late onset obesity, increased linear growth and glucose intolerance. Some MC4R‐mediated phenotypes appeared intact, including Agouti‐related peptide‐induced stimulation of food intake and MC4R‐mediated induction of peptide YY release from intestinal L cells. Thus, a subset of the consequences of MC4R signalling in vivo appears to be dependent on expression of the Kir7.1 channel in MC4R cells.  相似文献   

11.
Kask A  Schiöth HB 《Brain research》2000,887(2):70-464
Melanocortins inhibit food intake and melanocortin 4 receptor (MC(4)R) antagonists stimulate feeding behaviour. These effects may occur due to stimulation or blockade of MC(4) receptors in the hypothalamus. To test the validity of this hypothesis, a cyclic peptide, the MC(4)R selective antagonist HS014 (20, 100 and 500 pmol), or vehicle, was injected unilaterally into the paraventricular nucleus of the hypothalamus (PVN). As MC receptors are expressed also in extrahypothalamic sites involved in the regulation of feeding behaviour, HS014 was injected bilaterally into the vicinity of the central nucleus of the amygdala (CA) and the nucleus accumbens region (Acc). All doses of HS014 induced a dose-dependent increase in food intake when injected into the PVN. Intra-amygdalar injections of HS014 (50 and 250 pmol/side) also stimulated food intake, whereas a 10-pmol dose was inactive. Local microinjections of HS014 into the Acc failed to stimulate feeding. These data suggest that endogenous melanocortin receptor agonists exert a tonic inhibitory influence on food consumption by stimulating MC(4) receptors in the hypothalamus and amygdala.  相似文献   

12.
It has been reported that intraventricular administration of the melanocortin 4 receptor (MC4-R) agonist MT II and antagonist SHU9119 alter food intake. We found that MT II and SHU9119 have extremely potent effects on feeding when injected in the paraventricular nucleus (PVN), a site where MC4-R gene expression is very high. Our finding provides direct evidence that MC4-R signaling is important is mediating food intake and that melanocortin neurons in the PVN exert a tonic inhibition of feeding behavior. Chronic disruption of this inhibitory signal is a possible explanation of the agouti-obesity syndrome.  相似文献   

13.
The central melanocortin system has been demonstrated to play an important role in regulating different aspects of energy homeostasis. Understanding the specific contributions of MC3 and MC4 receptors, however, requires specific agonists and antagonists for each of the predominant forms of brain melanocortin receptors, MC3-R and MC4-R. We report here the characterization of a small peptide mimetic MC4-R-specific agonist that possesses both high affinity (Ki=11.3 nM) and potency (EC50=1.62 nM) in vitro and is capable of inhibiting feeding behavior in mice when administered intracerebroventricularly (icv). Depending on the paradigm, acute (1 h following an overnight fast) or long-term (greater than 6 h under normal nocturnal feeding conditions) feeding inhibition was observed following icv injection. No effect on long-term feeding inhibition was observed with this compound in MC4-R knockout mice, and central administration of this compound had no effect on either metabolic rate or insulin release.  相似文献   

14.
Adrenocorticotropic hormone (ACTH), consisting of 39 amino acids, is most well-known for its involvement in an organism's response to stress. It also participates in satiety, as exogenous ACTH causes decreased food intake in rats. However, its anorexigenic mechanism is not well understood in any species and its effect on appetite is not reported in the avian class. Thus, the present study was designed to evaluate central ACTH's effect on food intake and to elucidate the mechanism mediating this response using broiler chicks. Chicks that received intracerebroventricular (ICV) injection of 1, 2, or 4 nmol of ACTH reduced food intake, under both ad libitum and 180 min fasted conditions. Water intake was also reduced in ACTH-injected chicks under both feeding conditions, but when measured without access to feed it was not affected. Blood glucose was not affected in either feeding condition. Following ACTH injection, c-Fos immunoreactivity was quantified in key appetite-associated hypothalamic nuclei including the ventromedial hypothalamus (VMH), dorsomedial hypothalamus, lateral hypothalamus (LH), arcuate nucleus (ARC) and the parvo- and magno-cellular portions of the paraventricular nucleus. ACTH-injected chicks had increased c-Fos immunoreactivity in the VMH, LH, and ARC. Hypothalamus was collected at 1 h post-injection, and real-time PCR performed to measure mRNA abundance of some appetite-associated factors. Neuropeptide Y, pro-opiomelanocortin, glutamate decarboxylase 1, melanocortin receptors 2–5, and urocortin 3 mRNA abundance was not affected by ACTH treatment. However, expression of corticotropin releasing factor (CRF), urotensin 2 (UT), agouti-related peptide (AgRP), and orexin (ORX), and melanocortin receptor 1 (MC1R) mRNA decreased in the hypothalamus of ACTH-injected chicks. In conclusion, ICV ACTH causes decreased food intake in chicks, and is associated with VMH, LH, and ARC activation, and a decrease in hypothalamic mRNA abundance of CRF, UT, AgRP, ORX and MC1R.  相似文献   

15.
Melanin concentrating hormone (MCH) and the orexins (A and B) have been identified as neuropeptides localized to the lateral hypothalamic area (LHA) and are potential regulators of energy homeostasis. Potential factors regulating expression of both MCH and the orexins include fasting and leptin. Previous studies have generated conflicting data and, as there is little leptin receptor expressed in the lateral hypothalamus, it is likely that any observed leptin effects on these peptides are indirect. In this study, we examined MCH and preproorexin expression in mice in physiological states of starvation, with or without leptin administration, in addition to characterizing MCH and preproorexin expression in well-known obesity models, including ob/ob and UCP-DTA mice. Neuropeptide Y (NPY) expression in the arcuate nucleus was used as a positive control. After a 60-h fast, expression of both NPY and MCH mRNA was increased (by 148 and 33%, respectively) while preproorexin expression in the murine LHA did not change. Leptin administration to fasted mice blunted the rise in MCH and NPY expression towards control levels. In contrast, there was a 78% increase in preproorexin expression in fasted mice in response to peripheral leptin administration. MCH expression was increased (by 116%) in ob/ob mice at baseline, as we have previously reported. In addition, leptin treatment of ob/ob mice blunted the increase in MCH expression. In contrast, preproorexin expression did not differ in the leptin-deficient ob/ob mice or in the obese hyperleptinemic brown adipose tissue deficient (UCP-DTA) mice in comparison with controls. In summary, MCH expression is increased in two states of decreased leptin, fasting and ob/ob mice, and leptin replacement blunts MCH expression in both paradigms. Thus, MCH expression appears to be regulated by leptin. In contrast, preproorexin expression does not respond acutely to fasting, although it is acutely increased by leptin treatment during fasting. These preproorexin responses are in contrast to those seen with well-characterized orexigenic neuropeptides, such as NPY and AgRP, suggesting that appetite regulation may not be a significant physiological role of orexins. This conclusion is further supported by the observation that orexin ablated mice have arousal and not feeding deficits.  相似文献   

16.
Over the last 30 years, evidence has emerged indicating that the central melanocortin (MC) peptide system is involved with neurobiological responses to drugs of abuse. Recently, rats selectively bred for high ethanol preference were shown to have altered brain levels of MC receptor (MCR) and central infusion of the potent non-selective MCR agonist, melanotan-II (MTII), attenuates their high ethanol drinking. The goal of the present report was to further characterize the effects of MTII on voluntary ethanol consumption. In alcohol preferring C57BL/6 mice with an established history of ethanol drinking, intracerebroventricular (i.c.v.) infusion of a 5.0 microg dose of agouti-related protein (AgRP)-(83-132), a non-selective MCR antagonist, has no effect on 8-h ethanol drinking or food intake. However, pre-treatment with a 5.0 microg dose of (AgRP)-(83-132) significantly blocks MTII-induced (1.0 microg) reduction of 8-h ethanol drinking and food intake, consistent with a competitive antagonist action. I.c.v. infusion of MTII does not cause alteration of blood ethanol levels 2- or 4-h following intraperitoneal (i.p.) injection of a 4.0 g ethanol/kg dose. Finally, when given in an i.p. injection, a 150 microg dose of MTII reduces 8-h ethanol drinking. These data extend recent findings by showing that both central and peripheral administration of MTII reduces ethanol drinking by mice. Additionally, the ability of (AgRP)-(83-132) to block the effects of MTII implies that MTII-induced reduction of ethanol drinking is receptor mediated.  相似文献   

17.
The melanocortin-4 receptor (MC4-R) is an important mediator of the effects of two melanocortin system ligands, alpha melanocyte stimulating hormone (-MSH) and agouti-related peptide (AGRP), on feeding behavior and energy balance in mammals. Although an avian homologue of the mammalian MC4-R has recently been identified, there is little information on the role of this receptor and the melanocortin system in avian feeding and body weight regulation. In these studies, we measured changes in feeding behavior in ring doves (Streptopelia risoria) following intracerebroventricular (i.c.v.) injection of various melanocortin receptor agonists and antagonists. The selective MC4-R antagonist HS014 elevated food intake within 4 h at all three doses tested (0.02, 0.2, and 2 nmol). A 1 nmol dose of the endogenous antagonist AGRP also stimulated feeding but only after a post-injection interval of 10 h. Surprisingly, the MC3-R and MC4-R antagonist SHU9119 not only failed to stimulate food intake at the same doses as HS014, but actually inhibited food intake at 8 h after injection. Whether this was due to toxicity effects or differences in the pharmacology of avian and mammalian melanocortin receptors remains to be determined. Food-deprived doves showed a fourfold increase in the number of AGRP-immunoreactive cells in the tuberal region of the hypothalamus and 5 ng of the MC3-R and MC4-R agonist MTII significantly attenuated the amount of food consumed by food-deprived birds that were allowed to re-feed. These data support a role for the melanocortin system and the melanocortin-4 receptor in the ring dove feeding behavior.  相似文献   

18.
19.
Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.  相似文献   

20.
Obesity impairs arcuate (ARC) neuropeptide Y (NPY)/agouti-releated peptide (AgRP) neuronal function and renders these homeostatic neurones unresponsive to the orexigenic hormone ghrelin. In the present study, we investigated the effect of diet-induced obesity (DIO) on feeding behaviour, ARC neuronal activation and mRNA expression following another orexigenic stimulus, an overnight fast. We show that 9 weeks of high-fat feeding attenuates fasting-induced hyperphagia by suppressing ARC neuronal activation and hypothalamic NPY/AgRP mRNA expression. Thus, the lack of appropriate feeding responses in DIO mice to a fast is caused by failure ARC neurones to recognise and/or respond to orexigenic cues. We propose that fasting-induced hyperphagia is regulated not by homeostatic control of appetite in DIO mice, but rather by changes in the reward circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号