首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal abnormalities in leiomyosarcomas.   总被引:5,自引:5,他引:5       下载免费PDF全文
Thirty-eight tumors from 30 patients diagnosed as leiomyosarcoma were cytogenetically assessed after short term culture. The specimens were obtained from the retroperitoneum, gastrointestinal tract, and extremities. Chromosomal abnormalities were present in 18 tumors from 13 patients; 15 tumors had clonal changes, whereas 3 tumors had numerous nonclonal changes. Ten tumors from 10 patients had normal karyotypes and no results were obtained in 10 other tumors from 7 patients. Of the tumors with clonal chromosomal aberrations, 4 had near-diploid (3 hypo- and one hyperdiploid) modes, 8 were polyploid, and 3 were bimodal. No specific karyotypic change appeared to characterize the leiomyosarcomas, although involvement of some chromosomes appeared more frequent than others. A comparison of our findings with those reported in the literature revealed certain consistent structural rearrangements involving chromosomes 1, 7, 10, 13, and 14 at bands 1p36, 1p32, 1p13, 1q32, 7p11.1-p21, 7q32, 10q22, 13q14, and 14p11, respectively. Other bands less frequently rearranged were 3p13-p22, 3q21, 4q13-q23, 6q15-q21, 7q11.2-q22, 12q13-q14, 17q12-q25, 19q13.3-q13.4, and 20q12-q13.1. Numerical changes included recurrent loss of chromosomes 4, 9, 14, 15, 16, 18, 21, and 22. Identification of the abnormalities of these chromosomes is important in that it may predict the existence of oncogenes, tumor suppressor genes, and/or growth factor genes at these sites. Subsequent molecular analysis might then lead to the identification of the genes involved and ultimately to a better understanding of the pathogenesis of leiomyosarcomas.  相似文献   

2.
Chromosomal abnormalities in giant cell tumors of bone.   总被引:1,自引:0,他引:1  
Cytogenetic analysis of short-term cultures from ten giant cell tumors of bone revealed clonal and nonclonal chromosome abnormalities in three tumors and nonclonal changes only in seven. None of the clonal aberrations, inv(21)(p11q21) in one tumor, +5 in another, and t(15q22q), dic(4;22)(p16;p1?), double minutes, dicentrics, and ring chromosomes present in three separate clones in the third tumor, were identical to previously reported clonal changes in giant cell tumors. Telomeric associations were found in five tumors. The telomeres of chromosome arms 19q and 15p were particularly frequently involved.  相似文献   

3.
Cytogenetic characterization of tumors of the vulva and vagina   总被引:3,自引:0,他引:3  
Neoplasms of the vulva and vagina account for less than 5% of all female genital tract cancers. Squamous cell carcinoma (SCC) represents more than 70% of the cases in both locales, followed by melanoma, basal cell carcinoma, Paget's disease, and other carcinoma subtypes. Until recently, only few cases had been analyzed by chromosome banding techniques and karyotyped, and also the number subjected to molecular cytogenetic analysis remains low. To understand better the genetic changes harbored by the neoplastic cells in cancer of the vulva and vagina, we analyzed cytogenetically 51 such tumors, finding karyotypic abnormalities in 37. All tumors were analyzed by G-banding, sometimes supplemented by multicolor fluorescence in situ hybridization, and a subset of tumors was also analyzed by comparative genomic hybridization. The two cytogenetically abnormal cases of Paget's disease both had two clones, one with gain of chromosome 7 as the sole change, the other with loss of the X chromosome among, in one case, other aberrations. The four cytogenetically abnormal malignant melanomas (three of the vulva, one of the vagina) presented complex karyotypes with aberrations involving different chromosomes but most often chromosome 1, specifically 1p12-q41. In the 31 cytogenetically abnormal SCCs, different clonal karyotypic abnormalities were seen. Intratumor heterogeneity with multiple clones was observed in 11 cases. The clones were cytogenetically unrelated in eight tumors but related in three, indicating that in the latter clonal evolution had taken place from a single malignantly transformed cell. The main chromosomal imbalances were gains of, or from, chromosome arms 3q, 5p, 8q, 9q, and 19q, and loss from 11q. Breakpoint clusters were seen in 11q13-23, 2q22-35, and 19q13, as well as in the centromeres and pericentromeric bands of chromosomes 3, 8, 9, 13, 14, and 22.  相似文献   

4.
Cytogenetic analysis of short-term cultured 44 basal cell carcinomas (BCC) revealed clonal karyotypic abnormalities in 38 tumors. Relatively complex karyotypes (at least four structural and/or numerical changes per clone) with unbalanced structural as well as numerical aberrations were found in eight (approximately 21%) of the BCC, while the remaining BCC (79%) had simple karyotypes (1 to 3 aberrations per clone). Numerical changes only were found in 16 tumors, 15 BCC displayed both numerical and structural aberrations, and the remaining 7 BCC showed only structural aberrations. Extensive intratumoral heterogeneity, in the form of cytogenetically unrelated clones, was found in 21 tumors, whereas related subclones were present in 10 tumors. In order to obtain an overall karyotypic picture in BCC, the findings of our previously published 25 BCC have been reviewed. Our combined data indicate that BCC are characterized by nonrandom karyotypic patterns. A large subset of BCC is characterized by nonrandom numerical changes, notably, +18, +X, +7, and +9. Structural rearrangements often affect chromosomes 1, 4, 2, 3, 9, 7, 16, and 17. A number of chromosomal bands are frequently involved, including 9q22, 1p32, 1p22, 1q11, 1q21, 2q11, 4q21, 4q31, 1p36, 2q37, 3q13, 7q11, 11p15, 16p13, 16q24, 17q21, and 20q13. When the genomic imbalance is assessed, it has been shown that several chromosome segments are repeatedly involved in losses, namely loss of the distal part of 6q, 13q, 4q, 1q, 8q, and 9p. A correlation analysis between the karyotypic patterns and the clinico-histopathologic parameters has been undertaken in the 44 BCC of the present series. The cytogenetic patterns show a significant correlation with tumor status (P=.025), that is, that cytogenetically more complex tumors are also those clinically the most aggressive. Also, the frequency of cytogenetically unrelated clones is significantly higher in recurrent BCC than that in primary lesions (P=.05). No clear-cut association has been found between the karyotypic patterns and histologic subtypes or tumor sites.  相似文献   

5.
Chromosome studies of lipomas have revealed an extensive cytogenetic heterogeneity. To investigate the frequencies of previously recognized cytogenetic subgroups and to find out if more recurrent rearrangements can be identified, we have analyzed cytogenetically short-term tissue cultures of 237 samples from 188 adipose tissue tumors obtained from 142 patients. Only one of 58 tumors from 18 patients with multiple lipomas (more than two tumors) had karyotypic changes. Among the sporadic lipomas, 20 tumors had supernumerary ring chromosomes of unknown origin, 55 had different aberrations involving chromosome segment 12q13-15, 11 had changes of 6p or chromosome 13, but no rings or 12q13-15 changes, and 14 had various other aberrations. Ring chromosomes were found in all cytogenetically abnormal lipomas histologically classified as atypical and in nine tumors classified as typical lipoma or spindle cell lipoma. Recombinations between 12q 13-15 and a few other bands or segments were seen more than once: 3q27-28 (15 tumors), 2p22-24 and 2q35 (four tumors), 1 p32-34 and 13q 12-14 (three tumors), and 5q33 (two tumors). Recombinations of 12q 13-15 with 2q35 and 13q 12-14 have not been described before. Of eight tumors with chromosome 13 aberrations, five had loss of 13q material. Aberrations of 12q 13-15, 6p, and/or chromosome 13 were found simultaneously in nine tumors. Two to four samples from the same tumor were investigated in 29 tumors with clonal aberrations. Thirteen of these tumors displayed clonal evolution, also noted in another 17 tumors in which only one sample had been investigated. Thus clonal evolution occurred in 30% of the tumors and was particularly frequent in atypical lipomas. Genes Chrom Cancer 9:207-215 (1994). © 1994 Wiley-Liss, Inc.  相似文献   

6.
We have examined 62 prostatic adenocarcinomas by conventional cytogenetic analysis. Most were primary cultures harvested in 14 days or less. The most consistent finding was a normal male diploid karyotype, found in 87% of all cells analyzed, and as the exclusive finding in 19 tumors. Nonrandom chromosomal changes included gain of chromosome 7 and loss of the Y chromosome. In addition, clonal gains of chromosomes 8, 12, and 18, and clonal losses of chromosomes 14 and 19 were noted in individual cases. Two structural clonal aberrations, a 9p+ in one case and a t(Y;22) (q11.2;p12) in another, were also seen. Ten of 62 cultures demonstrated chromosome instability, defined herein as nonclonal gain or loss of chromosomes in more than 10% of the metaphases examined from that culture. In those cases with nonclonal numerical aberrations, loss of chromosomes was more common than gain. The distribution of apparently random numeric abnormalities was similar to that of the clonal abnormalities in that the most frequent nonclonal gain was of chromosome 7 and the most frequent nonclonal loss was of the Y chromosome. Apparently random structural aberrations were observed in less than 1% of all analyzed cells. These included a 4p-,del(3)(q13), and t(1;11). The extent of apparently random aneuploidy suggests that chromosome instability characterizes cultured prostatic adenocarcinomas. An increase in the frequency of nonclonal aberrations may be an indicator of tumor origin in a predominantly diploid cell population. The coexistence of clonally aberrant, nonclonally aberrant, and normal diploid cells in culture may reflect heterogeneity of prostate tumors in vivo.  相似文献   

7.
Chromosome banding analysis of 97 short-term cultured primary breast carcinomas revealed clonal aberrations in 79 tumors, whereas 18 were karyotypically normal. In 34 of the 79 tumors with abnormalities, two to eight clones per case were detected; unrelated clones were present in 27 (34%) cases, whereas only related clones were found in seven. These findings indicate that a substantial proportion of breast carcinomas are of polyclonal origin. Altogether eight abnormalities were repeatedly identified both as sole chromosomal anomalies and as part of more complex karyotypes: the structural rearrangements i(1)(q10), der(1;16)(q10;p10), del(1)(q11–12), del(3)(p12–13p14–21), and del(6)(q21–22) and the numerical aberrations +7, +18, and +20. At least one of these changes was found in 41 (52%) of the karyotypically abnormal tumors. They identify a minimum number of cytogenetic subgroups in breast cancer and are likely to represent primary chromosome anomalies in this type of neoplasia. Other candidates for such a role are translocations of 3p12–13 and 4q21 with various partner chromosomes and inversions of chromosome 7, which also were seen repeatedly. Additional chromosomal aberrations that give the impression of occurring nonrandomly in breast carcinomas include structural rearrangements leading to partial monosomies for 1p, 8p, 11p, 11q, 15p, 17p, 19p, and 19q and losses of one copy of chromosomes X, 8, 9, 13, 14, 17, and 22. The latter changes were seen consistently only in complex karyotypes, however, and we therefore interpret them as being secondary anomalies acquired during clonal evolution.  相似文献   

8.
Cytogenetic analysis of short-term cultures from 52 primary colorectal adenocarcinomas revealed clonal chromosome aberrations in 45 tumors, whereas the remaining 7 had a normal karyotype. More than 1 abnormal clone was detected in 26 tumors; in 18 of them, the clones were cytogenetically unrelated. The modal chromosome number was near-diploid in 32 tumors and near-triploid to near-tetraploid in 13. Only numerical aberrations were identified in 13 carcinomas, only structural aberrations in 3, and 29 had both numerical and structural changes. The most common numerical abnormalities were, in order of decreasing frequency, gains of chromosomes 7, 13, 20, and Y and losses of chromosomes 18, Y, 14, and 15. The structural changes most often affected chromosomes 1, 17, 8, 7, and 13. The most frequently rearranged chromosome bands were, in order of decreasing frequency, 13q10, 17p10, 1p22, 8q10, 17p11, 7q11, 1p33, 7p22, 7q32, 12q24, 16p13, and 19p13. Frequently recurring aberrations affecting these bands were del(1)(p22), i(8)(q10), i(13)(q10), and add(17)(p11–13). The most common partial gains were from chromosome arms 8q, 13q, and 17q and the most common partial losses from chromosome arms 1p, 8p, 13p, and 17p. A correlation analysis between the karyotype and the clinicopathologic features in our total material, which consists of altogether 153 colorectal carcinomas, including 116 with an abnormal karyotype, showed a statistically significant association (P < 0.05) between the karyotype and tumor grade and site. Carcinomas with structural chromosome rearrangements were often poorly differentiated; well and moderately differentiated tumors often had only numerical aberrations or normal karyotypes. Abnormal karyotypes were more common in rectal carcinomas than in carcinomas situated higher up. Near-triploid to near-tetraploid karyotypes were more than twice as frequent in tumors of the distal colon as in those of the proximal colon and rectum. The cytogenetic data indicate that carcinomas located in the proximal colon and rectum, which often are near-diploid with simple numerical changes and cytogenetically unrelated clones, probably arise through different mechanisms than do tumors located in the distal colon, which more often have complex near-triploid to near-tetraploid karyotypes.  相似文献   

9.
Fifteen primary liver carcinomas (PLCs), including 12 hepatocellular carcinomas and three cholangiocellular carcinomas, were investigated cytogenetically after short-term culture. Ten tumors displayed clonal chromosomal abnormalities, whereas only normal karyotypes were detected in four cases, and one sample failed to grow in vitro. Structural rearrangements most often involved chromosomes 1, 7, and 8 and chromosome bands 1p36, 1q25, 3q10, 5q13, 6p10, 7p15, 7q22, 7q32, 8q10, 8q13, 14q10, and 17p11. Frequent genomic imbalances included gains of 1q, 3q, 6p, 7p, and 8q and losses of 1p, 8p, 10q, 14p, 17p, and 19p. A compilation of findings for all 19 cytogenetically abnormal PLCs reported to date, including the present cases, reveals that structural aberrations particularly affect 1p11, 1p22, 1p32, 1p34, 1p36, 1q25, 7p15, 7q22, 8q10, 8q13, 14q10, 16q24, and 17p11, and that the abnormalities frequently result in overrepresentation of 1q, 3q, 6p, 7p10–14, 8q, and 17q and underrepresentation of 1p34–36, 6q27, 7q32–qter, 8p, 13p, 14p, 16q24, and 17p. These genomic regions are likely to harbor genes of importance in hepatocarcinogenesis, and the present cytogenetic mapping may hence be of value for further molecular genetic investigations of PLC. Genes Chromosomes Cancer 23:26–35, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Cytogenetic analysis of short-term cultures from 105 squamous cell carcinomas of the larynx (LSCC) revealed clonal chromosome aberrations in 56 tumors. Simple karyotypic changes (less than four aberrations per clone) were found in 24 cases, and the remaining 32 tumors had complex karyotypes with multiple numerical as well as unbalanced structural rearrangements. Extensive intratumor heterogeneity, in the form of multiple related subclones or unrelated clones, was observed in a large fraction of the tumors. The structural changes most often affected chromosomes 3, 1, 11, 7, 2, 15, 5, 4, 8, and 12, with rearrangements in the centromeric regions, i.e., the centromeric bands p10 and q10 and the juxtacentromeric bands p11 and q11, accounting for 43% of the total breakpoints. The most common imbalances brought about by numerical and unbalanced structural rearrangements were loss of chromosomal region 3p21-pter, chromosome arms 4p, 6q, 8p, 10p, 13p, 14p, 15p, and 17p, and gain of chromosomal regions 3q21-qter, 7q31-pter, and 8q. Among 17 recurrent aberrations identified, the most common were i(8q), hsr(11)(q13), i(3q), i(5p), and del(3)(p11). No statistically significant association was found between major karyotypic features and histological differentiation or TNM stage. The karyotypic features of the LSCC were also compared with previously published oral SCC, a subgroup of SCC that has been more extensively characterized cytogenetically. No clear-cut karyotypic differences were found between LSCC and oral SCC, with the exception that i(8q) was significantly more frequent among the latter.  相似文献   

11.
Five tenosynovial giant cell tumors—4 pigmented villonodular synovitis (PVNS) and 1 nodular tenosynovitis (NTS)—were investigated cytogenetically. Clonal chromosome aberrations were detected in 3 of them. One PVNS had t(7;16)(q22;q24) as the sole anomaly, whereas 1 PVNS and the NTS displayed aberrations suggesting clonal evolution: t(1;19)(p11;p12)/t(1;19), + 12 and ins(5;1)(q31;p13p34)/ins(5;1),t(2;4)(p23;q21), respectively. Including our 3 cases, a total of 6 tenosynovial giant cell tumors with karyotypic changes have been reported. Apart from 2 PVNS with trisomies 5 and 7, and 2 NTS with rearrangement of chromosome band 1p13, no recurrent chromosome change has been detected. Although the detection of clonal, acquired chromosome abnormalities has formerly generally been accepted as sufficient to conclude that a lesion is neoplastic, the interpretation of the pathogenetic significance of the karyotypic aberrations in synovial tumors is obscured by the fact that we have also detected comparable aberrations in obviously nonneoplastic synovial tissue. One of 2 lesions from patients with hemorrhagic synovitis carried a clonal del(13)(q12q21), and 2 of 4 synovectomy samples from patients with rheumatoid arthritis displayed –Y and –Y together with +7. The available cytogenetic data therefore cannot be used to resolve the controversy as to whether tenosynovial giant cell tumors are truly neoplastic or only reactive, inflammatory proliferations. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Short-term cultures from three invasive squamous cell carcinomas of the skin were cytogenetically analyzed. Clonal chromosome aberrations were found in all tumors. In the first case, two of three abnormal clones were related, and in the second case, two of five clones demonstrated cytogenetic similarities. Both clones detected in case 3 had a structural rearrangement in common. Several nonclonal changes were seen in all three cases in addition to the clonal aberrations. None of the rearrangements detected, clonal or nonclonal, corresponds to any of the consistently cancer-associated aberrations known from other neoplasms. The remarkably diverse karyotypic picture of the three squamous cell carcinomas, in particular the finding of unrelated clones in two of them, hints that these neoplasms may be poly-rather than monoclonal. The lack of a common cytogenetic denominator argues that if chromosomal changes are of pathogenetic importance in this tumor type, a wide variety of apparently dissimilar changes exist that are roughly equal in their capacity to malignantly transform skin epithelium.  相似文献   

13.
Chromosome banding analysis of 11 short-term cultured gallbladder carcinomas revealed acquired clonal aberrations in seven tumors (five primary and two metastases). Three of these had one clone, whereas the remaining four were cytogenetically heterogeneous, displaying two to seven aberrant clones. Of a total of 21 abnormal clones, 18 had highly complex karyotypes and three exhibited simple numerical deviations. Double minutes and homogeneously staining regions were observed in one and two carcinomas, respectively. To characterize the karyotypic profile of gallbladder cancer more precisely, we have combined the present findings with our three previously reported cases, thereby providing the largest cytogenetic database on this tumor type to date. A total of 287 chromosomal breakpoints were identified, 251 of which were found in the present study. Chromosome 7 was rearranged most frequently, followed by chromosomes 1, 3, 11, 6, 5, and 8. The bands preferentially involved were 1p32, 1p36, 1q32, 3p21, 6p21, 7p13, 7q11, 7q32, 19p13, 19q13, and 22q13. Nine recurrent abnormalities could, for the first time, be identified in gallbladder carcinoma: del(3)(p13), i(5)(p10), del(6)(q13), del(9)(p13), del(16)(q22), del(17)(p11), i(17)(q10), del(19)(p13), and i(21)(q10). The most common partial or whole-arm gains involved 3q, 5p, 7p, 7q, 8q, 11q, 13q, and 17q, and the most frequent partial or whole-arm losses affected 3p, 4q, 5q, 9p, 10p, 10q, 11p, 14p, 14q, 15p, 17p, 19p, 21p, 21q, and Xp. These chromosomal aberrations and imbalances provide some starting points for molecular analyses of genomic regions that may harbor genes of pathogenetic importance in gallbladder carcinogenesis. Genes Chromosomes Cancer 26:312-321, 1999.  相似文献   

14.
Cytogenetic study of five biphasic and five monophasic synovial sarcomas revealed the specific abnormality t(X;18) (p11;q11) in eight cases and t(X;15;18) (p11;q15;q11) and t(X;7) (q11-12;q32) in one case each. Additional, secondary aberrations were present in eight of these tumors. By combining our data with information on previously published cytogenetically abnormal synovial sarcomas, we were able to evaluate 32 tumor samples from 29 patients. The modal chromosome number was pseudodiploid or near diploid in 26 of the 32 tumors. A t(X;18) was present in 21 of 29 cases (72%). Complex translocations involving chromosomes X and 18 and another autosome were present in five cases, and one displayed a t(5;18). There was no visible rearrangement of chromosome bands Xp11 or 18q11 in only 2 of the 32 synovial sarcomas. Half of the primary tumors (6 of 12) had the X;18-translocation as the sole abnormality. Of the remaining 20 specimens from recurrent or metastatic tumors (in three cases two tumors could be analyzed), only one had t(X;18) as the sole change. The secondary aberrations in cases exhibiting clonal evolution were also generally more extensive in the metastatic and recurrent than in the primary sarcomas (five additional aberrations per case, compared with two). Chromosomes 1 and 12 were the chromosomes most frequently (one fourth of the cases) involved in additional structural changes, but with several different breakpoints. No differences were identified between the karyotypic profiles of monophasic and biphasic synovial sarcomas.  相似文献   

15.
Chromosome aberrations in 35 primary ovarian carcinomas.   总被引:2,自引:0,他引:2  
Cytogenetic analysis was performed on short-term cultures of primary ovarian carcinomas from 62 patients. Cytogenetic analysis was successful in 59 cases. Clonal chromosome aberrations were detected in 35 tumors. Only numerical changes or a single structural change were found in five carcinomas: trisomy 12 was the sole anomaly in two tumors, one tumor had the karyotype 50,XX, + 5, + 7, + 12, + 14, a fourth tumor had a balanced t(1;5), and the fifth tumor had an unbalanced t(8;15). The fact that four of these five carcinomas were well differentiated suggests that simple karyotypic changes are generally characteristic of these less aggressive ovarian tumors. The majority of the cytogenetically abnormal tumors (n = 30) had complex karyotypes, with both numerical and structural aberrations and often hypodiploid or near-triploid stemlines. The numerical imbalances (comparison with the nearest euploid number) were mostly losses, in order of decreasing frequency -17, -22, -13, -8, -X, and -14. The structural aberrations were mostly deletions and unbalanced translocations. Recurrent loss of genetic material affected chromosome arms 1p, 3p, 6q, and 11p. The breakpoints of the clonal structural abnormalities clustered to several chromosome bands and segments: 19p13, 11p13-15, 1q21-23, 1p36, 19q13, 3p12-13, and 6q21-23. The most consistent change (16 tumors) was a 19p + marker, and in 12 of the tumors the 19p + markers looked alike.  相似文献   

16.
We have cytogenetically examined short-term cultures from a squamous cell carcinoma of the tongue, a tumor type in which chromosome aberrations hitherto have not been reported. No less than 12 pseudodiploid clones were detected, giving the tumor karyotype 46,X,der(X)t(X;1)(q26;p32),der(1)(Xqter→Xq26::1p32→cen→1q42:),del(13)(q11q21),t(15;?) (q26;?)/46,XX,t(1;?)(p34;?),inv(2)(p21q11)/46,XX,t(1;10)(p32;q24)/46,XX,+der(1)(12pter→ 12p11::1p11→cen→1q32::11q13→11q32→1q42:),del(11)(q13q22), - 12, der(17)t(1:17) (q42;p13)/46,XX,inv(1)(p22q44)/47,XX,del(1)(q32),der(17)t(1:17)(p22;q25),der(1)inv(1) (q25q44)t(1;17)(p22;q25),ins(14;7)(q11;q22q36), + 14/46,XX,t(1;4)(q23;q35)/46,XX,t(1;21) (q25;q22),t(2;10)(q31;q26),t(22;?)(q12;?)/46,XX,del(1)(q32)/46,XX,t(1;8)(q44;q21)/46,XX, t(2;21)(q11;p11)/46,XX,t(9;11)(q34;q13). The large number of apparently unrelated abnormalities leads us to suggest that the carcinoma may have been of multiclonal origin.  相似文献   

17.
Twenty-nine nonendocrine pancreatic carcinomas (20 primary tumors and nine metastases) were studied by chromosome banding after short-term culture. Acquired clonal aberrations were found in 25 tumors and a detailed analysis of these revealed extensive cytogenetic intratumor heterogeneity. Apart from six carcinomas with one clone only, 19 tumors displayed from two to 58 clones, bringing the total number of clones to 230. Karyotypically related clones, signifying evolutionary variation, were found in 16 tumors, whereas unrelated clones were present in nine, the latter finding probably reflecting a distinct pathogenetic mechanism. The cytogenetic profile of pancreatic carcinoma was characterized by multiple numerical and structural changes. In total, more than 500 abnormal chromosomes, including rings, markers, homogeneously stained regions, and double minutes, altogether displaying 608 breakpoints, were detected. This complexity and heterogeneity notwithstanding, a nonrandom karyotypic pattern can be discerned in pancreatic cancer. Chromosomes 1, 3, 6, 7, 8, 11, 12, 17, and 19 and bands 1q12, 1q21, 3q11, 6p21, 6q21, 7q11, 7q22, 7q32, 11q13, 13cen, 14cen, 17q11, 17q21, and 19q13 were most frequently involved in structural rearrangements. A total of 19 recurrent unbalanced structural changes were identified, 11 of which were not reported previously: del(1)(q11), del(3)(p11), i(3)(q10), del(4)(q25), del(11)(p13), dup(11)(q13q23), i(12)(p10), der(13;15)(q10;q10), del(18)(q12), del(18)(q21), and i(19)(q10). The main karyotypic imbalances were entire-copy losses of chromosomes 18, Y, and 21, gains of chromosomes 7, 2, and 20, partial or whole-arm losses of 1p, 3p, 6q, 8p, 9p, 15q, 17p, 18q, 19p, and 20p, and partial or whole-arm gains of 1q, 3q, 5p, 6p, 7q, 8q, 11q, 12p, 17q, 19q, and 20q. In general, the karyotypic pattern of pancreatic carcinoma fits the multistep carcinogenesis concept. The observed cytogenetic heterogeneity appears to reflect a multitude of interchangeable but oncogenetically equivalent events, and the nonrandomness of the chromosomal alterations underscores the preferential pathways involved in tumor initiation and progression. Genes Chromosomes Cancer 23:81–99, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Leiomyosarcomas (LMS) of soft tissues frequently show complex karyotypic changes, and no specific aberration has been identified. The aim of this study was to search for recurrent chromosome aberrations in soft tissue LMSs and to correlate these, if present, with morphological and clinical parameters. From a series of soft tissue sarcomas thoroughly reexamined cytogenetically and histopathologically, 45 LMSs were retrieved; 35 were classified microscopically as spindle cell, 3 as epithelioid, and 7 as pleomorphic. Clonal chromosome changes were present in 14, 3, and 3 cases, respectively. This series was combined with 11 previously published, karyotypically abnormal pleomorphic LMSs for cytogenetic-clinico-histopathological correlations. The breakpoints were widely scattered, with no predilection of any of the recurrent breakpoints and losses to any of the morphologic subtypes. Combining numerical and unbalanced structural changes, the most frequently lost segments were 3p21-p23 (11 cases), 8p21-pter, 13q12-q13, 13q32-qter (10 cases each), 1q42-qter, 2p15-pter, 18p11 (9 cases each), 1p36, 11q23-qter (8 cases each), and 10q23-qter (7 cases). The most frequent gain was 1q12-q31 (6 cases). There was a greater frequency of losses in 1p and 8p and a lower frequency of losses in 10q and 13q in tumors that had metastasized than in localized tumors. We conclude that LMSs with clonal abnormalities display highly complex karyotypic changes and extensive heterogeneity. No significant correlation exists between these changes and age and sex of the patients, or with depth of tumor, topography, microscopic subtype, or tumor grade. Losses in 1p36 and 8p21-pter may be associated with increased risk of metastases. Comparison of our findings in soft tissue LMS with those previously reported in LMS in other locations suggest that the karyotypic profile is more dependent on site of origin than on microscopic features.  相似文献   

19.
20.
The aims of the present study were to compare genetic aberrations in primary sarcomas and their pulmonary metastases and to explore the pathways associated with disease spreading. The primary tumor and its subsequent pulmonary metastasis of 22 patients were analyzed by comparative genomic hybridization. All samples were obtained before the initiation of chemo- or radiotherapy. The mean total number of aberrations per tumor was 7.6 (range, 0-17) in primary tumors and 7. 5 (range, 0-19) in metastases. The mean numbers of high-level amplifications per tumor were similar (0.32 in primary tumors and 0. 36 in metastases). The frequencies of the most common aberrations were relatively similar in primary tumors and metastases: the most frequent gain affected 1q (minimal common regions 1q21-q23 in 36% of primary tumors and 1q21 in 45% of metastases). The most frequent losses were detected at 9p (9p22-pter in 32% of primary tumors and 9p21-pter in 32% of metastases), 10p (10p11.2-p12 in 41% of primary tumors and 10p11.2-pter in 32% of metastases), 11q (11q23-qter in 36% of primary tumors and 32% of metastases), and 13q (13q14-q21 in 45% of primary tumors and 50% of metastases). No aberrations specific to metastases were detected. An increase in the total number of changes during progression was a predominant feature in a majority of these paired samples. Also, the number of differences in the genetic profile outnumbered common changes in a majority of the samples. However, despite the heterogeneous and numerous changes, all pairs with aberrations in both specimens had some shared alterations in both samples. Genes Chromosomes Cancer 25:323-331, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号