首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apomorphine, the catechol-derived dopamine D1/D2 receptor agonist, is currently in use as an antiparkinsonian drug. It has previously been reported that apomorphine was able to elicit expression of the enzyme tyrosine hydroxylase, a marker for DA neurons, in the fetal rat cerebrocortical cultures whilst in the presence of brain-derived neurotrophic factor. The present study demonstrated that treatment of fetal rat ventral mesencephalic cultures with apomorphine caused a marked increase in the number of dopaminergic neurons. The action of apomorphine can be mimicked by dopamine receptor (D1 and D2) agonists or blocked by preincubation with D1/D2 receptor antagonists. Incubation of recipient mesencephalic cultures with the conditioned medium derived from apomorphine-stimulated donor mesencephalic cultures elicited a 3.72-fold increase in the number of TH-positive neurons. Increased mRNA expression levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were also found in the apomorphine-treated mesencephalic cells along with concomitant protein expression increases in the conditioned medium. Moreover, the trophic activity observed could be partially neutralized by antibodies against either brain-derived neurotrophic factor or glial cell line-derived neurotrophic factor. Cultured fetal striatal cells, but not hippocampal cells, also responded to apomorphine treatment. The membrane filtration studies revealed that both <30 kDa and >50 kDa fractions contained trophic activities. The latter characterization distinguishes them from most known neurotrophic factors. These results suggest that the apomorphine-modulated development of dopaminergic neurons may be mediated by activation of the dopamine receptor subtypes D1 and D2 thereby increasing the production of multiple growth factors.  相似文献   

2.
3.
Acetylcholinesterase (AChE) is secreted from various brain regions such as the substantia nigra, where levels of this molecule are disproportionately higher than those of choline acetyltransferase. It is thus possible that AChE may have alternative, non-cholinergic functions, one of which could be in development. Indeed, several recent studies have already demonstrated a neurotrophic action of AChE independent of hydrolysis of acetylcholine. In the developing nervous system the dominant forms of AChE differ from the tetramers (G4) that prevail in maturity, in that they are lower molecular weight monomers (G1) and dimers (G2). Therefore, the aims of this study were to explore the neurotrophic role of AChE by comparing the effects of mouse recombinant G1 and G4 AChE on the survival and development of midbrain tyrosine hydroxylase immunoreactive neurons. Butyrylcholinesterase (BuChE), which also hydrolyses acetylcholine, and basic fibroblast growth factor (bFGF), an established trophic factor for midbrain neurons, were also tested. bFGF had no significant stimulatory effect: moreover, BuChE was also inefficacious, suggesting that the action of AChE was independent of its catalytic site. In contrast, mouse recombinant G1 and G4 AChE both increased the survival as well as the outgrowth of the cultured neurons. However, G1 AChE was more potent than G4 AChE suggesting that developmental forms of AChE exist. The implications of this finding for physiological and pathological functioning of the nervous system are discussed. J. Neurosci. Res. 49:207–218, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The contribution of tuberohypophyseal and periventricular-hypophyseal dopaminergic neurons to the regulation of the secretion of prolactin (PRL) has yet to be clarified. In this study, we used pituitary stalk compression to disrupt hypothalamic neural input to the neurointermediate lobe (NIL). Neurointermediate lobe denervation (NIL-D) selectively disrupts the axons of tuberohypophyseal and periventricular-hypophyseal dopaminergic neurons, while leaving tuberoinfundibular dopaminergic neurons and the vascular supply of the pituitary gland intact. NIL-D was performed in ovariectomized (OVX) rats. The concentration of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) in the median eminence (ME) and various regions of the pituitary gland of OVX and OVX+NIL-D rats were measured by HPLC-EC. The concentration of PRL, α-melanocyte stimulating hormone (α-MSH), and luteinizing hormone (LH) in serum were determined by radioimmunoassay. Successful NIL-D was confirmed by increased water intake. One week after NIL-D, serum PRL and α-MSH were elevated, but there was no change in the concentration of LH in serum. The concentration of DA was increased in the median eminence (ME), decreased in the outer zone of the anterior lobe (AL-OZ), as well as the intermediate (IL) and neural lobes (NL), and remained unchanged in the inner zone of the anterior lobe (AL-IZ). The concentration of DOPAC was increased in the ME and NL, decreased in the IL, and remained unchanged in both the AL-IZ and AL-OZ. These data confirm that pituitary stalk compression denervates the NIL. Moreover, decreases in the concentration of DA in the IL and AL-OZ, coupled with elevation of serum PRL and α-MSH indicate that DA from the NIL contributes to the increased inhibition of the secretion of PRL and α-MSH in OVX rats.  相似文献   

5.
Cellular prion protein (PrPC) is widely expressed in the brain. Although the precise role of PrPC remains uncertain, it has been proposed to be a pivotal modulator of neuroplasticity events by regulating the glutamatergic and serotonergic systems. Here we report the existence of neurochemical and functional interactions between PrPC and the dopaminergic system. PrPC was found to co‐localize with dopaminergic neurons and in dopaminergic synapses in the striatum. Furthermore, the genetic deletion of PrPC down‐regulated dopamine D1 receptors and DARPP‐32 density in the striatum and decreased dopamine levels in the prefrontal cortex of mice. This indicates that PrPC affects the homeostasis of the dopaminergic system by interfering differently in different brain areas with dopamine synthesis, content, receptor density and signaling pathways. This interaction between PrPC and the dopaminergic system prompts the hypotheses that the dopaminergic system may be implicated in some pathological features of prion‐related diseases and, conversely, that PrPC may play a role in dopamine‐associated brain disorders.  相似文献   

6.
Neuronal differentiation is influenced by extracellular factors; however, only a few such factors have been identified for central neurons. To address this issue, we have screened media conditioned (CM) by several glial cell lines for neurotrophic effects on dopaminergic neurons in dissociated cell cultures of the E14.5 rat mesencephalon grown in serum-free conditions. To establish culture conditions under which dopaminergic cell survival depends on the exogenous support from neurotrophic factors, cell suspensions were seeded at varying densities and the number of tyrosine hydroxylase-immunoreactive (TH-IR) neurons was determined. This number was maximal at plating densities greater than 175,000 cells/cm2 and was 10-fold lower at the plating density of 80,000 cells/cm2. Cell density had only a minimal effect on [3H]dopamine uptake per TH-IR neuron. Treatment of cultures plated at 80,000 cells/cm2 with CM derived from the glial cell line, B49, the neural retina glial cell line, R33, and the Schwannoma cell line JS1, increased the number of surviving TH-IR neurons 160-330%. These effects were dose dependent and heat sensitive. All CM stimulated neurite elongation of TH-IR neurons, while only the B49-CM increased [3H]dopamine uptake. The neurotrophic effects of these media were not confined to dopaminergic neurons but increased overall neuronal density in culture by 50-100%. Moreover, all three CM were mitogenic for mesencephalic glia as demonstrated by glial fibrillary acidic protein (GFAP)-immunocytochemistry in combination with [3H]thymidine-autoradiography. By contrast, medium conditioned by the pheochromocytoma cell line, PC12, did not increase the number of astrocytes or promote the survival of dopaminergic neurons. Inhibition of glial proliferation reduced the neurotrophic effects of the B49-, R33-, and JS1-CM by 40-80%. These observations suggest that the glial cell lines B49, R33, and JS1 secrete factors that promote the survival of dopaminergic neurons and induce proliferation of glial precursors. The partial decrease of the survival-promoting effects of these CM on dopaminergic neurons in glial-free mesencephalic cultures further suggests that the observed neurotrophic effects result from the combined action of cell line-derived substances directly on neurons and indirectly via effects on mesencephalic astrocytes or astrocyte precursors.  相似文献   

7.
Y. Kubota  S. Inagaki  S. Kito  H. Takagi  A.D. Smith   《Brain research》1986,367(1-2):374-378
The synaptic relationship between neuronal structures reacting with antibodies to tyrosine hydroxylase (TH) and Leu- or Met-enkephalin (ENK) was studied by the 'mirror technique' in adjacent sections of rat neostriatum. TH-immunoreactive (TH-IR) axonal boutons surrounding the neural perikarya and proximal dendrites of ENK-immunoreactive (ENK-IR) neurons were very thin (0.1-0.4 micrograms). They contained many small clear vesicles and sometimes had symmetrical membrane specializations. This provides morphological evidence for catecholaminergic, presumably dopaminergic inputs to rat striatal enkephalin neurons.  相似文献   

8.
Fibroblast growth factor (FGF)-2 is an established neurotrophic factor for dopaminergic (DAergic) neurons in the ventral midbrain. Its survival and differentiation-promoting effects on DAergic neurons in vitro and in vivo are crucially dependent on the presence, numerical expansion and maturation of astroglial cells. We show now that transforming growth factor (TGF)-β, an established trophic factor for DAergic neurons and product of astroglial cells, mediates the trophic effect of FGF-2 on DAergic neurons cultured from the embryonic rat midbrain floor. Antibodies to TGF-β that neutralize the isoforms -β1, -β2 and -β3 abolish the trophic effect of FGF-2. FGF-2 increases TGF-β3 mRNA and amounts of biologically active TGF-β determined in a mink lung epithelial cell assay in a time-dependent manner. FGF-2 also induces levels of active TGF-β in neonatal rat astrocytes cultured from midbrain, striatum and cortex. We conclude that TGF-β is required for mediating the survival promoting effect of FGF-2 on DAergic and, possibly, cortical and striatal neurons grown in the presence of glial cells.  相似文献   

9.
Stimulation of the neural cell adhesion molecule (NCAM) by homophilic interactions is known to lead to neurite outgrowth as well as to neuronal survival. Whereas a complex network of signalling molecules is known to be of importance to NCAM-mediated neurite extension, only limited information is available regarding signalling underlying NCAM-mediated neuroprotection. Here, we present data suggesting a difference in the signalling events required for survival of rat dopaminergic neurons as compared with neurite outgrowth from the same cell type. Whereas Fyn, fibroblast growth factor receptor, mitogen-activated protein and ERK kinase, protein kinase A and protein kinase C are required for both responses to NCAM-induced signalling, phospholipase C and Ca(2+)-calmodulin-dependent kinase II are only necessary for the neurite outgrowth response, but dispensable for neuroprotection.  相似文献   

10.
Immunosuppressant drugs, like FK506, and nonimmunosuppressant compounds like, GPI1046 and L685818, are immunophilin ligands that specifically bind to immunophilins, like FK506 binding protein 12 (FKBP12). Several lines of evidence show that these ligands exert neurotrophic properties in neural injury models and in PC12 cells. However, the mechanism of the neurotrophic function of the immunophilin ligands is poorly known. In the present study, we use MPP+ and 6-OHDA toxicity models to examine both neuroprotective and neuroregenerative effects of immunophilin ligands on primary cultures of midbrain dopaminergic neurons. We find that FK506, GPI1046 and L685818 at concentrations from 0.01 to 1 microM partially, but significantly, protect dopaminergic neurons against both MPP+ and 6-OHDA toxicity. By Western blot analysis, we also find that all three compounds prevent tyrosine hydroxylase (TH) loss induced by MPP+ and 6-OHDA treatments. Morphologic analysis of dopaminergic neurons, by immunocytochemistry, shows that MPP+ and 6-OHDA cause the retraction and loss of neuronal processes, while FK506, GPI1046 and L685818 promote regeneration of these processes as indicated by increases in process number and length. To examine if FKBP12 is required for neurotrophic effects of immunophilin ligands, we cultured dopaminergic neurons from FKBP12 knockout mice and find that FK506 still protects dopaminergic neurons against MPP+ toxicity. These results suggest that FKBP12 is not essential for the neurotrophic properties of immunophilin ligands, and immunophilin ligands are a new class of neuroprotective and neuroregenerative agents that may have therapeutic potential in a variety of neurological disorders.  相似文献   

11.
The over-expression of α-synuclein is a major factor in the death of dopaminergic neurons in a methamphetamine-induced model of Parkinson's disease. In the present study, α-synuclein knockdown rats were created by injecting α-synuclein-shRNA lentivirus stereotaxically into the right striatum of experimental rats. At 2 weeks post-injection, the rats were injected intraper-itoneally with methamphetamine to establish the model of Parkinson's disease. Expression of α-synuclein mRNA and protein in the right striatum of the injected rats was significantly down-regulated. Food intake and body weight were greater in α-synuclein knockdown rats, and water intake and stereotyped behavior score were lower than in model rats. Striatal dopamine and tyrosine hydroxylase levels were significantly elevated in α-synuclein knockdown rats. Moreover, superoxide dismutase activity was greater in α-synuclein knockdown rat striatum, but the levels of reactive oxygen species, malondialdehyde, nitric oxide synthase and nitrogen monoxide were lower compared with model rats. We also found that α-synuclein knockdown inhibited metham-phetamine-induced neuronal apoptosis. These results suggest that α-synuclein has the capacity to reverse methamphetamine-induced apoptosis of dopaminergic neurons in the rat striatum by inhibiting oxidative stress and improving dopaminergic system function.  相似文献   

12.
Summary. The effects of daily late afternoon administration of the indoleamine, melatonin, on the in situ activity of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) were examined in the caudate nuclei of the striatum of male Syrian hamsters. TH and TPH activities were determined in tissue extracts by measuring the accumulation of L-Dopa and 5-HTP respectively, following the administration of the aromatic L-amino acid decarboxylase inhibitor, NSD-1015. Animals were sacrificed at 4 time points over the 24 light/dark cycle after 9.5 weeks of melatonin treatment. TH activity was significantly increased by melatonin during the early part of the dark phase of the light/dark cycle. While no significant effects of melatonin on TPH was observed, melatonin significantly increased 5-HT concentrations, suggesting a melatonin-induced inhibition of 5-HT release. The data suggest that the striatum may be a region in which dopaminergic neurons are subject to significant regulation by melatonin, either directly or through serotonergic neurons which synapse on dopaminergic neurons in the striatum.  相似文献   

13.
Dopamine (DA) axons in the developing striatum cluster in discrete areas called "DA islands". During the third postnatal week, most DA islands are no-longer detectable and the DA innervation becomes uniform. In this study we explored the relationship between the pattern of DA innervation and the number of striatal tyrosine hydroxylase positive (TH+) cells during early postnatal development. By using dedicated stereology we found that the newborn striatum contains striatal TH+ cells, which cluster around newly sprouted DA axons. The number of these cells decreases when DA axons develop a full pattern of striatal innervation. This condition suggests a causal relationship between the amount of striatal DA innervation and the presence of striatal DA neurons. A better knowledge of the mechanisms regulating the ontogenesis of the nigrostriatal DA system may pave the way to strategies of neurorescue of the DA system.  相似文献   

14.
Glial cell-lined derived neurotrophic factor (GDNF) has been shown to promote survival of developing mesencephalic dopaminergic neurons in vitro. In order to determine if there is a positive effect of GDNF on injured adult midbrain dopaminergic neurons in situ, we have carried out experiments in which a single dose of GDNF was injected into the substantia nigra following a unilateral lesion of the nigrostriatal system. Rats were unilaterally lesioned by a single stereotaxic injection of 6-hydroxydopamine (6-OHDA; 9 μg/4 μl normal saline with 0.02% ascorbate) into the medial forebrain bundle and tested weekly for apomorphine-induced (0.05 mg/kg s. c. ) contralateral rotation behavior, Rats that manifested >300 turns/hour received a nigral injection of 100 μg GDNF, or cytochrome C as a control, 4 weeks following the 6-OHDA lesion, Rotation behavior was quantified weekly for 5 weeks after GDNF. Rats were subsequently anesthetized, transcardially perfused, and processed for tyrosine hydroxylase immunohistochemistry. It was found that 100 μg GDNF decreased apomorphine-induced rotational behavior by more than 85%. Immunohistochemical studies revealed that tyrosine hydroxylase immunoreactivity was equally reduced in the striatum ipsilateral to the lesion in both cytochrome C and GDNF-injected animals. In contrast, large increments in tyrosine hydroxylase immunoreactivity were observed in the substantia nigra of animals treated with 100 μg of GDNF, with a significant increase in numbers of tyrosine hydroxylase-immunoreactive cell bodies and neurites as well as a small increase in the cell body area of these neurons. The results suggest that GDNF can maintain the dopaminergic neuronal phenotype in a number of nigral neurons following a unilateral nigrostriatal lesion in the rat.  相似文献   

15.
We have used the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model to explore whether (i) the neuroprotective effect of near infrared light (NIr) treatment in the SNc is dose-dependent and (ii) the relationship between tyrosine hydroxylase (TH)+ terminal density and glial cells in the caudate-putamen complex (CPu). Mice received MPTP injections (50 mg/kg) and 2 J/cm2 NIr dose with either 2 d or 7 d survival period. In another series, with a longer 14 d survival period, mice had a stronger MPTP regime (100 mg/kg) and either 2 J/cm2 or 4 J/cm2 NIr dose. Brains were processed for routine immunohistochemistry and cell counts were made using stereology. Our findings were that in the 2 d series, no change in SNc TH+ cell number was evident after any treatment. In the 7 d series however, MPTP insult resulted in ~45% reduction in TH+ cell number; after NIr (2 J/cm2) treatment, many cells were protected from the toxic insult. In the 14 d series, MPTP induced a similar reduction in TH+ cell number. NIr mitigated the loss of TH+ cells, but only at the higher dose of 4 J/cm2; the lower dose of 2 J/cm2 had no neuroprotective effect in this series. The higher dose of NIr, unlike the lower dose, also mitigated the MPTP- induced increase in CPu astrocytes after 14 d; these changes were independent of TH+ terminal density, of which, did not vary across the different experimental groups. In summary, we showed that neuroprotection by NIr irradiation in MPTP-treated mice was dose-dependent; with increasing MPTP toxicity, higher doses of NIr were required to protect cells and reduce astrogliosis.  相似文献   

16.
目的 观察DNA聚合酶β抑制剂齐墩果酸对帕金森病小鼠模型的保护作用.方法 利用MPTP腹腔注射法制作小鼠帕金森病模型,在MPTP注射前后分别给予DNA聚合酶β抑制剂齐墩果酸干预,用免疫组织化学染色法检测小鼠中脑酪氨酸羟化酶(TH)阳性神经元,免疫印迹法检测中脑腹侧TH蛋白和活化的Caspase-3表达水平,HPLC法检测纹状体中多巴胺及其代谢产物的水平.结果 小鼠腹腔注射MPTP后出现行为学异常,中脑黑质多巴胺能神经元损伤,中脑腹侧TH表达降低,活化的caspase-3水平增高,同时纹状体多巴胺及其代谢产物3,4二羟基苯乙酸(DOPAC)水平降低.齐墩果酸干预能够显著改善小鼠的行为学评分,增加黑质多巴胺能神经元数量,抑制caspase-3活化,并增加纹状体多巴胺和DOPAC水平.结论 齐墩果酸可能对帕金森病小鼠多巴胺能神经元具有保护作用.  相似文献   

17.
18.
The striatum harbors a small number of tyrosine hydroxylase (TH) mRNA‐containing GABAergic neurons that express TH immunoreactivity after dopamine depletion, some of which reportedly resembled striatal medium spiny projection neurons (MSNs). To clarify whether the TH mRNA‐expressing neurons were a subset of MSNs, we characterized their postnatal development of electrophysiological and morphological properties using a transgenic mouse strain expressing enhanced green fluorescent protein (EGFP) under the control of the rat TH gene promoter. At postnatal day (P)1, EGFP‐TH+ neurons were present as clusters in the striatum and, thereafter, gradually scattered ventromedially by P18 without regard to the striatal compartments. They were immunonegative for calbindin, but immunopositive for enkephalin (54.5%) and dynorphin (80.0%). Whole‐cell patch‐clamp recordings revealed at least two distinct neuronal types, termed EGFP‐TH+ Type A and B. Whereas Type B neurons were aspiny and negative for the MSN marker dopamine‐ and cyclic AMP‐regulated phosphoprotein of 32 kDa (DARPP‐32), Type A neurons constituted 75% of the EGFP+ cells, had dendritic spines (24.6%), contained DARPP‐32 (73.6%) and a proportion acquired TH immunoreactivity after injections of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine and 3‐nitropropionic acid. The membrane properties and N‐methyl‐d ‐aspartate : non‐N‐methyl‐d ‐aspartate excitatory postsynaptic current ratio of Type A neurons were very similar to MSNs at P18. However, their resting membrane potentials and spike widths were statistically different from those of MSNs. In addition, the calbindin‐like, DARPP‐32‐like and dynorphin B‐like immunoreactivity of Type A neurons developed differently from that of MSNs in the matrix. Thus, Type A neurons closely resemble MSNs, but constitute a cell type distinct from classical MSNs.  相似文献   

19.
Glucocorticoid receptor (GR)-mediated facilitation of striatal dopaminergic (DA) neurotransmission has been proposed to play a role in behavioral sensitization induced by intermittent exposure to drugs of abuse or stressors. Searching for possible common neuronal substrates acted upon by drugs of abuse and corticosterone, we addressed the question as to whether such a facilitatory effect is apparent (i.e., persists) in primary cultures of rat striatum subsequent to intermittent (prenatal) morphine administration. As previously observed in striatal slices of morphine-treated rats, intermittent morphine exposure in vivo caused a long-lasting increase in DA D1 receptor-stimulated adenylyl cyclase activity, that appeared to persist in primary cultures of rat striatal γ-aminobutyric acid (GABA) neurons. Subsequent in vitro exposure of these striatal neurons to corticosterone or dexamethasone, simultanously activating GR and mineralocorticoid receptors (MR), about doubled this adaptive effect of previous in vivo morphine administration. The selective MR agonist aldosterone was ineffective in this respect. Prior in vivo morphine treatment also enhanced the stimulatory in vitro effect of corticotropin releasing hormone (CRH) on adenylyl cyclase in cultured GABA neurons. However, the enhanced CRH receptor functioning was not potentiated by in vitro corticosterone exposure. Activation of GR by corticosterone did not facilitate the increase in D1 receptor efficacy induced by sustained activation of muscarinic receptors in cultured striatal neurons. These data indicate that previous intermittent morphine administration induces a long-lasting synergistic effect of corticosterone on enhanced striatal DA neurotransmission at the level of postsynaptic D1 receptors. Moreover, the induction of this neuroadaptation seems to display opioid receptor selectivity and its long-term expression may be confined to D1 receptors. Since exposure to drugs of abuse or stressors not only increase striatal DA release but also plasma corticosterone levels, we hypothesize that this adaptive phenomenon in DA-sensitive GABA neurons is involved in the expression of morphine-induced long-term behavioral sensitization to drugs of abuse and stressors. Synapse 25:381–388, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
3-硝基丙酸多次化学预处理对多巴胺能神经元的保护作用   总被引:2,自引:0,他引:2  
目的探讨3-硝基丙酸(3-NP)多次化学预处理对多巴胺能神经元的保护作用及可能机制。方法应用MPTP(30mg/kg)在C57BL小鼠上复制帕金森病模型,以3-NP(20mg/kg)行预处理,检测小鼠中脑黑质凋亡率和转录因子c-Jun的阳性细胞数量及c-Jun的蛋白水平;应用MPP^+(0.25mmol/L)在SH—SY5Y细胞制作帕金森病模型,以3-NP(0.2mmol/L)进行预处理,并将携带显性突变体c—JuncDNA片段的真核表达载体质粒pcDNA3(HA)-Jun—dn转染SH—SY5Y细胞,检测各组细胞的c-Jun表达水平及凋亡率。结果小鼠中脑黑质凋亡率:MPTP组较对照组明显升高(P〈0.01),3-NP单次、多次预处理后均明显降低(P〈0.05,P〈0.01);c—Jun阳性细胞数:MPTP组较对照组明显增加(P〈0.05),3-NP单次预处理组与MPTP组比较无明显差异,3-NP多次预处理后明显降低(P〈0.05);c—Jun蛋白水平:与其阳性细胞数变化一致;细胞凋亡率:MPP^+组较对照组明显升高,3-NP单次、多次预处理组细胞凋亡率明显降低(P〈0.05,P〈0.01);c-Jun蛋白水平变化与中脑黑质一致;经pcDNA3(HA)-Jundn转染的细胞,其c-Jun的表达较未转染细胞明显降低(P〈0.01),其凋亡率也下降(P〈0.01)。结论3-NP单次、多次预处理对多巴胺能神经元确有保护作用,多次预处理保护效果更强,其机制与抑制转录因子c-Jun的表达,降低其蛋白水平有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号