首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pretibial flexor motoneurons were recorded intracellularly in anesthetized cats during unfused isometric contractions of a subpopulation of motor units from either tibialis anterior (TA) or extensor digitorum longus (EDL) muscles. The contractions elicited excitatory postsynaptic potentials in 23 of 28 pretibial flexor motoneurons. No effect was observed in the remaining motoneurons. In control experiments, the effects of electrical stimulation of afferents within the TA nerve were investigated to help identify afferents responsible for the contraction-induced positive feedback. This feedback was ascribed to actions of Ia fibers because the pattern of the contraction-induced excitatory potentials was consistent with the known pattern of Ia discharge; in control experiments, electrical stimulation of group I fibers elicited only monosynaptic excitatory potentials; and the distribution of both the contraction-induced positive feedback among motor nuclei as well as the electrically evoked Ia excitatory monosynaptic potentials were restricted to homonymous and synergic motoneurons. Observation of the Ia contraction-induced positive feedback was facilitated by the absence of Ib autogenic inhibition. This contraction-induced Ia excitatory feedback in ankle flexors might either reinforce Ia-induced reflexes when these muscles are lengthened or help to lift the leg over an obstacle.  相似文献   

2.
In cat and humans, contact between an obstacle and the dorsum of the foot evokes the stumbling corrective reaction (reflex) that lifts the foot to avoid falling. This reflex can also be evoked by short trains of stimuli to the cutaneous superficial peroneal (SP) nerve in decerebrate cats during the flexion phase of fictive locomotion. Here we examine intracellular events in hindlimb motoneurons accompanying stumbling correction. SP stimulation delivered during the flexion phase excites knee flexor motoneurons at short latency [minimum excitatory postsynaptic potential (EPSP) latency 1.8 ms; mean 2.7 ms]. Although a similar short latency excitation occurs in ankle extensors (mean latency, 2.8 ms), recruitment is delayed until successive shocks in the stimulus train overcome the locomotor-related hyperpolarization of ankle extensors. In ankle flexor motoneurons, SP stimulation evokes an inhibition (mean latency, 2.7 ms) that briefly reduces or stops their firing during the flexion phase. There is a phase-dependent modulation of SP-evoked EPSP amplitude as well as latency during locomotion. However, the more obvious change in SP reflex pathways with the onset of fictive locomotion is the reduced inhibition of ankle extensor motoneurons and the increased inhibition of ankle flexors. These results show that the characteristic pattern of hindlimb motoneuron activation during SP nerve-evoked stumbling correction results from 1) di- and trisynaptic excitation of knee flexor and ankle extensor motoneurons; 2) increased inhibitory postsynaptic potentials in ankle flexors and a suppression of inhibition in extensors, 3) sculpting of the short-latency SP postsynaptic effects by motoneuron membrane potential, and 4) longer latency excitatory effects that are likely evoked by lumbar interneurons involved in the generation of fictive locomotion.  相似文献   

3.
1. We previously demonstrated in the spinal cat that superficial peroneal cutaneous nerve stimulation produced strong reflex contraction in tibialis anterior (TA) and semitendinosus (St) muscles but unexpectedly produced mixed effects in another physiological flexor muscle, extensor digitorum longus (EDL). The goal of the present study was to further characterize the organization of ipsilateral cutaneous reflexes by examining the postsynaptic potentials (PSPs) produced in St, TA, and EDL motoneurons by superficial peroneal and saphenous nerve stimulation in decerebrate, spinal cats. 2. In TA and St motoneurons, low-intensity cutaneous nerve stimulation that activated only large (A alpha) fibers [i.e., approximately 2-3 times threshold (T)], typically produced biphasic PSPs consisting of an initial excitatory phase and subsequent inhibitory phase (EPSP, IPSP). Increasing the stimulus intensity to activate both large (A alpha) and small (A delta) myelinated cutaneous fibers supramaximally (15-45 T) tended to enhance later excitatory components in TA and St motoneurons. 3. In EDL motoneurons, 2-3 T stimulation of the superficial peroneal nerve evoked initial inhibition (of variable magnitude) in 7/10 EDL motoneurons tested, with either excitation (n = 2) or mixed effects (n = 1) observed in the remaining EDL motoneurons. Saphenous nerve stimuli produced excitation either alone, or preceded by an inhibitory phase in EDL. Increasing the stimulus intensity enhanced later inhibitory influences from superficial peroneal and excitatory influences both from superficial peroneal and saphenous nerve inputs in EDL motoneurons. 4. Short-latency (less than 1.8 ms) EPSPs were observed in a few motoneurons in all reflex pathways examined, except for EPSPs in EDL motoneurons evoked by saphenous stimulation. IPSPs with central latencies less than 1.8 ms were also produced by both saphenous (TA, n = 1; EDL, n = 2) and superficial peroneal (EDL, n = 4) nerve stimulation. 5. The results, in comparison with other reports employing spinal and nonspinal preparations, suggest that removal of influences from higher centers reveals inhibitory circuits from the superficial peroneal and saphenous nerves to EDL motoneurons in the spinal preparation. The inhibitory inputs observed are thought to reflect the activation of "specialized" reflex pathways. Additionally, the demonstration of short-latency EPSPs and IPSPs suggest that the minimal linkage in both the excitatory and inhibitory cutaneous reflex pathways examined is disynaptic. The results are discussed in relation to previous studies on classically conditioned flexion reflex facilitation in spinal cat.  相似文献   

4.
The existence of descending propriospinal reflex linkages between forelimbs and hindlimbs has been established in the brush-tailed possum (Trichosurus vulpecula). In animals under chloralose anesthesia and with intact brain stem, forelimb volleys evoked facilitation of flexor and extensor monosynaptic reflexes of both hindlimbs, more pronounced on the ipsilateral side. Powerful inhibition of briefer latency and restricted to ipsilateral flexor digitorum longus (FDL) motoneurons was also brought about by forelimb volleys; at latencies exceeding 20-30 ms, FDL inhibition was usually replaced by facilitation. Distinctness of the two long spinal actions was shown by differences in forelimb receptive fields and in threshold of the executant afferent fibers. The field for reflex inhibition was located distally in the forepaw region, that for facilitation being wider, including deep as well as superficial tissues. Threshold of afferent fibers evoking inhibition was lower than that for facilitation. The descending long spinal actions were compared with those set up by repetitive stimulation of the motor cortex contralateral to the test hindlimb reflexes. In agreement with previous work, strong facilitation of most flexor or extensor motoneurons was produced, including those of quadriceps and ankle flexors, as well as gastrocnemius and hamstring motor nuclei; inhibition consistently appeared only in the FDL motoneuron pool. Weak and inconstant inhibitory action was occasionally observed in other motor pools. Pyramidal tract section abolished the cortical inhibition of FDL, but had little effect on facilitation; both long spinal actions were unchanged. Pyramid-sparing brain stem section greatly reduced both cortical and long spinal facilitatory action, but had little or no effect on FDL inhibition from either source. Interaction experiments demonstrated facilitation of weak inhibitory actions on FDL motoneurons of forelimb and cortical stimulation when elicited together, suggesting a sharing by the two inputs of common interneuronal elements. The observation is consistent with the notion that the long propriospinal system responsible for FDL inhibition from the forepaw might provide the pathway for pyramidal inhibition of the same group of motoneurons.  相似文献   

5.
1. The pattern of depression of Ia IPSPs by volleys in recurrent motor axon collaterals was investigated in motoneurones supplying hind-limb muscles in the cat. The test IPSPs were evoked by stimulation of dorsal roots and the conditioning antidromic volleys by stimulation of motor fibres in different peripheral muscle nerves.2. In all motor nuclei investigated the strongest depression of Ia IPSPs is evoked from motor fibres to muscles whose Ia afferents produce the IPSPs. For example, the Ia IPSP from the knee extensor recorded in motoneurones to a knee flexor is most effectively depressed by antidromic stimulation of motor fibres to the knee extensor.3. The origin of recurrent inhibition of alpha-motoneurones and of Ia inhibitory interneurones with the same Ia input display a striking similarity. This suggests that the same population of Renshaw cells mediates effects to motoneurones and to Ia inhibitory interneurones.4. The functional significance of impulses in motor axon collaterals was discussed and it was suggested that they have an important role in the control of the excitatory as well as inhibitory Ia actions to motoneurones. The recurrent inhibition may limit the Ia effects to excitation of homonymous motoneurones, which would provide optimal conditions for control of individual muscles via the gamma-loop.  相似文献   

6.
Postsynaptic potentials evoked in hindlimb alpha-motoneurons by stimulation of a cutaneous nerve (sural) with finely graded stimulus strengths were analyzed in the primate, monitoring the spinal cord potentials and afferent nerve volleys in the sural nerve. It was observed that activities in A alpha beta, A delta and C fibers of the cutaneous nerve elicited characteristic excitatory and/or inhibitory postsynaptic potentials (EPSPs and/or IPSPs) with different latencies and durations in extensor and flexor motoneurons. Volleys in A delta fibers of the cutaneous nerve produced EPSPs in 57% of flexor and 31% of extensor motoneurons tested, whereas IPSPs were produced by A delta volleys in 41% of flexor and 62% of extensor motoneurons. EPSPs with longer latencies and longer durations were evoked by cutaneous C fiber volleys in 55% of flexor and 34% of extensor motoneurons, whereas IPSPs due to C volleys were recorded in 9% of flexor and 14% of extensor motoneurons. A alpha beta and A delta volleys caused motoneurons to fire in several instances, and some motoneurons discharged repetitively during the depolarizations evoked by activities in C fibers of the nerve. Central latency for transmission in interneuronal chains in the spinal cord was estimated from the onset of the cord potential (N3 wave) to the onset of the postsynaptic potential evoked by A delta volleys. Ranges of central latencies of the EPSPs and IPSPs evoked by A delta volleys were 2.0-7.0 ms and 3.5-8.5 ms, respectively. It is postulated that there may be at least two interneurons interposed in the excitatory reflex pathway from A delta afferent fibers to motoneurons and the A delta inhibitory pathway may involve longer interneuronal chains. In a few motoneurons, however, sural volleys with strengths sufficient to activate A delta fibers produced EPSPs with a central latency of about 1 ms, suggesting activation of a disynaptic segmental pathway with one interposed interneuron. Stimulation of the sural nerve with strengths sufficient to activate cutaneous C fibers produced slow negative cord dorsum potentials with long latencies. It is proposed that primate motoneurons, which show characteristic postsynaptic potentials evoked by cutaneous A delta and C fiber volleys, may provide a suitable model for analyzing the role of high threshold cutaneous afferent fibers not only in the flexor withdrawal reflex but also in motor control functions.  相似文献   

7.
Interneuronal convergence of corticospinal and segmental pathways involved with the generation of extensor activities during locomotion was investigated in decerebrate and partially spinalized cats. L-dihydroxyphenylalanine (L-DOPA) was slowly injected until long-latency, long-lasting discharges could be evoked by the stimulation of contralateral flexor reflex afferents (coFRA) and the group I autogenetic inhibition was reversed to polysynaptic excitation in extensor motoneurons. Under these conditions, we stimulated in alternation the contralateral pyramidal tract (PT), group I afferents from knee and ankle extensor muscles, and both stimuli together. We did the same for the stimulation of PT and of coFRA. Clear polysynaptic EPSPs could be evoked from all three sources in 32 extensor motoneurons. Convergence was inferred from spatial facilitation, which occurred when the amplitude of the EPSPs evoked by the combined stimuli was notably larger than the algebraic sum of the EPSPs evoked by individual stimulation. Spatial facilitation was found between PT and extensor group I inputs in 30/59 tests (51%) in 20 motoneurons and in all cases (6/6) between PT and coFRA in six motoneurons. When fictive locomotion was induced with further injection of L-DOPA, PT descending volleys from the same stimulating site could reset the stepping rhythm by initiating bursts of activity in all extensors. These results indicate that at least some of the corticospinal fibers project onto interneurons shared by the coFRA and the polysynaptic excitatory group I pathways to extensors. The implications of such convergence patterns on the organization of the extensor "half-center" for locomotion are discussed.  相似文献   

8.
Summary Field and intracellular potentials were recorded in the lumbar spinal cord of the frog following stimulation of the anterior branch of the vestibular nerve and vestibular nucleus. The field potential recorded in the motoneuron pool after VIIIth nerve stimulation consisted of two presynaptic positive-negative potentials (latencies 1.7 and 2.6 msec) followed by a slow negative wave. The latency of the first presynaptic field potential was only 0.6 msec longer than the presynaptic field potential evoked by stimulation of the vestibular nucleus; it is suggested that electrotonic coupling in the vestibular nuclei is responsible for the fast vestibulospinal transmission.Whereas VIIIth nerve stimulation produced EPSPs in both flexor (peroneal) and extensor (tibial) motoneurons, IPSPs were found only in extensor motoneurons. The functional implication of these findings was discussed. Comparison of PSP latencies with the extracellular presynaptic field potentials generated by VIIIth nerve or nucleus stimulation indicated that EPSPs were produced by the excitatory action of vestibulospinal axons on motoneurons. The longer latencies of the vestibular induced IPSPs suggested that they were generated indirectly by inhibitory spinal interneurons. Preliminary experiments on the interaction of segmental and vestibular induced PSPs suggest that the latter are generated close to the soma of motoneurons.  相似文献   

9.
Summary Distribution of heteronymous Ia facilitation and of heteronymous recurrent inhibition in motoneurones innervating the anterior part of the deltoid muscle were investigated in normal human subjects following electrical stimulation of the nerves innervating the main muscles of the upper limb. Activation of group I afferents originating from deltoid, biceps, triceps and extensor carpi radialis (ECR) muscles resulted in an early increase in firing probability of voluntarily activated motor units belonging to the anterior part of the deltoid muscle whereas activation of motor axons supplying deltoid, triceps, ECR and flexor carpi radialis (FCR) muscles resulted in an early and long-lasting decrease in firing probability. No effect was seen following activation of group I afferents and motor axons contained in the ulnar nerve. The characteristics of the early facilitation suggest that it is at least partly due to heteronymous Ia monosynaptic connections while these of the long-lasting inhibition suggest that it is at least partly due to heteronymous recurrent inhibition. Their patterns of distribution are discussed with regards to the functional role of the human deltoid.  相似文献   

10.
The locus coeruleus's (LC's) effect on recurrent inhibition of gastrocnemius-soleus (GS) and common peroneal (CP) monosynaptic reflexes (MSRs) was demonstrated to exceed the concomitant facilitation, indicating the independency of LC's disinhibition and facilitation measures in this study. In contrast, the disinhibition effect correlated closely with the recurrently inhibited MSRs. The disinhibition phenomenon was also accompanied by progressive delay and diminution in the Renshaw cell field potential. Hence, the recovery of recurrently inhibited MSRs was probably due, in part at least, to the LC's inhibition of the related Renshaw cell activity. Furthermore, the site-specific, discordant changes in the disinhibition of GS, compared with CP MSRs, as revealed by tracking studies imply that representations of these antagonistic motonuclei may occupy different LC loci. Accordingly, the nonuniform disinhibition may be due to the activation of discrete aggregates of LC neurons which are responsible predominantly in controlling the recurrent inhibitory pathway belonging to one or the other of the antagonistic motonuclei. These findings support a differential LC inhibitory control of Renshaw cell activity, releasing the related motoneurons for the Ia synaptic transmission — a disinhibitory process that is crucial for the LC's independent control of the recurrent circuit of antagonistics extensor and flexor motoneurons.  相似文献   

11.
1. Intracellular responses in neck and forelimb motoneurons to electrical stimulation of the vestibular nerve, the optic tectum, and the optic nerve were studied in frog. 2. Stimulation of the anterior branch of the vestibular nerve typically produced EPSPs, bilaterally, in neck, shoulder (DOR), and forelimb extensor (TRI, RAD) motoneurons, and bilateral IPSPs in forelimb adductor (PED) and flexor (ULN, COR) motoneurons. 3. Latencies of PSPs recorded in neck, shoulder, and proximal extensor motoneurons (TRI) were mostly in the disynaptic range, whereas many of those recorded in distal extensor (RAD) and in adductor and flexor motoneurons involved three synapses. 4. Lesion of the vestibulospinal fibers greatly reduced the vestibular nerve-evoked field potentials in the spinal cord and the occurrence of PSPs in forelimb motoneurons. These results as well as the latency measurements suggest that the pathway linking vestibular nerve and forelimb motoneurons mainly consists of vestibulospinal fibers, though involvement of other structures for production of later PSPs could not be completely ruled out. Hemisection of the brain stem at its most caudal level showed that the pathway to the contralateral motoneurons crosses at the level of brain stem as well as in the spinal cord. 5. Stimulation of the optic tectum produced EPSPs, IPSPs, and a mixture of EPSPs and IPSPs in neck, shoulder, and forelimb motoneurons, bilaterally. Most frequently, a combination of an excitation and inhibition was observed. The pathway from the optic tectum to neck and limb motoneurons is at least dysnaptic in nature. 6. Stimulation of the optic nerve produced IPSPs and a mixture of EPSPs and IPSPs in neck and forelimb motoneurons. Impulses originating from the optic nerve descend as far as to lumbar motoneurons producing EPSP-IPSP sequences bilaterally. 7. Interaction studies suggested that the vestibular and optic pathways to neck and forelimb motoneurons are separate from each other so that the site of integration of vestibular and visual input occurs at the level of motoneurons. 8. Evidence for electronic coupling among forelimb motoneurons and electrical synaptic transmission in th pathway linking vestibular nerve and forelimb motoneurons is presented.  相似文献   

12.
An obstacle contacting the dorsal surface of a cat's hind foot during the swing phase of locomotion evokes a reflex (the stumbling corrective reaction) that lifts the foot and extends the ankle to avoid falling. We show that the same sequence of ipsilateral hindlimb motoneuron activity can be evoked in decerebrate cats during fictive locomotion. As recorded in the peripheral nerves, twice threshold intensity stimulation of the cutaneous superficial peroneal (SP) nerve during the flexion phase produced a very brief excitation of ankle flexors (e.g., tibialis anterior and peroneus longus) that was followed by an inhibition for the duration of the stimulus train (10-25 shocks, 200 Hz). Extensor digitorum longus was always, and hip flexor (sartorius) activity was sometimes, inhibited during SP stimulation. At the same time, knee flexor and the normally quiescent ankle extensor motoneurons were recruited (mean latencies 4 and 16 ms) with SP stimulation during fictive stumbling correction. After the stimulus train, ankle extensor activity fell silent, and there was an excitation of hip, knee, and ankle flexors. The ongoing flexion phase was often prolonged. Hip extensors were also recruited in some fictive stumbling trials. Only the SP nerve was effective in evoking stumbling correction. Delivered during extension, SP stimulus trains increased ongoing extensor motoneuron activity as well as increasing ipsilateral hip, knee, and ankle hindlimb flexor activity in the subsequent step cycle. The fictive stumbling corrective reflex seems functionally similar to that evoked in intact, awake animals and involves a fixed pattern of short-latency reflexes as well as actions evoked through the lumbar circuitry responsible for the generation of rhythmic alternating locomotion.  相似文献   

13.
During locomotion, contacting an obstacle generates a coordinated response involving flexion of the stimulated leg and activation of extensors contralaterally to ensure adequate support and forward progression. Activation of motoneurons innervating contralateral muscles (i.e., crossed extensor reflex) has always been described as an excitation, but the present paper shows that excitatory responses during locomotion are almost always preceded by a short period of inhibition. Data from seven cats chronically implanted with bipolar electrodes to record electromyography (EMG) of several hindlimb muscles bilaterally were used. A stimulating cuff electrode placed around the left tibial and left superficial peroneal nerves at the level of the ankle in five and two cats, respectively, evoked cutaneous reflexes during locomotion. During locomotion, short-latency ( approximately 13 ms) inhibitory responses were frequently observed in extensors of the right leg (i.e., contralateral to the stimulation), such as gluteus medius and triceps surae muscles, which were followed by excitatory responses ( approximately 25 ms). Burst durations of the left sartorius (Srt), a hip flexor, and ankle extensors of the right leg increased concomitantly in the mid- to late-flexion phases of locomotion with nerve stimulation. Moreover, the onset and offset of Srt and ankle extensor bursts bilaterally were altered in specific phases of the step cycle. Short-latency crossed inhibition in ankle extensors appears to be an integral component of cutaneous reflex pathways in intact cats during locomotion, which could be important in synchronizing EMG bursts in muscles of both legs.  相似文献   

14.
1. Recurrent collaterals of motoneurons innervating muscles that have a role in control of the hindlimb digits were studied with neuroanatomic tracing methods to determine whether these motoneurons have simple recurrent collateral arbors in comparison with those of hip, knee, and ankle muscles. 2. Motoneurons innervating the hindlimb muscles plantaris (Pln), flexor hallucis longus (FHL), or flexor digitorum longus (FDL) were injected with 10% horseradish peroxidase. Recurrent collaterals were reconstructed from serial transverse sections. 3. No recurrent collaterals were observed in a sample of 10 FDL motoneurons. 4. FHL motoneurons had simple recurrent collateral arbors as assessed by number of first-order collaterals, number of collateral swellings, number of end branches, and the highest-order branch of individual collateral trees. Recurrent collateral arbors of Pln motoneurons were more complex than those of FHL motoneurons. Pln and FHL recurrent collateral arbors were less complex than those described for gastrocnemius-soleus, anterior tibial, and posterior biceps motoneurons. 5. These anatomic findings correspond well with electrophysiological results indicating that the recurrent inhibition produced by FHL motoneurons is weak and that FDL motoneurons do not produce recurrent inhibition. In addition, Pln motoneurons are reported to produce stronger recurrent inhibition than FHL motoneurons in many motor pools. 6. Consideration of these results with respect to the mechanical actions and patterns of motor activity observed in FDL, FHL, and Pln suggests that the complexity of recurrent collaterals of a motoneuron pool and the extent of its contribution to recurrent inhibition diminish with its involvement in the individualized control of the digits.  相似文献   

15.
The action of volleys in contralateral primary afferents on transmission in the la inhibitory pathways to motoneurones was investigated with intracellular recording from motoneurones. Ia IPSPs in flexor as well as most extensor motoneurones were regularly facilitated by volleys in contralateral high threshold muscle, cutaneous and joint afferents in spinal cats under chloralose anaesthesia. In decerebrate cats with a low pontine lesion transmission in la inhibitory pathways was not facilitated but rather depressed by volleys in these afferents. The recurrent effects from motor axon collaterals were investigated on inhibitory transmission from different contralateral afferents to motoneurones. Previous investigations have shown that the interneurones mediating the reciprocal la inhibition receive recurrent inhibition via motor axon collaterals and Renshaw cells. Now a strong positive correlation was revealed between recurrent depression of IPSPs evoked from different contralateral afferents and facilitation of la IPSPs by the same afferent volleys. These results suggest that the recurrent depression of IPSPs from different contralateral primary afferents depends on their excitatory convergence onto the la inhibitory interneurones, which then partly mediate the IPSP evoked in the motoneurone from these afferents.  相似文献   

16.
The action of volleys in contralateral primary afferents on transmission in the Ia inhibitory pathways to motoneurones was investigated with intracellular recording from motoneurones. Ia IPSPs in flexor as well as most extensor motoneurones were regularly facilitated by volleys in contralateral high threshold muscle, cutaneous and joint afferents in spinal cats under chloralose anaesthesia. In decerebrate cats with a low pontine lesion transmission in Ia inhibitory pathways was not facilitated but rather depressed by volleys in these afferents. The recurrent effects from motor axon collaterals were investigated on inhibitory transmission from different contralateral afferents to motoneurones. Previous investigations have shown that the interneurones mediating the reciprocal Ia inhibition receive recurrent inhibition via motor axon collaterals and Renshaw cells. Now a strong positive correlation was revealed between recurrent depression of IPSPs evoked from different contralateral afferents and facilitation of Ia IPSPs by the same afferent volleys. These results suggest that the recurrent depression of IPSPs from different contralateral primary afferents depends on their excitatory convergence onto the Ia inhibitory interneurones, which then partly mediate the IPSP evoked in the motoneurone from these afferents.  相似文献   

17.
Reflex pathways from group II muscle afferents   总被引:11,自引:0,他引:11  
The interneuronally mediated reflex actions evoked by electrical stimulation of group II muscle afferents in low spinal cats have been reinvestigated with intracellular recording with motoneurones to knee flexors and ankle extensors. The results of Eccles and Lundberg (1959) have been confirmed and extended. There was wide convergence from flexors and extensors of group II excitation to flexor and group II inhibition to extensor motoneurones. Some quantitative differences in the effect from the different nerves are described. Latency measurements suggest that the minimal linkage is disynaptic in the excitatory interneuronal pathways and trisynaptic in the inhibitory pathways. Disynaptic group II EPSPs were found in 14% of the ankle extensor motoneurones but were much more common in unanaesthetized high spinal cats (Wilson and Kato 1965). From these results and corresponding ones on flexors (Holmqvist and Lundberg 1961) it is postulated that secondary afferents in addition to the weak monosynaptic connexions (Kirkwood and Sears 1975) have disynaptic excitatory pathways and trisynaptic inhibitory pathways to both flexor and extensor motoneurones. It is proposed that the group II actions of the flexor reflex pattern characterizing the anaesthetized low spinal cat are due to suppression of the inhibitory pathway to flexor motoneurones and the excitatory pathway to extensor motoneurones. In some ankle extensor motoneurones the disynaptic group II EPSPs occurred in combination with IPSPs from the FRA (including group II and III muscle afferents). The possibility is considered that these group II EPSPs are mediated by an interneuronal group II pathway with little or no input from group III muscle afferents but probably from extramuscular receptors. In other ankle extensor motoneurones group II EPSPs were combined with EPSPs from group III muscle afferents, cutaneous afferents and joint afferents. It is postulated that these group II EPSPs are mediated by an interneuronal pathway from the FRA which also supply interneuronal pathways giving inhibition to extensor or/and flexor motoneurones and excitation to flexors as postulated by Eccles and Lundberg (1959) and Holmqvist and Lundberg (1961).  相似文献   

18.
1. The effects of stimulating forelimb afferents on various ipsilateral motoneurones of the hind limb have been compared with those of volleys set up in the contralateral pericruciate cortex in cats anaesthetized with chloralose. 2. With intact neuraxis, brachial plexus volleys evoke discharge of flexor and extensor motoneurones; short cortical tetani also elicit discharge mainly of flexor motoneurons. After a pyramid-sparing brainstem lesion, little or no firing is evoked by either input. 3. Monosynaptic reflex testing and intracellular recording reveal subthreshold actions on hind-limb motoneurones, inhibition of FDHL and later facilitation of extensors and flexors by forelimb volleys, facilitation of flexors and extensors together with inconstant inhibition of the latter, by cortical stimulation. 4. Interruption of medullary extrapyramidal paths greatly reduces intensity and duration of facilitation from the forelimb, and largely removes cortically evoked extensor facilitation. Inhibition of FDHL from forelimb and cortex is unchanged; cortical volleys continue to facilitate flexors, and have mainly inhibitory action on extensors in these 'pyramidal' preparations. 5. Hyperpolarization of FDHL motoneurones occurs in response to forelimb and cortical volleys, of time course corresponding to depression of test reflexes. Spinal pathways responsible for the two inhibitory actions are independent, and unless each is very strong, their separate actions summate when elicited together. 6. Receptive field for FDHL inhibition from the forelimb is located distally in the forepaw, and its receptors are largely served by cutaneous fibres of low threshold; some Group II fibres in distal muscle nerves also contribute. Receptive field for facilitation embraces the whole limb, and the executant afferent fibres are of higher threshold. 7. Natural stimulation of the forelimb can evoke the long spinal actions, vibration or light pressure on the forepaw eliciting FDHL inhibition, and strong pinching evoking the more general facilitation. Possible functional roles of these actions in the intact animal are discussed.  相似文献   

19.
Summary The pattern of projections of low threshold afferents from triceps and biceps brachii muscles onto motoneurones innervating muscles acting at the wrist was assessed by a reflex and a poststimulus time histogram (psth) technique. Activation of low-threshold afferents originating from elbow flexors or extensors resulted in an early, short-lasting inhibition of wrist flexor motoneurones (flexor carpi radialis, flexor carpi ulnaris). An inhibition was also found in the extensor carpi radialis (ECR) motoneurones after stimulation of low-threshold afferents from triceps. Evidence is presented that Ia fibres contribute to these effects. The inhibitory effects were found in all subjects, but they were constant in only 57% of the reflex experimental sessions and in 25% of the explored motor units. Stimulation of biceps low-threshold afferents was always ineffective on ECR motoneurones. No early facilitation was ever seen in motor nuclei innervating wrist muscles following stimulation of low threshold afferents from biceps and triceps. The pattern of transjoint projections of group I afferents from proximal to distal muscles and from distal to proximal ones (Cavallari and Katz 1989) is discussed in relation to that described in the cat forelimb.  相似文献   

20.
A previous study has demonstrated that the soleus H reflex is facilitated in association with voluntary teeth clenching in proportion with biting force in humans. The present study tried to elucidate the functional significance of this facilitation of the soleus H reflex, by examining 1) whether the facilitation of the H reflex is reciprocal or nonreciprocal between the ankle extensors and flexors and 2) whether the reciprocal Ia inhibition of crural muscles is facilitated or depressed in association with voluntary teeth clenching. The H reflex of the pretibial muscles was evoked by stimulation of the common peroneal nerve in seven healthy subjects with no oral dysfunction. The pretibial H reflex was facilitated in association with voluntary teeth clenching in a force-dependent manner. The facilitation started preceding the onset of electromyographic activity of the masseter muscle. Stimulation of the common peroneal nerve at low intensities subthreshold for evoking the M wave of the pretibial muscles inhibited the soleus H reflex after a short latency corresponding with a disynaptic inhibition, indicating that the reciprocal Ia inhibition was depressed in association with voluntary teeth clenching. Thus, the present study has shown that voluntary teeth clenching evokes a nonreciprocal facilitation of ankle extensor and flexor muscles and attenuated reciprocal Ia inhibition from the pretibial muscles to the soleus muscle. It is concluded that voluntary teeth clenching contributes to improve stability of stance rather than smoothness of movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号