首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liang L  Jiang J  Frank SJ 《Endocrinology》2000,141(9):3328-3336
Interaction of GH with the cell-surface GH receptor (GHR) causes activation of the GHR-associated tyrosine kinase, JAK2, and consequent triggering of signaling cascades including the STAT, Ras/Raf/MEK1/MAP kinase, and insulin receptor substrate-1(IRS-1)/PI3kinase pathways. We previously showed that IRS- and GHR-deficient 32D cells that stably express the rabbit GHR and rat IRS-1 (32D-rbGHR-IRS-1) exhibited markedly enhanced GH-induced proliferation and MAP kinase (ERK1 and ERK2) activation compared with cells expressing only the GHR (32D-rbGHR). We now examine biochemical mechanism(s) by which IRS-1 augments GH-induced MAP kinase activation. Time-course experiments revealed a similarly transient (maximal at 15 min) GH-induced ERK1 and ERK2 activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells, but, consistent with our prior findings, substantially greater activation was seen in the IRS-1-containing cells. In both cells, GH-induced MAP kinase activation was markedly blunted by the MEK1 inhibitor, PD98059, but not by the PKC inhibitor, GF109203X. Interestingly, pretreatment with the PI3K inhibitor, wortmannin (EC50 approximately 10 nM), significantly reduced GH-induced MAP kinase activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells. This same pattern in both cells of IRS-1-dependent augmentation and IRS-1-independent wortmannin sensitivity was also observed for GH-induced activation of Akt and MEK1 (using state-specific antibody blotting for both), despite the lack of difference in GHR, JAK2, SHP-2, p85, Akt, Ras, Raf-1, MEK1, ERK1, or ERK2 abundance between the two cells. A different PI3K inhibitor, LY294002 (50 microM), substantially inhibited (roughly 72%) GH-induced MAP kinase activation in 32D-rbGHR-IRS-1 cells, but only marginally (and statistically insignificantly) inhibited GH-induced MAP kinase activation in 32D-rbGHR cells. Because GH-induced Akt activation was completely inhibited in both cells by the same concentration of LY294002, these findings indicate that the wortmannin sensitivity of both the IRS-1-independent and -dependent GH-induced MAP kinase activation may reflect the activity of another wortmannin-sensitive target(s) in addition to PI3K in mediation of GH-induced MAP kinase activation in these cells. Notably, GH-induced STAT5 tyrosine phosphorylation, unlike Akt or MAPK activation, did not differ between the cells. Finally, while GH promoted accumulation of activated Ras in both cells, both basal and GH-induced activated Ras levels were greater in cells expressing IRS-1 than in 32D-rbGHR cells. These data indicate that while GH induces tyrosine phosphorylation of STAT5 and activation of the Ras/Raf/MEK1/MAPK and PI3K pathways, IRS-1 expression augments the latter two more than the former.  相似文献   

2.
In this paper the signal transduction pathways evoked by bradykinin (BK) in MCF-7 breast cancer cells were investigated. BK activation of the B(2) receptor provoked: (a) the phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2); (b) the translocation from the cytosol to the membrane of the conventional protein kinase C-alpha (PKC-alpha) and novel PKC-delta and PKC-epsilon; (c) the phosphorylation of protein kinase B (PKB/ Akt); (d) the proliferation of MCF-7 cells. The BK-induced ERK1/2 phosphorylation was completely blocked by PD98059 (an inhibitor of the mitogen-activated protein kinase kinase (MAPKK or MEK)) and by LY294002 (an inhibitor of phosphoinositide 3-kinase (PI3K)), and was reduced by GF109203X (an inhibitor of both novel and conventional PKCs); G?6976, a conventional PKCs inhibitor, did not have any effect. The BK-induced phosphorylation of PKB/Akt was blocked by LY294002 but not by PD98059. Furthermore, LY294002 inhibited the BK-provoked translocation of PKC-delta and PKC-epsilon suggesting that PI3K may be upstream to PKCs. Finally, the proliferative effects of BK were blocked by PD98059, GF109203X and LY294002. These observations demonstrate that BK acts as a proliferative agent in MCF-7 cells activating intracellular pathways involving novel PKC-delta/-epsilon, PKB/Akt and ERK1/2.  相似文献   

3.
Collagen activates platelets through a tyrosine kinase-dependent pathway, involving phospholipase Cgamma2. Functional responses such as aggregation and secretion induced by collagen are potentiated by preincubation with thrombopoietin (TPO). In this study, we show that collagen and thrombopoietin activate the phosphatidylinositol 3-kinase (PI 3-kinase) pathway and that this contributes to their respective actions. The structurally distinct inhibitors of PI 3-kinase, wortmannin, and LY294002, completely inhibit formation of phosphatidylinositol 3,4,5-trisphosphate by collagen. This leads to a substantial reduction in the formation of inositol phosphates and phosphatidic acid, 2 indices of PLC activity, and the consequent inhibition of intracellular Ca(++) [Ca(++)](i), aggregation and secretion. Potentiation of the collagen response by TPO is prevented in the presence of wortmannin and LY294002. However, when the 2 PI 3-kinase inhibitors are given after the addition of TPO but before the collagen, recovery of potentiation is observed. This suggests that potentiation is mediated through activation of PI 3-kinase. TPO stimulates aggregation of platelets from a low percentage of donors and this is also blocked by wortmannin. These results suggest that the PI 3-kinase pathway plays an important role in signaling by collagen and in the priming action of TPO.  相似文献   

4.
Summary Isolated skeletal muscle from healthy individuals was used to evaluate the role of phosphoinositide 3-kinase (PI 3-kinase) in insulin signalling pathways regulating mitogen activated protein kinase (MAP-kinase) and protein kinase-B and to investigate whether MAP-kinase was involved in signalling pathways regulating glucose metabolism. Insulin stimulated glycogen synthase activity ( ≈ 1.7 fold), increased 3-o-methylglucose transport into human skeletal muscle strips ( ≈ 2 fold) and stimulated phosphorylation of the p42 ERK-2 isoform of MAP-kinase. This phosphorylation of p42 ERK2 was not blocked by the PI 3-kinase inhibitors LY294002 and wortmannin although it was blocked by the MAP-kinase kinase (MEK) inhibitor PD 98059. However, PD98059 (up to 20 μmol/l) did not block insulin activation of glycogen synthase or stimulation of 3-o-methylglucose transport. Wortmannin and LY294002 did block insulin stimulation of protein kinase-B (PKB) phosphorylation and stimulation of 3-o-methylglucose transport was inhibited by wortmannin (IC50≈ 100 nmol/l). These results indicate that MAP-kinase is activated by insulin in human skeletal muscle by a PI 3-kinase independent pathway. Furthermore this activation is not necessary for insulin stimulation of glucose transport or activation of glycogen synthase in this tissue. [Diabetologia (1997) 40: 1172–1177]  相似文献   

5.
Adipocyte number, a determinant of adipose tissue mass, reflects the balance between the rates of proliferation/differentiation vs. apoptosis of preadipocytes. The percentage of 3T3-L1 preadipocytes undergoing cell death following serum deprivation was reduced by 10 nM insulin-like growth factor (IGF)-1 (from 50.0 +/- 0.7% for control starved cells to 27.5 +/- 3.1%). TUNEL staining confirmed the apoptotic nature of the cell death. The protective effect of IGF-1 was blocked by phosphoinositide 3-kinase (PI3K) inhibitors, wortmannin, and LY294002, but was unaffected by rapamycin, PD98059, or SB203580, which inhibit mammalian target of rapamycin (mTOR), ERK kinase (MEK1), and p38 MAPK respectively. Exogenous PI(3,4,5)P3 (10 microM), the principal product of IGF-1-stimulated PI3K in 3T3-L1 preadipocytes, had a modest survival effect on its own, reducing cell death from 47.9 +/- 3.4% to 35.6 +/- 3.5%. When added to the combination of IGF-1 and LY294002, PI(3,4,5)P3 reversed most of the inhibitory effect of LY294002 on IGF-1-dependent cell survival, protein kinase B/Akt phosphorylation, and caspase-3 activity. Taken together, these results implicate PI(3,4,5)P3 as a necessary signal for the anti-apoptotic action of IGF-1 on 3T3-L1 preadipocytes.  相似文献   

6.
目的 研究内质网应激介导的磷脂酰肌醇3激酶(PI3K)/Akt和丝裂原活化蛋白激酶(MEK)/胞外信号调节激酶(ERK)途径间的信号交流及其对内质网应激条件下肝癌细胞周期的调控作用.方法 采用PI3K抑制剂LY294002、Akt激活型突变载体myr-Akt和MEK抑制剂U0126分别阻断或激活内质网应激介导的Akt和ERK活化,并利用Western blot和流式细胞技术分析内质网应激条件下PI3K/Akt和MEK/ERK途径间的信号交流及其对肝癌细胞株SMMC-7721、Hep3B和HepG2细胞周期的调控作用.数据处理采用Sperman等级相关分析,P<0.05为差异有统计学意义.结果 阻断PI3K/Akt明显促进内质网应激介导的MEK/ERK活化,而过度激活PI3K/Akt则抑制内质网应激介导的MEK/ERK活化.阻断MEK/ERK对内质网应激介导的PI3K/Akt活化无影响.持续活化的Akt突变载体myr-Akt和MEK抑制剂U0126均明显抑制了内质网应激诱导的压力细胞G0/G1期阻滞.结论 PI3K/Akt和MEK/ERK信号途径在内质网应激肝癌细胞中存在信号交流,该信号交流对细胞周期起重要调控作用.  相似文献   

7.
To elucidate the role of mitogen-activated protein kinases (MAPKs) and Akt kinase in leukemogenesis caused by the breakpoint cluster region (BCR)-Abelson (ABL) tyrosine kinase oncoprotein, we examined the activities of MAPKs and Akt kinase and their roles in the action of STI571, a specific inhibitor of BCR-ABL tyrosine kinase, in chronic myelogenous leukemia (CML) cells. We found that extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase are constitutively active in the chronic phase of CML, blast crisis of CML, and the CML-derived K562 cell line. Both interferon-alpha and STI571 suppressed ERK1/2 activity in K562 cells. In contrast, Akt kinase activity was inhibited only by STI571. K562 cell proliferation was markedly suppressed by LY294002, a specific inhibitor of PI3K/Akt kinase, and STI571 but not by PD98059, a specific inhibitor of MEK1/2. In addition, caspase-3 was activated by treatment of cells with STI571 and LY294002 but not with PD98059. These data indicate that Akt kinase may play a role in the proliferation of CML leukemia cells and the action of STI571. Primary leukemia cells from patients with CML blast crisis did not show inhibition of ERK1/2 or Akt kinase activity and were resistant to caspase-3-associated apoptosis after treatment with STI571. These findings suggest that STI571 does not effectively block signaling molecules downstream of the BCR-ABL tyrosine kinase in some cases of CML blast crisis.  相似文献   

8.
9.
Kumar P  Amin MA  Harlow LA  Polverini PJ  Koch AE 《Blood》2003,101(10):3960-3968
Angiogenesis plays an important role in a variety of pathophysiologic processes, including tumor growth and rheumatoid arthritis. We have previously shown that soluble E-selectin (sE-selectin) is an important angiogenic mediator. However, the mechanism by which sE-selectin mediates angiogenesis is still unknown. In this study, we show that sE-selectin is a potent mediator of human dermal microvascular endothelial cell (HMVEC) chemotaxis, which is predominantly mediated through the Src and the phosphatidylinositiol 3-kinase (PI3K) pathways. Further, sE-selectin induced a 2.2-fold increase in HMVEC tube formation in the Matrigel in vitro assay. HMVECs pretreated with the Src inhibitor (PP2) and the PI3K inhibitor (LY294002) or transfected with Src antisense oligonucleotides or Akt dominant-negative mutants significantly inhibited sE-selectin-mediated HMVEC tube formation. In contrast, HMVECs transfected with an extracellular signal-related kinase 1/2 (ERK1/2) mutant or pretreated with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 failed to show sE-selectin-mediated HMVEC tube formation. Similarly, in the Matrigel-plug in vivo assay, sE-selectin induced a 2.2-fold increase in blood vessel formation, which was significantly inhibited by PP2 and LY294002 but not by PD98059. sE-selectin induced a marked increase in Src, ERK1/2, and PI3K phosphorylation. PI3K and ERK1/2 phosphorylation was significantly inhibited by PP2, thereby suggesting that both of these pathways may be activated via Src kinase. Even though the ERK1/2 pathway was activated by sE-selectin in HMVECs, it seems not to be essential for sE-selectin-mediated angiogenesis. Taken together, our data clearly show that sE-selectin-induced angiogenesis is predominantly mediated through the Src-PI3K pathway.  相似文献   

10.
Growth factors are known to favor both proliferation and survival of hepatocytes. In this work, we investigated the role of 2 main signaling pathways, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK), in these processes. First, evidence was provided that the PI3K cascade as well as the MEK/ERK cascade is a key transduction pathway controlling hepatocyte proliferation, as ascertained by arrest of DNA synthesis in the presence of LY294002, a specific PI3K inhibitor. Inhibition of FRAP/mTOR by rapamycin also abrogated DNA replication and protein synthesis induced by growth factor. We showed that expression of cyclin D1 at messenger RNA (mRNA) and protein levels was regulated by this pathway. We highlighted that 4E-BP1 phosphorylation was not activated by epidermal growth factor (EGF) but was under an insulin-regulation mechanism through a PI3K-FRAP/mTOR activation that could account for the permissive role of insulin on hepatocyte proliferation. No interference between the MEK/ERK pathway and 4E-BP1 phosphorylation was detected, whereas p70S6K phosphorylation induced by EGF was under a U0126-sensitive regulation. Last, we established that the antiapoptotic function of EGF was dependent on MEK, whereas LY294002 and rapamycin had no direct effect on cell survival. Taken together, these data highlight the regulation and the role of 2 pathways that mediate growth-related response by acting onto distinct steps. In conclusion, hepatocyte progression in late G1 phase induced by EGF generates survival signals depending on MEK activation, whereas PI3K and MEK/ERK cascades are both necessary for hepatocyte replication.  相似文献   

11.
Y Imai  D R Clemmons 《Endocrinology》1999,140(9):4228-4235
Insulin-like growth factor-I (IGF-I) is a potent stimulator of vascular smooth muscle cell (SMC) migration, a process that contributes to the accumulation of SMC within atherosclerotic lesions. Our previous studies have shown that IGF-I increases the affinity of the alphaVbeta3 integrin toward ligands and that occupancy of this integrin is indispensable for IGF-I to stimulate cell migration. In this study, the role of phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase (MAPK) pathways in IGF-I induced cell motility and integrin activation was studied using porcine aortic smooth muscle cells (pSMC). Two structurally different inhibitors of PI 3-kinase decreased IGF-I-stimulated pSMC migration in a dose-dependent manner. The IC50 of wortmannin for inhibiting migration was 10 nM, and that of LY294002 was 0.3 microM. These inhibitors also suppressed IGF-I-induced phosphorylation of protein kinase B PKB/Akt at Ser437 using concentrations that also inhibited cell motility. PD98059, an inhibitor of the MAPK pathway, was somewhat less potent than PI 3-kinase inhibitors in blocking cell migration that had been stimulated by IGF-I. When IGF-I increased migration of pSMC 2.1-fold above control, 100 nM wortmannin inhibited this response by 79%, 1 microM LY294002 inhibited it by 58%, and 50 microM PD98059 caused a 34% reduction. In comparison, 100 nM wortmannin inhibited IGF-I stimulated DNA synthesis by 57%, 1 microM LY294002 inhibited it by 59%, whereas 50 microM PD98059 suppressed it completely. Thus, activation of PI 3-kinase plays the major role in IGF-I-stimulated migration and proliferation of pSMC. While the activation of the MAPK pathway seems to be necessary for stimulation of mitogenesis by IGF-I, the contribution of this pathway in IGF-I-induced cell migration is limited in pSMC. Interestingly, neither PI 3-kinase inhibitors nor PD98059 blocked the increase in alphaVbeta3 integrin affinity that followed IGF-I treatment. Therefore, although both the PI 3-kinase and MAPK pathways were used by IGF-I to increase migration of pSMC, alphaVbeta3 integrin activation did not depend on either PI 3-kinase or MAPK activation, suggesting the possible importance of some other signal transduction pathway to account for its full actions on pSMC.  相似文献   

12.
The goal of this study was to elucidate the functional roles of PI3K/AKT and MEK/ERK signaling on the proliferation and apoptosis of STI571-sensitive and -resistant CML cell lines in a co-culture system with human marrow stromal cells (MSCs), mimicking the bone marrow microenvironment. The phosphorylation of AKT and ERK was enhanced by co-culture with MSCs in both STI571-sensitive KBM-5 and STI571-resistant KBM-5/STI cells. In KBM-5 cells, the STI571 and PI3K inhibitor LY294002 combination was effective on apoptosis induction in the MSC co-culture system. In KBM-5/STI cells, treatment with LY294002 or PD98059 alone resulted in massive apoptosis, which was enhanced by co-culture with MSCs. These results provide a rationale for multi-molecular target therapy approaches based on a combination of signal transduction inhibitors with STI571 in CML.  相似文献   

13.
In light of the emerging concept of a protective function of the mitogen-activated protein kinase (MAPK) pathway under stress conditions, we investigated the influence of the anthracycline daunorubicin (DNR) on MAPK signaling and its possible contribution to DNR-induced cytotoxicity. We show that DNR increased phosphorylation of extracellular-regulated kinases (ERKs) and stimulated activities of both Raf-1 and extracellular-regulated kinase 1 (ERK1) within 10 to 30 minutes in U937 cells. ERK1 stimulation was completely blocked by either the mitogen-induced extracellular kinase (MEK) inhibitor PD98059 or the Raf-1 inhibitor 8-bromo-cAMP (cyclic adenosine monophosphate). However, only partial inhibition of Raf-1 and ERK1 stimulation was observed with the antioxidant N-acetylcysteine (N-Ac). Moreover, the xanthogenate compound D609 that inhibits DNR-induced phosphatidylcholine (PC) hydrolysis and subsequent diacylglycerol (DAG) production, as well as wortmannin that blocks phosphoinositide-3 kinase (PI3K) stimulation, only partially inhibited Raf-1 and ERK1 stimulation. We also observed that DNR stimulated protein kinase C zeta (PKCzeta), an atypical PKC isoform, and that both D609 and wortmannin significantly inhibited DNR-triggered PKCzeta activation. Finally, we found that the expression of PKCzeta kinase-defective mutant resulted in the abrogation of DNR-induced ERK phosphorylation. Altogether, these results demonstrate that DNR activates the classical Raf-1/MEK/ERK pathway and that Raf-1 activation is mediated through complex signaling pathways that involve at least 2 contributors: PC-derived DAG and PI3K products that converge toward PKCzeta. Moreover, we show that both Raf-1 and MEK inhibitors, as well as PKCzeta inhibition, sensitized cells to DNR-induced cytotoxicity.  相似文献   

14.

Background

This study was to investigate the effects of human insulin and insulin glargine on proliferation of T24 human bladder cancer cells and the implication of the PI3K/Akt and MEK/ERK1/2 pathways.

Methods

After exposure to insulin or glargine at the indicated concentrations for certain time courses, in the absence or presence of inhibitor for MEK (PD98059) or PI3K (LY294002), T24 cell proliferation was evaluated by CCK-8 assay. Phosphorylation of Akt and ERK1/2 was analyzed by Western blot.

Results

Insulin and glargine similarly induced phosphorylation of Akt and slight increases in T24 cell proliferation at 10-100 IU/L. LY294002 remarkably reduced T24 cell proliferation in all groups. However, in the presence of LY294002, cell growth was still promoted by insulin and glargine relative to LY294002-treated group. Accordingly, LY294002 profoundly reduced protein levels of pAkt, while insulin and glargine increased pAkt in T24 cells pretreated with LY294002 as compared with cells treated with LY294002 alone. PD98059 reduced pERK while enhanced T24 cell proliferation. Insulin and glargine increased pERK at 15, 30, 60 min, not at 24 h.

Conclusions

High dose human insulin and insulin glargine similarly promoted T24 bladder cancer cell proliferation via PI3K-independent activation of Akt.  相似文献   

15.
OBJECTIVE: To examine whether upregulation of urokinase-type plasminogen activator (u-PA), PA inhibitor-1 (PAI-1), and gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] in early knee osteoarthritis (OA) of humans occurs through 3 major mitogen-activated protein kinases (MAPK): extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase signaling pathways, and the phosphatidylinositol 3-kinase (PI3K) signaling pathway. METHODS: Enzyme linked immunosorbent assay and gelatin zymography were used to investigate the effects of ERK 1/2 inhibitor U0126, JNK and p38 inhibitor SB203580, and PI3K inhibitor LY294002 on the secretion of u-PA, PAI-1, MMP-2, and MMP-9 in early osteoarthritic tissue cultures, with or without interleukin 1alpha (IL-1alpha) and lipopolysaccharide (LPS) induction. RESULTS: Our findings were: (1) latent and active forms of MMP-9 secretion in synovial and some meniscal cultures were inhibited significantly by U0126, SB203580, and LY294002; (2) latent and active forms of MMP-2 secretion were also inhibited significantly by U0126 and LY294002, but not by SB203580, except for active MMP-2 in synovial cultures; (3) a similar observation was seen in IL-1alpha- and LPS-treated cultures; and (4) U0126, SB203580, and LY294002 significantly decreased u-PA and PAI-1 levels in all cultures in the presence or absence of IL-1alpha and LPS. CONCLUSION: MAPK ERK, JNK, and p38 signaling pathways and the PI3K signaling pathway are involved in upregulation of u-PA, PAI-1, and gelatinase expression during early development of knee OA. Thus, blocking PA/plasmin and gelatinase expression by novel physiologic and pharmacological inhibitors could be an important therapeutic or preventive approach for early OA.  相似文献   

16.
IGF-I regulates cell growth, differentiation, and survival in many cultured nerve cell lines. The present study was undertaken in the human neuroblastoma cell line, SH-SY5Y, to elucidate whether there are differences in the IGF-dependent signal transduction pathways that stimulate proliferation compared to those that induce differentiation. Quiescent SH-SY5Y cells were treated with IGF-I in the presence or absence of PD98059 (an inhibitor of MEK, a MAP kinase kinase) or LY294002 (an inhibitor of PI 3-kinase). Cell growth was assessed by measuring [3H]thymidine incorporation into DNA and cell number. Cell differentiation was assessed by measuring mRNA levels of NPY and neurite outgrowth. IGF-I both induced cell proliferation and differentiation. It stimulated tyrosine phosphorylation of the type I IGF receptor (IGF-IR) beta-subunit, IRS-I, IRS-2, and Shc, and these changes were associated with activation of Erk and Akt. PD98059 inhibited activation of Erk and LY294002 repressed activation of Akt in response to IGF-I, but did not affect tyrosine phosphorylation of the IGF-IR, IRS-1, IRS-2, or Shc. Each PD98059 and LY294002 inhibited IGF-I-dependent cell proliferation in a concentration-dependent manner. In contrast, each of these inhibitors only partially depressed NPY gene expression induced by IGF-I and slightly inhibited IGF-I-mediated neurite outgrowth; however, when both PD98059 and LY294002 were present, IGF-I-dependent NPY gene expression and neurite outgrowth were abolished completely. These results suggest that in these nerve cells, 1) the IGF-I signals through the MAP kinase pathway and PI-3 kinase pathway are independently essential to induce IGF-I-dependent growth, and 2) alternate activation of the MAP kinase pathway and PI 3-kinase pathway is sufficient for the cells to undergo IGF-I-dependent differentiation.  相似文献   

17.
OBJECTIVE: Phosphatidylinositol 3'-kinase (PI3-kinase) is implicated in cell migration and focal adhesion kinase (FAK) phosphorylation. In contrast, it has been proposed that mitogen-activated protein (MAP) kinases are essential for proliferation but may be dissociated from chemotactic signalling. We investigated the roles of PI3-kinase and p42/p44 MAP kinases in cell migration and FAK tyrosine phosphorylation induced by platelet-derived growth factor-BB (PDGF-BB) in rabbit aortic vascular smooth muscle cells (VSMCs). The roles of PI3-kinase and MAP kinase pathways in the chemotactic response to insulin-like growth factor-I (IGF-I) were also examined. METHODS: The roles of PI3-kinase and p42/p44 MAP kinases were assessed using the PI3-kinase inhibitors, wortmannin and LY294002, and an inhibitor of MAP kinase kinase, PD98059. PI3-kinase activity was measured by phosphatidylinositol phosphorylation in anti-phosphotyrosine immunoprecipitates and by thin layer chromatography of phosphorylated products. Phosphorylation was assessed by immunoprecipitation with anti-phosphotyrosine antibodies and Western blotting with FAK-specific antibody. Migration was evaluated in a chemotaxis chamber using polycarbonate filters with an 8-mm pore size. RESULTS: Neither wortmannin nor LY294002 significantly reduced PDGF-BB stimulation of FAK tyrosine phosphorylation, chemotaxis or immunofluorescent staining of focal adhesions in VSMCs. PD98059, a specific inhibitor of MAP kinase activation, did not inhibit FAK tyrosine phosphorylation but markedly inhibited the migratory response of VSMCs to PDGF-BB. IGF-I also stimulated migration of VSMCs, and, relative to the effect of PDGF-BB, induced smaller increases in PI3-kinase and MAP kinase activities. Both wortmannin and PD98059 partially inhibited the migratory response to IGF-I. CONCLUSIONS: PDGF-BB stimulation of both FAK tyrosine phosphorylation and migration in VSMCs are not dependent on activation of PI3-kinase. While PDGF-BB stimulation of FAK tyrosine phosphorylation is not dependent on p42/p44 MAP kinase activation, PDGF-BB and IGF-I both stimulate p42/p44 MAP kinase activity and the chemotactic response to these factors is partially dependent on MAP kinase activation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号