首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pontospinal noradrenergic neurons located in the A5, A6 (locus coeruleus, LC), and A7 cell groups are the major source of the noradrenergic innervation of the spinal cord. We have recently examined the specific terminations of these three cell groups in the spinal cord and found that the LC provides the major noradrenergic innervation of the ventral horn, while the A7 and A5 cell groups innervate the dorsal horn and intermediate zone, respectively. However, the results of similar experiments from another laboratory have shown that noradrenergic neurons in the locus coeruleus primarily innervate the dorsal horn, while the A5 and A7 innervate the intermediate zone and the ventral horn. These conflicting results may be due to fundamental genetic differences between the rats used in our experiments (Sasco Sprague-Dawley) and those used by the other laboratory (Harlan Sprague-Dawley). This possibility was examined by determining the projections of coeruleospinal neurons in these two rat substrains using the anterograde tracer Phaseolus vulgaris leucoagglutinin. The results indicate that in Sasco rats the LC neurons project through the ipsilateral ventromedial funiculus and terminate almost exclusively in the medial part of laminae VII and VIII, the motoneuron pool of lamina IX, and lamina X. In contrast, LC neurons in Harlan rats project bilaterally through the superficial dorsal horn and the dorsolateral funiculus and terminate most heavily in dorsal horn laminae I-IV. In addition, the LC neurons of Sasco rats innervate cervical spinal cord segments more densely than lumbar spinal cord segments, while in Harlan rats the lumbar spinal cord is more densely innervated than the cervical spinal cord. These results indicate that the projections of coeruleospinal neurons in Sasco rats are fundamentally different from those in Harlan rats and suggest that noradrenergic LC neurons may have different physiological functions in these two rat substrains.  相似文献   

2.
Noradrenergic neurons located in the A5, A7 and locus coeruleus/subcoeruleus (LC/SC) catecholamine cell groups innervate all levels of the spinal cord. However, the specific spinal cord terminations of these neurons have not been clearly delineated. This study determined the spinal cord terminations of the A7 catecholamine cell group using the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) in combination with dopamine-beta-hydroxylase (DBH) immunocytochemistry. In addition, the spinal cord projections of A7 neurons were examined by measuring the reduction in the density of DBH-immunoreactive axons in specific regions of the spinal cord after a unilateral electrolytic lesion of the A7 cell group. The results of these experiments indicate that noradrenergic neurons in the A7 cell group project primarily in the ipsilateral dorsolateral funiculus and terminate most heavily in the dorsal horn (laminae I-IV).  相似文献   

3.
Electrical and chemical stimulation given in the ventral medullary raphe nuclei inhibits spinal nociceptive reflexes and spinal nociceptive transmission; serotoninergic receptors have been demonstrated to partially mediate that inhibition. In the present study, the termination patterns of raphespinal fibers in the rat lumbar spinal cord demonstrating serotonin-like immunoreactivity were examined by using the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) in combination with immunohistochemistry. Fibers and terminations from the ventral medullary raphe nuclei (raphe magnus and raphe pallidus) demonstrating both PHA-L- and serotonin-like immunoreactivity were identified in all laminae of the dorsal horn and the ventral horn. Networks of large fibers, characterized by large boutons, and which did not demonstrate serotonin-like immunoreactivity, were identified in deeper laminae of the dorsal horn. The heterogeneous morphology of raphespinal fibers identified in the dorsal horn suggests that these fibers also may be heterogeneous in neurochemistry and function. Medial medullary sites outside the raphe nuclei were found to innervate the ventral horn and all laminae of the dorsal horn, with the exception of lamina I. Descending fibers and terminations also demonstrating serotonin-like immunoreactivity were identified in deep laminae (III, IV, V, VI) of the dorsal horn and in the ventral horn. Similarly, large fiber networks were identified which did not demonstrate serotonin-like immunoreactivity.  相似文献   

4.
The descending projections of the locus coeruleus (LC) and the nucleus subcoeruleus (SC) to the lumbar spinal cord were examined in rats from two vendors using retrograde transport of fluorescent latex beads. There was a vendor difference observed which agrees with previous findings. The differential dorsal horn and ventral horn projections of the Harlan and the Sasco Sprague-Dawley rats, reported by Fritschy and Grzanna, and Clark and Proudfit were confirmed. In the Harlan rat more cells were labeled in the LC following injections in the dorsal horn. In contrast, in the Sasco rat, more cells were labeled in the LC from injections in the ventral horn. Although, in all studies, the LC in rats from these vendors projected to some extent to both the dorsal and the ventral horn. A difference in labeling was noted also for the depth of placement of the tracer in the dorsal horn. When the site of injection was in the nucleus proprius, a predominately contralateral projection of the LC was noted. In contrast, when horseradish peroxidase (HRP) gel implants were placed to include the superficial laminae, the cells in the LC were labeled predominately ipsilaterally. The SC has a major projection to the dorsal horn in the Harlan rats while cells in the SC were predominately labeled following ventral horn injections in the Sasco rats. These cells send mostly ipsilateral projections to the dorsal and ventral horn of the spinal cord. Double labeled studies confirmed that 91% of LC and 86% of SC neurons projecting to the spinal cord were noradrenergic. The present results confirmed a difference in the descending catecholamine projections of rats purchased from different vendors. These strain differences may prove useful in studies of motor and sensory systems.  相似文献   

5.
A procedure bringing the axonal and dendritic cut ends found in the confronting planes of the serial sections face to face by means of serial photomicrographs provides a means for precisely reconstructing individual Golgiimpregnated neurons. Utilizing this method, it was possible to follow at the caudal level of a kitten's spinal cord the total course of the axons and dendrites of sixteen intramedullary neurons. The neurons located in the dorsal horn (laminae IV and V) send their long ascending axon into the lateral funiculus of the ipsi- or contralateral side, and, in one case, into the anterior funiculus of the ipsilateral side, giving off on the way several collaterals to the dorsal half of lamina VII of the ipsi- or contralateral side. Some of the neurons found in the intermediate region and the ventral horn (laminae VII, VIII and X) distribute their axonal branches in the intermediate region or the ventral horn of the ipsi- or contralateral side or both sides, running throughout their course in the grey matter, while the others act in the same manner by way of the lateral or anterior funiculi. Axonal and collateral endings terminate with small terminal knobs. The total axonal length of the neurons observed, with the exception of some with a long ascending trajectory, varies from 1,680 mum to 6,480 mum.  相似文献   

6.
The distribution of substance P (SP) and vasoactive intestinal polypeptide (VIP) was investigated by immunohistochemistry in the adult chicken spinal cord. By using colchicine treatment, populations of neurons containing either SP or VIP was observed in several regions of the spinal cord. SP neurons were found dorsal to the central canal (CC) and in lamina IV throughout the cord. However, at the thoracic level, numerous relatively larger SP perikarya were located ventral to the CC and aligned on either side of the midline. The distribution of SP fibers is very similar to that reported previously in mammals: they were mostly observed in laminae I and II, in Lissauer's tract, in the dorsolateral funiculus, and dorsal to the CC. In addition, two dense plexuses of SP fibers were noticed in lamina IV. VIP neurons were located mainly in lamina I, in the nucleus of the dorsolateral funiculus, and in the lateral portion of the neck of the dorsal horn throughout the spinal cord. At the thoracic level, many also were located lateral to the CC. Occasionally, single VIP neurons also were encountered dorsal to the CC, in laminae II-IV, and in the intermediate zone. VIP fibers were observed in similar numbers at all spinal levels, occurring mainly in laminae II (probably I) and III, dorsal to the CC, and in the intermediate zone. In addition, examination of the developing chick spinal cords showed similar results as in adult chickens.  相似文献   

7.
The spinal cord is richly innervated by serotoninergic fibres originating from the raphe nuclei. The localization of the terminating component of serotoninergic neurotransmission, the serotonin transporter SERT1, was found in both the dorsal and ventral horns, especially at the level of the cervical and lumbar segments. Within the thoracic region, we observed a heavily labelled bundle in the intermediolateral nucleus of lamina VII. A low density of stained fibres was encountered in the sacral spinal cord. In contrast to homogeneous staining of motor nuclei, a differential labelling of laminae was seen in the dorsal horn, with laminae I, III and IV exhibiting a higher density of immunopositive terminals than the medial part of lamina II. High magnification revealed a preferential accumulation of serotonin transporter staining within nerve endings and varicosities of thin fibres. Double immunofluorescence staining demonstrated a co-localization of serotonin and its uptake system within these varicosities. These results show that the serotonin transporter is highly expressed in the rat spinal cord and that its distribution parallels the serotoninergic innervation. They also reinforce the view that varicosities are important neuronal structures, which modulate the function of dorsal and ventral horn neurons by releasing serotonin.  相似文献   

8.
Projections to the spinal cord from medullary somatosensory relay nuclei.   总被引:2,自引:0,他引:2  
Descending projections to the spinal card from the dorsal column nuclei were studied in the cat, rat and monkey with the retrograde horseradish peroxidase (HRP) technique, and in the cat with the autoradiographic anterograde axonal transport technique. Retrogradely labeled neurons were seen in the dorsal column nuclei after HRP injections at all levels of the spinal cord and additionally in the magnocellular division of the spinal caudalis nucleus of the trigeminal nerve after injections into cervical spinal segments in all three species. HRP-positive neurons were predominantly located along the middle of the rostro-caudal axis of the dorsal column nuclei and amongst the fusiform, triangular and polygonal cells that surround, especially ventrally, the cell nest zone containing thalamic relay neurons. The labeled neurons are densely concentrated in those portions of the dorsal column nuclei where most corticofugal and non-primary afferent projections terminate and where the terminal distribution of primary afferent fibers is overlapping and diffuse. Previous studies have shown that most neurons in this middle and ventral region do not project to the thalamus or cerebellum. The majority of the cells in the dorsal column nuclei with descending axons or axon collaterals project by way of the ipsilateral dorsal columns, but some fibers project into the dorsolateral funiculus; the descending trigeminal fibers course in the dorsolateral funiculus. The terminal fields for these fibers in the cervical spinal cord include the lateral cervical nucleus, laminae IV and V, and possibly lamina I. These results indicate that the dorsal column nuclei may contribute to a feedback mechanism regulating the flow of sensory information ascending along other somatosensory spinal pathways.  相似文献   

9.
The morphology of midlumbar interneurones with peripheral input from group II muscle afferents was analysed after intracellular injection of horseradish peroxidase (HRP). Twenty-three interneurones were stained intrasomatically and five others intra-axonally. The majority (10 of 13) of interneurones located in lamina VII (intermediate zone and ventral horn interneurones) were found to project ipsilaterally. They had medium-sized somata and dendrites projecting radially over a distance of more than 1 mm. All of these neurones had axons that projected caudally within the ventral part of the lateral funiculus or in the lateral part of the ventral funiculus, although four had in addition an ascending secondary axonal branch. Numerous axon collaterals were given off from these axons, both before and after they left the grey matter. The collaterals arborized within laminae VII, VIII, and IX, where they covered the area of several motor nuclei. Intra-axonal labelling of five neurones with similar input and axon trajectories revealed several axon collaterals given off between the cell body and the terminal projection areas in L7 or S1 segments. Only three of the labelled interneurones located in lamina VII and displaying the same kind of input had axons with different destinations; their axons crossed to the opposite side of the spinal cord and ascended within the contralateral ventral funiculus. These were large neurones with extensive dendritic trees, which had fairly thick axons with initial axon collaterals that branched primarily ipsilaterally (within laminae V-VIII). Interneurones located in lamina V and in the bordering parts of laminae IV and VI (dorsal horn interneurones; n = 10) constituted a very nonhomogenous population. They projected either ipsilaterally or contralaterally and had either ascending or descending axons running in either the lateral or ventral funiculi. Generally, dorsal horn interneurones had cell bodies smaller than those of intermediate zone and ventral horn interneurones, and their dendrites extended less extensively and less uniformly around the soma. Their initial axon collaterals branched primarily in the dorsal horn, or in lamina VII, but not in or close to the motor nuclei. Our results support the conclusions of previous physiological studies that the intermediate zone and ventral horn midlumbar interneurones with group II input and that project to motor nuclei have collateral actions on other interneurones in the L4-L6 segments, and that dorsal horn interneurones do not project to motoneurones, but have as their targets other interneurones or ascending cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Enkephalin-like immunoreactivity (ENK-LI) was found throughout the spinal cord of the long-tailed ray Himantura fai. The densest ENK-LI was in the superficial portion of lamina A of the dorsal horn. Lamina B and the deeper parts of lamina A contained radially oriented, labelled fibres. Laminae C, D, and E contained many longitudinally orientated fascicles which were surrounded by a reticulum of transversely orientated, labelled fibres, some of which projected into the ventral and lateral funiculi. Labelled fibres were found in the dorsal commissure and around the central canal, but the later did not cross the midline. One-third of all enkephalinergic cells were found throughout laminae A and B, while two-thirds were located in the medial half of C, D, and E. Occasionally a labelled cell was located in the lateral funiculus. The ventral horn (laminae F and G) contained many enkephalinergic fibres but no labelled nuclei. A few dorsal column axons contained ENK-LI. In the lateral funiculus there were two groups of labelled axons, a superficial, dorsolateral group, and a deeper group, occupying a crescent-shaped region. The ventral funiculus also contained many labelled axons. The central projection of the dorsal root passed through the substantia gelatinosa and divided into rostrally and caudally projecting fascicles within lamina C. The root, and these fascicles, both lacked ENK-LI. In contrast, the fascicles in laminae D and E did contain enkephalinergic fibres. The origin of the various fibre systems and the role of enkephalin in the regulation of sensory processing and motor output are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

11.
In the spinal cord of cat and rhesus monkey the cells of origin of long and short propriospinal fibers and those of the spinal fibers ascending to supraspinal levels were identified by means of retrograde HRP labeling after large unilateral HRP-injections, i.e. in the spinal white and grey matter at different levels, in the pons and in the dorsal column nuclei. The findings indicate the existence of the following arrangement. Long ascending supraspinal fibers arise mainly from neurons in the dorsal grey (laminae I-IV and the medial parts of laminae V and VI) as well as from neurons in the medial part of the ventral grey (lamina VIII), in Clarke's column and in the spinal border cell area. Some neurons in the dorsal grey projects to the dorsal column nuclei, which in turn distribute fibers back to the spinal cord. Long propriospinal fibers mainly derived from neurons in the medial part of the ventral grey (lamina VIII), while short propriospinal fibers are characteristically derived from neurons in the intermediate zone (lateral halves of laminae V and VI and lamina VII). The neurons located laterally in laminae V-VII distribute fibers mainly ipsilaterally, while those located medially in lamina VII distribute them to some degree bilaterally. The findings in cats with transections of either the dorsal or the ventral halves of the spinal white matter (both above and below the injected segment), show that the fibers from the dorsal grey and the lateral parts of laminae V-VII travel mainly through the dorsal half of the white matter, while those from the medial part of lamina VII and from lamina VIII travel mainly through the ventral half.  相似文献   

12.
Presence of an estrogen receptor is crucial for cells to respond to estrogen; thus, estrogen-responsive neurons should be identifiable by immunohistochemically staining for the estrogen receptor (ER). Even though spinal neurons are involved in sexual behaviors and innervation of genital organs, little information is available about ER-containing neurons in the spinal cord. Consequently, we have undertaken a study of ER-containing neurons in the female rat lumbosacral cord, an area involved in reproductive functions and predicted to contain estrogen-responsive neurons. In addition, since parasympathetic preganglionic neurons in the lumbosacral cord produce nitric oxide (NO), we also sought to determine if ER-immunoreactive (-IR) neurons contain the enzymes for NO production. Finally, we compared the distribution of ER-IR neurons to the presence of uterine cervix-related neurons. Uterine cervix-related neurons were identified by expression of FOS-immunoreactivity after vaginocervical mechanostimulation (VCS). The lumbosacral spinal cords were removed from intact, ovariectomized, and VCS-treated rats and sections stained by immunohistochemistry. ER-IR was present in the nuclei of neurons located predominately in the dorsal one-half of the spinal cord. Specific sites include the dorsal horn, lamina V, the sacral parasympathetic nucleus (SPN) (which contains preganglionic parasympathetic neurons) and extending into the lateral funiculus, and lamina X. Some ER-IR neurons were NADPH-d-positive and were localized in laminae V and VII. FOS-IR neurons had a distribution pattern similar to the distribution of neurons containing ER. The presence of ER neurons in these regions suggest that they are responsive to circulating estrogen. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Vestibulospinal neurons in the medial and descending vestibular nuclei have widespread bilateral terminations in the upper cervical spinal cord. These terminations arise from axons travelling in several funiculi, including the ventromedial, ventrolateral, lateral, and dorsolateral funiculi in addition to the dorsal columns. The purpose of the present study was to examine the morphology of single vestibulospinal collaterals which terminate in the upper cervical spinal cord and which originate from axons located in one of these funicular pathways, the ventromedial funiculus, contralateral (cVMF) to their cells of origin in the vestibular nuclei. The 32 collaterals described were selected from two separate sets of experiments which took advantage of different techniques. Nineteen of the collaterals were labelled following Phaseolus vulgaris leucoagglutinin (PHA-L) injections into the medial vestibular nucleus and medial regions of the descending vestibular nucleus. The remaining 13 collaterals originated from physiologically identified vestibulospinal axons that were stained after intra-axonal injections of horseradish peroxidase (HRP). The combined projection of all cVMF axon collaterals spread from laminae V to IX, and included the central cervical nucleus. There was a high degree of variability in the pattern of terminations of individual collaterals. This variability was more pronounced among PHA-L-labelled collaterals than HRP-labelled collaterals whose terminations were restricted to laminae VIII and IX. Some PHA-L-labelled collaterals had terminations which were focused within a single lamina, whereas others had termination zones spanning as many as four laminae. The differences between collaterals were compounded when the characteristics of branching patterns were considered. Some collaterals which occupied similar termination zones had different branching structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The pontine noradrenergic cell groups, A5, A6 (locus coeruleus), and A7, provide the only noradrenergic innervation of the spinal cord, but the individual contribution of each of these populations to the regional innervation of the spinal cord remains controversial. We used an adeno-associated viral (AAV) vector encoding green fluorescent protein under an artificial dopamine beta-hydroxylase (PRSx8) promoter to trace the spinal projections from the A5, A6, and A7 groups. Projections from all three groups travel through the spinal cord in both the lateral and ventral funiculi and in the dorsal surface of the dorsal horn, but A6 axons take predominantly the dorsal and ventral routes, whereas A5 axons take mainly a lateral and A7 axons a ventral route. The A6 group provides the densest innervation at all levels, and includes all parts of the spinal gray matter, but it is particularly dense in the dorsal horn. The A7 group provides the next most dense innervation, again including all parts of the spinal cord, but is it denser in the ventral horn. The A5 group supplies only sparse innervation to the dorsal and ventral horns and to the cervical and lumbosacral levels, but provides the densest innervation to the thoracic intermediolateral cell column, and in particular to the sympathetic preganglionic neurons. Thus, the pontine noradrenergic cell groups project in a roughly topographic and complementary fashion onto the spinal cord. The pattern of spinal projections observed suggests that the locus coeruleus might have the greatest effect on somatosensory transmission, the A7 group on motor function, and the A5 group on sympathetic function.  相似文献   

15.
The distribution of two calcium-binding proteins, parvalbumin (PV) and calbindin-D 28K (CaBP), was studied by the peroxidase-anti-peroxidase immunohistochemical method at the light and electron microscopic level in the rat spinal cord and dorsal root ganglia. The possible coexistence of these two proteins was also investigated. PV-positive neurons were revealed in all layers of the spinal cord, except lamina I, which was devoid of labelling. Most of the PV-positive cells were found in the inner layer of lamina II, lamina III, internal basilar nucleus, central gray region, and at the dorsomedial and ventromedial aspects of the lateral motor column in the ventral horn. Neuronal processes intensely stained for PV sharply delineated inner lamina II. With the electron microscope most of them appeared to be dendrites, but vesicle containing profiles were also found in a smaller number. CaBP-positive neurons appeared to be dispersed all over the spinal gray matter. The great majority of them were found in laminae I, II, IV; the central gray region; the intermediolateral nucleus; and in the ventral horn just medial to the lateral motor column. Laminae I and II were densely packed with CaBP-positive punctate profiles that proved to be dendrites and axons in the electron microscope. A portion of labelled neurons in lamina IV and on the ventromedial aspect of the lateral motor column in the ventral horn disclosed both PV- and CaBP-immunoreactivity. All of the funiculi of the spinal white matter contained a large number of fibres immunopositive for both PV and CaBP. The highest density of CaBP-positive fibres was found in the dorsolateral funiculus, which was also densely packed with PV-positive fibres. PV-positive fibres were even more numerous in the dorsal part of the dorsal funiculus. The territory of the gracile funiculus in the brachial cord and that of the pyramidal tract in its whole extent were devoid of labelled fibres. In the thoracic cord, the dorsal nucleus of Clarke received a large number of PV-positive fibres. Dorsal root ganglia displayed both PV- and CaBP-immunopositivity. The cell diameter distribution histogram of PV-positive neurons disclosed two peaks--one at 35 microns and the other at 50 microns. CaBP-positive cells in the dorsal root ganglia corresponded to subgroups of small and large neurons with mean diameters of 25 microns and 45 microns, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Calcium/ calmodulin-dependent protein kinase II is a prominent enzyme in the mammalian brain that phosphorylates a variety of substrate proteins. In the present study, monoclonal antibodies that specifically recognize either the α or the β isoforms of this enzyme were used to determine the distribution of these isoforms within the rat and monkey spinal cord. In the rat, the corticospinal tract consists of two components: the dorsal corticospinal tract, which occupies the ventralmost aspect of the dorsal funiculus; and the ventral corticospinal tract, which occupies an area adjacent to the ventral median fissure. Both dorsal and ventral corticospinal tract fibers were strongly immunopositive for the α-antibody. Unilateral ablation of the sensorimotor cortex of the rat eliminated the α-immunoreactive staining in the contralateral dorsal corticospinal tract. The neuropil in the superficial laminae of the dorsal horn (Rexed's laminae I and II) was densely stained with the α-antibody, whereas the neuropil in laminae IV-X was immunonegative. Dense α-immunopositive neurons were also distributed in the head of the dorsal horn (laminae I-IV). In contrast to the strong α-immunoreactivity seen in the dorsal corticospinal tract fibers, only very weak β-immunoreactivity was observed in this tract. Moderate β-immunoreactive products were distributed homogenously throughout the neuropil of the gray matter, although the neuropil of the superficial laminae of the dorsal horn (laminae I and II) was stained more strongly than the other regions of the gray matter (laminae III-X). Neuronal components in all laminae were immunopositive for the β-antibody. Thus, motoneurons in the ventral horn, which were immunonegative for the α-antibody, were immunopositive for the β-antibody. This selective distribution pattern of immunoreactivity of α- and β-antibodies in the rat was also present in the monkey spinal cord, although the α-immunopositive corticospinal tract fibers in the monkey descended in the lateral funiculus as the lateral corticospinal tract instead of passing through the dorsal funiculus, as is the case in the rat. The differential distribution of immunoreactivity in the spinal cord suggests that these two isoforms of calcium/ calmodulin-dependent protein kinase II may have different functional roles in the spinal cord. © Wiley-Liss, Inc.  相似文献   

17.
Spinal projections originating in the dorsolateral pons in the ventral locus coeruleus and in the subcoeruleus and medial parabrachial nuclei were identified in monkeys (Macaco fascicularis) using the retrograde horseradish peroxidase tracing technique. Anterograde autoradiographic tracing studies were then carried out to determine the brain stem and spinal cord terminations of the neurons. Finally, results obtained with the axonal transport tracing methods were compared with the pattern of staining for noradrenergic cells and terminals revealed immunocytochemically with an antibody to dopamine-β-hydroxylase (DβH), the synthesizing enzyme for norepinephrine. The major findings of these studies are that two presumed noradrenergic cell groups of the dorsolateral pons, one corresponding to the nucleus locus coeruleus, the second to the subcoeruleus/medial parabrachial nuclei, give rise to descending project-ions. They differ significantly in their patterns of termination in the lower brain stem and spinal cord. Among the major terminations of the locus coeruleus pathway are projections to parasympathetic neurons of the dorsal motor nucleus of the vagus, the region of the nucleus ambiguus, and the sacral spinal cord. The terminations of the descending subcoeruleus/medial parabrachial pathway, in contrast, include project-ions to sympathetic preganglionic neurons of the intermediolateral cell column of the thoracic cord and heavier projections to somatic cranial nerve nuclei. Both pathways have additional widespread and bilateral terminations in various nuclei of the reticular formation, in the spinal dorsal horn (including the marginal zone), in the region around the central canal and in the ventral spinal gray matter. Since the origins and terminations of both these pathways correspond closely to the locations and patterns of terminations of noradrenaline-containing neurons, demonstrated here with DβH immunocytochemistry, norepinephrine (or epinephrine) is suggested to be the transmitter in both these descending systems.  相似文献   

18.
The distribution and organization of descending spinal projections from the dorsal part of the caudal medulla were studied in the rat following injections of Phaseolus vulgaris leucoagglutinin into small areas of the subnucleus reticularis dorsalis (SRD) and the adjacent cuneate nucleus (Cu). The caudal aspect of the Cu projected only to the dorsal horn of the ipsilateral cervical cord via the dorsal funiculus. These projections were mainly to laminae I, IV, and V. More ventrally located reticular structures projected to the full length of the cord. Fibers originating from the SRD travelled through the ipsilateral dorsolateral funiculus and terminated within the deep dorsal horn and upper layers of the ventral horn, mainly in laminae V–VII. Fibers originating from subnucleus reticularis ventralis (SRV) travelled ipsilaterally through the lateral and ventrolateral funiculi and bilaterally through the ventromedial funiculus. These fibers terminated within the ventral horn. The density of labeling within the gray matter varied at different levels of the cord was as follows: cervical > sacral > thoracic > lumbar. The reciprocal connections between the caudal medulla and the spinal cord suggest that the former is an important link in feedback loops that regulate spinal outflow. © 1995 Wiley-Liss, Inc.  相似文献   

19.
An analysis of vasoactive intestinal polypeptide immunoreactivity (VIP-IR) and substance P-IR in the cat spinal cord has revealed marked differences in the distribution of the two peptides. While substance P-IR was located at all levels of the cord, VIP-IR was most prominent in the sacral segments in Lissauer's tract and lamina I on the lateral edge of the dorsal horn. VIP-IR was also present in the sacral cord in (1) laminae V, VII, and X, (2) a thin band on the medial side of the dorsal horn, (3) the dorsal commissure, (4) the lateral band of the sacral parasympathetic nucleus, and (5) in a few animals in Onuf's nucleus. In other segments of the spinal cord VIP-IR was much less prominent but was present in Lissauer's tract and laminae I, II, and X. Substance P-IR was more uniformly distributed at all segmental levels in laminae I-III, V, VII, and X and in the dorsal commissure. In ventrolateral lamina I of the sacral spinal cord both VIP-IR and substance P-IR exhibited a distinctive periodic pattern in the rostrocaudal axis. The peptides were associated with bundles of dorsoventrally oriented axons and varicosities spaced at approximately 210-micron intervals center to center along the length of the spinal cord. The bundles in lamina I continued into lamina V where they further divided into smaller bundles that extended medially through laminae V and VII. The most prominent bundles of VIP axons passed ventrally from lateral laminae V and VII to enter lamina X and the ventral part of the dorsal gray commissure. On the other hand the majority of substance P axons in lamina V turned dorsally to join with axons on the medial side of the dorsal horn and to pass into the dorsal part of the dorsal gray commissure. Rostrocaudal VIP axons were present not only in Lissauer's tract but also in dorsolateral lamina I, in the lateral funiculus and in the ependymal cell layer of the central canal. Following unilateral transection of the sacral dorsal roots (2 weeks-22 months) the density of VIP axons and terminals was markedly reduced in ipsilateral Lissauer's tract and lateral laminae I and V; however, no change was detected in lamina X. Sacral deafferentation reduced substance P-IR in the dorsal gray commissure and in lateral laminae I and V.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Synaptic processes evoked in various functional groups of thoracic interneurons (Th10,11) by stimulation of ipsi- and contralateral bulbar reticular formation were studied in anesthetized cats with lesions of the spinal cord that remained intact only the ipsilateral funiculus. Activation of reticulospinal fibres of the lateral funiculus with conduction velocities of 30-100 m/s evoked monosynaptic EPSPs in the following types of cells tested: monosynaptically excited by group la muscle afferents; excited by flexor reflex afferents; excited mainly by descending systems; excited by low-threshold cutaneous afferents to a less extent. All these neurons with responses to reticular stimulation were located predominantly in the central and lateral regions of Rexed's lamina VII. Most of the cells in the dorsal horn were not affected by short-latency reticulofugal influences. The only exception were 6 neurons located in the horn most dorsal laminae. Functional organization of connections between the lateral reticulospinal pathways and spinal neurons is discussed as compared to that of medial reticulo-spinal pathways as well as to the organization of "lateral" descending systems: cortico- and rubro-spinal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号