首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: This article provides a short overview of hybrid imaging and the potential advantages of combined MR/PET. We will address some of the challenges that had to be met before MR/PET could become clinically available as well as further scientific work that has to be done to increase the potential benefit of this emerging hybrid modality. CONCLUSION: Hybrid imaging, the combination of two imaging modalities into one, promises the compensation of specific deficits of the modalities involved. PET/CT has gained wide acceptance for oncologic imaging in recent years; however, MRI has certain advantages that could make combined MR/PET more tempting in various clinical applications. The development of new clinical whole-body MR/PET systems offers new insights in metabolic and functional processes in oncology as well as cardiovascular and neurologic diseases.  相似文献   

2.
Patient management in oncology increasingly relies on imaging for diagnosis, response assessment, and follow-up. The clinical availability of combined functional/anatomical imaging modalities, which integrate the benefits of visualizing tumor biology with those of high-resolution structural imaging, revolutionized clinical management of oncologic patients. Conventional high-resolution anatomical imaging modalities such as computed tomography (CT) and MRI excel at providing details on lesion location, size, morphology, and structural changes to adjacent tissues; however, these modalities provide little insight into tumor physiology. With the increasing focus on molecularly targeted therapies, imaging radiolabeled compounds with PET and single-photon emission tomography (SPECT) is often carried out to provide insight into a tumor's biological functions and its surrounding microenvironment. Despite their high sensitivity and specificity, PET and SPECT alone are substantially limited by low spatial resolution and inability to provide anatomical detail. Integrating SPECT or PET with a modality capable of providing these (i.e. CT or MR) maximizes their separate strengths and provides anatomical localization of physiological processes with detailed visualization of a tumor's structure. The availability of multimodality (hybrid) imaging with PET/CT, SPECT/CT, and PET/MR improves our ability to characterize lesions and affect treatment decisions and patient management. We have just begun to exploit the truly synergistic capabilities of multimodality imaging. Continued advances in the development of instrumentation and imaging agents will improve our ability to noninvasively characterize disease processes. This review will discuss the evolution of hybrid imaging technology and provide examples of its current and potential future clinical uses.  相似文献   

3.
The recent advance in hybrid imaging techniques enables offering simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) in various clinical fields. 18F-fluorodeoxyglucose (FDG) PET has been widely used for diagnosis and evaluation of oncologic patients. The growing evidence from research and clinical experiences demonstrated that PET/MRI with FDG can provide comparable or superior diagnostic performance more than conventional radiological imaging such as computed tomography (CT), MRI or PET/CT in various cancers. Combined analysis using structural information and functional/molecular information of tumors can draw additional diagnostic information based on PET/MRI. Further studies including determination of the diagnostic efficacy, optimizing the examination protocol, and analysis of the hybrid imaging results is necessary for extending the FDG PET/MRI application in clinical oncology.  相似文献   

4.
Multimodal imaging is now well-established in routine clinical practice. Especially in the field of nuclear medicine, new positron emission tomography (PET) installations comprise almost exclusively combined PET/computed tomography (CT) scanners rather than PET-only systems. However, PET/CT has certain notable shortcomings, including the inability to perform simultaneous data acquisition and the significant radiation dose to the patient contributed by CT. Magnetic resonance imaging (MRI) offers, compared with CT, better contrast among soft tissues as well as functional-imaging capabilities. Therefore, the combination of PET with MRI provides many advantages that go far beyond simply combining functional PET information with structural MRI information. Many technical challenges, including possible interference between these modalities, have to be solved when combining PET and MRI, and various approaches have been adapted to resolving these issues. Here, we present an overview of current working prototypes of combined PET/MRI scanners from different groups. In addition, besides PET/MRI images of mice, the first such images of a rat acquired with the first commercial clinical PET/MRI scanner, are presented. The combination of PET and MRI is a promising tool in preclinical research and will certainly progress to clinical application.  相似文献   

5.
Chest radiography, the most commonly performed imaging technique for the detection of lung disease, is limited in accurately detecting early lung cancer. The main imaging modality for the staging of lung cancer is computed tomography (CT), supplemented by positron emission tomography (PET), usually as a hybrid technique in conjunction with CT (PET/CT). Magnetic resonance (MR) imaging is a useful diagnostic tool for specific indications and has the advantage of not using ionizing radiation. This article discusses the optimal imaging protocols for lung cancer staging using CT, PET (PET/CT), and MR imaging, and the role of imaging in patient management.  相似文献   

6.

Clinical/methodical issue

The positron emission tomography/magnetic resonance imaging (PET/MRI) technique represents a new hybrid imaging modality in nuclear cardiology.

Standard radiological methods

The standard radiological method in this field is PET/computed tomography (CT).

Methodical innovations

For morphological correlation MRI is used instead of CT. Furthermore, the creation of attenuation maps (μ-maps) has to be accomplished using MRI data.

Performance

For this new hybrid imaging modality only limited data are so far available, especially in the field of nuclear cardiology; however, the available data show a relatively good agreement between both modalities with the PET/CT as the modality of reference.

Achievements

In comparison to PET/CT a major advantage of PET/MRI is the lower radiation dose to the patient; however, the more complex workflow using this new imaging modality also has to be taken into account. Furthermore, some indications are still at an experimental stage using the PET/MRI.

Practical recommendations

In daily practice, PET/MRI should be considered especially in younger patients due to the lower exposure to radiation. Furthermore, there are some advantages for this modality in the field of nuclear cardiology, such as imaging of inflammatory myocardial processes (e.g. cardiac sarcoidosis) or myocardial viability imaging.  相似文献   

7.
Integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) scanning has recently become established in clinical imaging. Various studies have demonstrated the great potential of this new hybrid imaging procedure for applications in the field of oncology and the diagnostics of inflammatory processes. With initial studies demonstrating the feasibility and high diagnostic potential of PET/MRI comparable to PET-computed tomography (CT), the focus of future studies should be on the identification of application fields with a potential diagnostic benefit of PET/MRI over other established diagnostic tools. Both MRI and PET/CT are widely used in the diagnostic algorithms for malignancies of the female pelvis. A simultaneous acquisition of PET and MRI data within a single examination provides complementary information which can be used for a more comprehensive evaluation of the primary tumor as well as for whole body staging. Therefore, the aim of this article is to outline potential clinical applications of integrated PET/MRI for the diagnostic work-up of primary or recurrent gynecological neoplasms of the female pelvis.  相似文献   

8.
The unparalleled soft tissue contrast of magnetic resonance imaging (MRI) and the functional information obtainable with 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) render MR-PET well-suited for oncological and psychiatric imaging. The lack of ionizing radiation with MRI also makes MR-PET a promising modality for oncology patients requiring frequent follow-up and pediatric patients. Lessons learned with PET computed tomography (CT) over the last few years do not directly translate to MR-PET. For example, in PET-CT the Hounsfield units derived from CT are used for attenuation correction (AC). As 511 keV photons emitted in PET examinations are attenuated by the patient’s body CT data are converted directly to linear attenuation coefficients (LAC); however, proton density measured by MRI is not directly related to the radiodensity or LACs of biological tissue. Thus, direct conversion to LAC data is not possible making AC more challenging in simultaneous MRI-PET scanning. In addition to these constraints simultaneous MRI-PET acquisitions also improve on some solutions to well-known challenges of hybrid imaging techniques, such as limitations in motion correction. This article reports on initial clinical experiences with simultaneously acquired MRI-PET data, focusing on the potential benefits and limitations of MRI with respect to motion correction as well as metal and attenuation correction artefacts.  相似文献   

9.
18F-fluorodeoxyglucose positron-emission tomography (FDG-PET) and especially hybrid FDG-PET/CT is becoming more and more accepted for the clinical management of adult and pediatric patients with sarcomas. By integrating the CT component the specificity in particular but also the sensitivity of the modality are improved further. With PET/CT a complete staging including the detection of lung metastases is feasible in a single examination. For patients with primary bone and soft tissue sarcomas FDG-PET/CT is utilized for diagnosis, staging and restaging, metabolic tumor grading, guidance of biopsies, detection of tumor recurrence and therapy monitoring. Furthermore, it has been demonstrated that FDG uptake of the tumor prior to treatment and changes of FDG uptake after therapy significantly correlate with histopathologic response and survival of patients. Therefore, PET and PET/CT have a prognostic value. In the future new perspectives of hybrid PET/CT imaging will arise by introducing novel radiotracers and combined functional imaging of tumor metabolism and perfusion. High resolution MRI is essential for local evaluation of the primary tumor and preoperative planning with assessment of possible infiltration of vascular or neural structures. Contrast-enhanced MRI remains a key tool in the diagnosis of recurrent disease, especially in tumors which are not hypermetabolic. Dynamic contrast-enhanced MR sequences can significantly contribute to therapy monitoring. More research is necessary to prospectively compare dynamic contrast-enhanced MRI and FDG-PET/CT for evaluation of local and recurrent diseases.  相似文献   

10.
During the past decade, combined PET/MRI has been translated from a basic technical concept to a clinical research tool and a clinically applied hybrid imaging modality. Numerous clinical and scientific applications have been proposed for this novel hybrid modality including oncologic, neurologic and cardiovascular imaging. Among these, PET/MRI in children has emerged as a key application, not only due to possible diagnostic advantages but also because of reduced radiation exposure compared to alternative techniques. A variety of clinical indications exists for the use of PET/MR imaging in children mainly in but not limited to the field of paediatric oncology. The purpose of this review article is to discuss possible applications of combined PET/MR in paediatric imaging and to illustrate these by presenting cases from clinical practice.  相似文献   

11.
Integrated whole‐body PET/MR hybrid imaging combines excellent soft tissue contrast and various functional imaging parameters provided by MR with high sensitivity and quantification of radiotracer metabolism provided by positron emission tomography (PET). While clinical evaluation now is under way, integrated PET/MR demands for new technologies and innovative solutions, currently subject to interdisciplinary research. Attenuation correction of human soft tissues and of hardware components has to be MR‐based to maintain quantification of PET imaging because computed tomography (CT) attenuation information is missing. This brings up the question of how to provide bone information with MR imaging. The limited field‐of‐view in MR imaging leads to truncations in body imaging and MR‐based attenuation correction. Another research field is the implementation of motion correction technologies to correct for breathing and cardiac motion in view of the relatively long PET data acquisition times. Initial clinical applications of integrated PET/MR in oncology, neurology, pediatric oncology, and cardiovascular disease are highlighted. The hybrid imaging workflow here has to be tailored to the clinical indication to maximize diagnostic information while minimizing acquisition time. PET/MR introduces new artifacts that need special observation and innovative solutions for correction. Finally, the rising need for appropriate phantoms and standardization efforts in PET/MR hybrid imaging is discussed. J. Magn. Reson. Imaging 2014;39:243–258 . © 2013 Wiley Periodicals, Inc .  相似文献   

12.
Magnetic resonance imaging (MRI) is presently the modality of choice for the local staging of rectal cancer, with positron emission tomography (PET) being optional for the evaluation of colorectal cancer. Indeed, previous studies have demonstrated that liver MRI using hepatocyte‐specific contrast agents can provide high diagnostic performance in the detection of colorectal cancer liver metastases. Recently, however, whole‐body PET/MRI, which can provide information regarding both anatomy and metabolism, has been introduced to clinical imaging, and studies are under way to assess whether it can improve diagnostic performance for oncologic diseases as well as provide additional information regarding the disease phenotype and biology compared to conventional imaging modalities of computed tomography (CT), PET, or MRI. This review offers a brief overview of the technical considerations of the PET/MRI system, and the current status of imaging modalities in the staging of colorectal cancer. The potential of whole‐body PET/MRI to improve the performance of colorectal cancer staging and the results of several recent studies will be discussed, and workflow considerations of whole‐body PET/MRI for patients with colorectal cancer will be addressed. Level of Evidence: 5 J. Magn. Reson. Imaging 2017;45:21–35.  相似文献   

13.

Introduction  

Hybrid imaging is now widely accepted in cancer imaging with increasing use of PET/CT in clinical practice. The advantages of MRI compared to CT with respect to radiation exposure and soft-tissue lesion contrast, as well as the possibility of performing more sophisticated assessment of tissue chemistry, have stimulated interest in the development of hybrid PET/MR imaging systems.  相似文献   

14.
After the successful clinical introduction of PET/CT, a novel hybrid imaging technology combining PET with the versatile attributes of MRI is emerging. At the Forschungszentrum Jülich, one of four prototypes available worldwide combining a commercial 3T MRI with a newly developed BrainPET insert has been installed, allowing simultaneous data acquisition with PET and MRI. The BrainPET is equipped with LSO crystals of 2.5 mm width and Avalanche photodiodes (APD) as readout electronics. Here we report on some performance characteristics obtained by phantom studies and also on the initial BrainPET studies on various patients as compared with a conventional HR+ PET-only scanner. MATERIAL, METHODS: The radiotracers [18F]-fluoro-ethyl-tyrosine (FET), [11C]-flumazenil and [18F]-FP-CIT were applied. RESULTS: Comparing the PET data obtained with the BrainPET to those of the HR+ scanner demonstrated the high image quality and the superior resolution capability of the BrainPET. Furthermore, it is shown that various MR images of excellent quality could be acquired simultaneously with BrainPET scans without any relevant artefacts. DISCUSSION, CONCLUSION: Initial experiences with the hybrid MRI/BrainPET indicate a promising basis for further developments of this unique technique allowing simultaneous PET imaging combined with both anatomical and functional MRI.  相似文献   

15.
Magentic Resonance/positron emission tomography (PET) has been introduced recently for imaging of clinical patients. This hybrid imaging technology combines the inherent strengths of MRI with its high soft‐tissue contrast and biological sequences with the inherent strengths of PET, enabling imaging of metabolism with a high sensitivity. In this article, we describe the initial experience of MR/PET in a clinical cancer center along with a review of the literature. For establishing MR/PET in a clinical setting, technical challenges, such as attenuation correction and organizational challenges, such as workflow and reimbursement, have to be overcome. The most promising initial results of MR/PET have been achieved in anatomical areas where high soft‐tissue and contrast resolution is of benefit. Head and neck cancer and pelvic imaging are potential applications of this hybrid imaging technology. In the pediatric population, MR/PET can decrease the lifetime radiation dose. MR/PET protocols tailored to different types of malignancies need to be developed. After the initial exploration phase, large multicenter trials are warranted to determine clinical indications for this exciting hybrid imaging technology and thereby opening new horizons in molecular imaging. J. Magn. Reson. Imaging 2014;39:768–780. © 2013 Wiley Periodicals, Inc .  相似文献   

16.
The purpose of this article is to introduce the underlying challenges associated with the incorporation of magnetic resonance imaging (MRI) into the new hybrid imaging modality simultaneous positron emission tomography (PET)/MR and their impact on attenuation correction, sequence optimization, and protocol development. Many adjustments to MR sequences are necessary for optimal whole‐body and fused image results. J. Magn. Reson. Imaging 2014;39:259–268 . © 2013 Wiley Periodicals, Inc .  相似文献   

17.
The liver is more often involved with metastatic disease than primary liver tumors. The accurate detection and characterization of liver metastases are crucial since patient management depends on it. The imaging options, mainly consisting of contrast-enhanced ultrasound (CEUS), multidetector computed tomography (CT), magnetic resonance imaging (MRI) with diffusion-weighted imaging (DWI), extra-cellular contrast media and liver-specific contrast media as well as positron emission tomography/computed tomography (PET/CT), are constantly evolving. PET/MRI is a more recent hybrid method and a topic of major interest concerning liver metastases detection and characterization. This review gives a brief overview about the spectrum of imaging findings and focus on an update about the performance, advantages and potential limitations of each modality as well as current developments and innovations.  相似文献   

18.
Radiological (plain radiographs, computed tomography [CT], magnetic resonance imaging [MRI]) and nuclear medicine methods (bone scan, leukocyte scan) both provide unique information about the status of the skeleton. Both have typical strengths and weaknesses, which often lead to the sequential use of different procedures in daily routine. This use causes the unnecessary loss of time and sometimes money, if redundant information is obtained without establishing a final diagnosis. Recently, new devices for hybrid imaging (single-photon emission computed tomography/computed tomography [SPECT/CT], positron emission tomography/computed tomography [PET/CT]) were introduced, which allow for direct fusion of morphological (CT) and functional (SPECT, PET) data sets. With regard to skeletal abnormalities, this approach appears to be extremely useful because it combines the advantages of both techniques (high-resolution imaging of bone morphology and high sensitivity imaging of bone metabolism). By the accurate correlation of both, a new quality of bone imaging has now become accessible. Although researchers undertaking the initial studies exclusively used low-dose CT equipment, a new generation of SPECT/CT devices has emerged recently. By integrating high-resolution spiral CT, quality of bone imaging may improve once more. Ongoing prospective studies will have to show whether completely new diagnostic algorithms will come up for classification of bone disease as a consequence of this development. Besides, the role of ultrasonography and MRI for bone and soft-tissue imaging also will have to be re-evaluated. Looking at the final aim of all imaging techniques--to achieve correct diagnosis in a fast, noninvasive, comprehensive, and inexpensive way--we are now on the edge of a new era of multimodality imaging that will probably change the paths and structure of medicine in many ways. Presently, hybrid imaging using SPECT/CT has been proven to increase sensitivity and specificity of bone scintigraphy. This was mainly achieved by identifying benign bone conditions with increased bone turnover. Therefore, SPECT/CT should be applied whenever equivocal findings of planar bone imaging occur. It also helps to improve accuracy of leukocyte scanning to detect/exclude osteomyelitis and to define sites of inflammation. We therefore regard SPECT/CT as a valuable tool to optimize bone imaging, which might become even more important if new radiopharmaceuticals become available to image specific cell functions.  相似文献   

19.
Although introduction of hybrid positron emission tomography/computed tomography (PET/CT) scanners represents an important development in field of radiology, the alliance of functional imaging with structural imaging has raised many controversial issues. The present review describes some of the important issues in hybrid PET/CT such as specific indications, protocols that deliver diagnostic quality CT scans while ensuring radiation dose associated with hybrid PET/CT examination are minimized, and the feasibility, desirability, and timing of oral and intravenous contrast administration. The issues of clinical indications for hybrid PET/CT versus PET alone will be discussed as well as the role of the CT component (ie, for diagnosis or transmission source alone) are discussed. The logistics of hybrid PET/CT scan interpretation, including the roles of radiologists and nuclear medicine physicians, will be discussed. This review describes the pertinent medical literature and discusses our experience with suitable examples.  相似文献   

20.
Multiphasic multidetector computed tomography (CT) forms the mainstay for the characterization of renal masses whereas magnetic resonance imaging (MRI) acts as a problem-solving tool in some cases. However, a few of the renal masses remain indeterminate even after evaluation by conventional imaging methods. To overcome the deficiency in current imaging techniques, advanced imaging methods have been devised and are being tested. This review will cover the role of contrast-enhanced ultrasonography, shear wave elastography, dual-energy CT, perfusion CT, MR perfusion, diffusion-weighted MRI, blood oxygen level-dependent MRI, MR spectroscopy, positron emission tomography (PET)/prostate-specific membrane antigen-PET in the characterization of renal masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号