首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Walkerton (Ontario, Canada) outbreak of waterborne Escherichia coli O157:H7 and Campylobacter jejuni was quite limited in both space and time, making it a good model for exploring the utility of different typing and subtyping methods for the characterization of relationships among isolates of these organisms. We have extended previous work with these organisms through analysis by the Oxford multilocus sequence typing (MLST) and the flagellin short variable region (fla-SVR) sequencing methods. Additional isolates not epidemiologically related to the Walkerton outbreak have also been included. Both sequencing methods identified and differentiated between Walkerton outbreak strains 1 and 2. When these strains were compared with isolates that were not part of the outbreak, the information produced by the fla-SVR method more often correlated with epidemiological findings than that produced by MLST, though both methods were required for optimal discrimination. The MLST data were more relevant in terms of the overall population structure of the organisms. Both mutation and recombination appeared to be responsible for generating diversity among the isolates tested.  相似文献   

2.
Multilocus sequence typing (MLST) has been proven useful for the study of the global population structure of Campylobacter jejuni; however, its usefulness for the investigation of outbreaks of disease caused by C. jejuni has not been proven. In this study, MLST plus sequencing of the flaA short variable region (SVR) were applied to 47 isolates from 12 outbreaks of C. jejuni infection whose relatedness has been determined previously, and the results were compared to those of serotyping and pulsed-field gel electrophoresis (PFGE). Isolates implicated in an outbreak were indistinguishable by all four subtyping methods, with sporadic isolates being distinguished from outbreak isolates. Two sporadic isolates from one outbreak were resistant to SmaI digestion and therefore nontypeable by PFGE but were differentiated from the outbreak strain by the other methods. PFGE and flaA SVR typing were the most discriminatory methods, with discriminatory indices (DI) of 0.930 and 0.923, respectively. However, an epidemic strain from one outbreak was distinguished from the other outbreak isolates by flaA SVR typing; its flaA allele was different at five nucleotides, suggesting that this change was possibly mediated by recombination. MLST was less discriminatory than PFGE and flaA SVR typing (DI = 0.859), and many of the epidemic strains possessed common sequence types (STs) including ST-8, -21, -22, and -42. However, further discrimination within STs was achieved by flaA SVR typing or PFGE. The results from this study demonstrate that a combined approach of MLST plus flaA SVR typing provides a level of discrimination equivalent to PFGE for outbreak investigations.  相似文献   

3.
Campylobacter jejuni isolates (n = 234) associated with gastroenteritis and the Guillain-Barré syndrome (GBS) in the island of Cura?ao, Netherlands Antilles, and collected from March 1999 to March 2000 were investigated by a range of molecular typing techniques. Data obtained by pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), automated ribotyping, and sequence analysis of the short variable region of the flagellin gene (flaA) were analyzed separately and in combination. Similar groupings were obtained by all methods, with the data obtained by MLST and AFLP analysis exhibiting the highest degree of congruency. MLST identified 29 sequence types, which were assigned to 10 major clonal complexes. PFGE, AFLP analysis, and ribotyping identified 10, 9, and 8 of these clonal groups, respectively; however, these three techniques permitted subdivision of the clonal groups into more different types. Members of seven clonal groups comprising 107 isolates were obtained from November 1999 to February 2000, and no distinguishing characteristics were identified for two GBS-associated strains. The sequence type 41 (ST-41), ST-508, and ST-657 clonal complexes and their corresponding AFLP types have been rare or absent in the Campylobacter data sets described to date. We conclude that several clonal complexes of C. jejuni are associated with human disease in Cura?ao, and some of these have not been reported elsewhere. Furthermore, given the observation that C. jejuni-associated diseases appear to be more severe from November to February, it can be speculated that this may be due to the presence of virulent clones with a limited span of circulation.  相似文献   

4.
A multilocus sequence typing (MLST) scheme that uses the same loci as a previously described system for Campylobacter jejuni was developed for Campylobacter coli. The C. coli-specific primers were validated with 53 isolates from humans, chickens, and pigs, together with 15 Penner serotype reference isolates. The nucleotide sequence of the flaA short variable region (SVR) was determined for each isolate. These sequence data were compared to equivalent information for 17 C. jejuni isolates representing the known genetic diversity of this species. C. coli and C. jejuni share approximately 86.5% identity at the nucleotide sequence level within the MLST loci. There is evidence of genetic exchange of the housekeeping genes between the two species, but at a very low rate; only one sequence type from each species showed evidence of imported DNA. The flaA gene was more variable and has been exchanged many times between the two species, making it an unreliable marker for species identification but useful for distinguishing closely related strains. All but 3 of 21 human C. coli clinical isolates were distinct, according to the combined MLST and SVR sequences. The use of a common MLST scheme allows direct comparisons of the population biology and molecular epidemiology of these two closely related human pathogens.  相似文献   

5.
Campylobacter spp. may be responsible for unreported outbreaks of food-borne disease. The detection of these outbreaks is made more difficult by the fact that appropriate methods for detecting clusters of Campylobacter have not been well defined. We have compared the characteristics of five molecular typing methods on Campylobacter jejuni and C. coli isolates obtained from human and nonhuman sources during sentinel site surveillance during a 3-year period. Comparative genomic fingerprinting (CGF) appears to be one of the optimal methods for the detection of clusters of cases, and it could be supplemented by the sequencing of the flaA gene short variable region (flaA SVR sequence typing), with or without subsequent multilocus sequence typing (MLST). Different methods may be optimal for uncovering different aspects of source attribution. Finally, the use of several different molecular typing or analysis methods for comparing individuals within a population reveals much more about that population than a single method. Similarly, comparing several different typing methods reveals a great deal about differences in how the methods group individuals within the population.  相似文献   

6.
Campylobacter fetus can be divided into the subspecies C. fetus subsp. fetus and C. fetus subsp. venerealis. C. fetus subsp. fetus causes sporadic infections in humans and abortion in cattle and sheep and has been isolated from a variety of sites in different hosts. C. fetus subsp. venerealis is host restricted, being isolated mainly from the genital tracts of cattle, and is the causative agent of bovine genital campylobacteriosis. Despite differences in niche preference, microbiological subspecies differentiation has proven difficult. Different typing methods divided C. fetus isolates into different subgroups, depending on the methods used. The relative value of these methods can be assessed by the evolutionary relationship of isolates belonging to the genus; therefore, we developed a multilocus sequence typing (MLST) scheme for C. fetus. This scheme was applied to 140 C. fetus isolates previously typed by amplified fragment length polymorphism (AFLP) analysis. A total of 14 different sequence types (STs) were identified, and these exhibited low levels of inter-ST genetic diversity, with only 22 variable sites in 3,312 nucleotides. These MLST data indicate that C. fetus is genetically homogeneous compared to the homogeneity of other Campylobacter species. The two C. fetus subspecies were extremely closely related genetically, but ST-4 was associated only with C. fetus subsp. venerealis, which represents a "bovine" clone. The C. fetus subsp. fetus isolates studied were more diverse in terms of their STs, and the STs correlated with epidemiological relationships. Congruence was observed among C. fetus subspecies, sap type, and ST; therefore, MLST confirms that mammalian C. fetus is genetically stable, probably as result of the introduction of a single ancestral clone into a mammalian niche.  相似文献   

7.
A multilocus sequence typing (MLST) system has been reported previously for Campylobacter jejuni to both differentiate strains and identify clonal lineages. However, sequence variation at the MLST loci prevents its use for closely related Campylobacter species. We describe herein an expanded MLST method to include three clinically relevant Campylobacter species, C. coli, C. lari, and C. upsaliensis, and a fourth Campylobacter species, C. helveticus. The C. coli and C. helveticus methods use the same seven C. jejuni loci (aspA, atpA, glnA, gltA, glyA, pgm, and tkt); however, adk and pgi were substituted for aspA and gltA in C. lari and for gltA and pgm in C. upsaliensis. Multiple C. coli (n = 57), C. lari (n = 20), C. upsaliensis (n = 78), and C. helveticus (n = 9) isolates, representing both clinical and environmental sources, were typed. All four species were genetically diverse: the majority (> 80%) of the isolates had unique sequence types (STs). Using this method, mixed C. lari, C. upsaliensis, and C. helveticus isolates were identified; upon separation, each isolate was shown to contain two strains of the same species with distinct STs. Additionally, the expanded MLST method was able to detect potential lateral transfer events between C. jejuni and either C. coli or C. lari and between C. upsaliensis and C. helveticus. Thus, the expanded MLST method will prove useful in differentiating strains of five Campylobacter species, identifying mixed Campylobacter cultures, and detecting genetic exchange within the genus.  相似文献   

8.
Amplified-fragment length polymorphism (AFLP) analysis with the endonucleases BglII and MfeI was used to genotype 91 Campylobacter jejuni subsp. jejuni strains from outbreaks and sporadic cases. AFLP-generated fragments were labeled with fluorescent dye and separated by capillary electrophoresis. The software packages GeneScan and GelCompar II were used to calculate AFLP pattern similarities and to investigate phylogenetic relationships among the genotyped strains. The AFLP method was compared with two additional DNA-based typing methods, pulsed-field gel electrophoresis (PFGE) using SmaI and restriction fragment length polymorphism analysis on PCR products (PCR-RFLP) of the flaA and flaB genes. We found that AFLP analysis of C. jejuni strains is a rapid method that offers better discriminatory power than do both PFGE and PCR-RFLP. AFLP and, to a lesser extent, PCR-RFLP could differentiate strains within the same PFGE profiles, which also makes PCR-RFLP an alternative to PFGE. We were able to clearly distinguish 9 of 10 recognized outbreaks by AFLP and to identify similarities among outbreak and sporadic strains. Therefore, AFLP is suitable for epidemiological surveillance of C. jejuni and will be an excellent tool for source identification in outbreak situations.  相似文献   

9.
We used the multilocus sequence typing (MLST) method to study the genetic diversity of Campylobacter coli isolated from chickens in Senegal, and to check the presence of genetic exchange with Campylobacter jejuni. In addition, we assessed the resistance of the isolates to ciprofloxacin and nalidixic acid, and their gyrA sequences. MLST revealed a low level of diversity and the absence of lineages among C. coli isolates. In addition, an exchange of alleles with C. jejuni was found. Twenty percent of the ciprofloxacin-resistant isolates lacked mutations within the quinolone resistance-determining region (QRDR) of GyrA. There was no link between quinolone resistance and sequence type (ST).  相似文献   

10.
One hundred seventy-five Listeria monocytogenes strains were characterized by serotyping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) based on loci in actA, betL, hlyA, gyrB, pgm, and recA. One hundred twenty-two sequence types (STs) were identified by MLST based on allelic profiles of the four housekeeping genes (betL, gyrB, pgm, and recA), and 34 and 38 alleles were identified for hlyA and actA, respectively. Several actA and hlyA alleles appeared to be predominantly associated with clinical isolates. MLST differentiated most of the L. monocytogenes strains better than did PFGE, and the discriminating ability of PFGE was better than that of serotyping. Several strains with different serotypes were found, by MLST and PFGE, to have very closely related genetic backgrounds, which suggested possible "antigen switching" among them. MLST can be a useful typing tool for differentiating L. monocytogenes strains (including strains undistinguishable by PFGE typing and serotyping), and it may be of value during investigations of food-borne outbreaks of listeriosis.  相似文献   

11.
Monitoring the emergence and transmission of Pseudomonas aeruginosa strains among cystic fibrosis (CF) patients is important for infection control in CF centers internationally. A recently developed multilocus sequence typing (MLST) scheme is used for epidemiologic analyses of P. aeruginosa outbreaks; however, little is known about its suitability for isolates from CF patients compared with that of pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). As part of a prevalence study of P. aeruginosa strains in Australian CF clinics, we compared the discriminatory power and concordance of ERIC-PCR, PFGE, and MLST among 93 CF sputum and 11 control P. aeruginosa isolates. PFGE and MLST analyses were also performed on 30 paired isolates collected 85 to 354 days apart from 30 patients attending two CF centers separated by 3,600 kilometers in order to detect within-host evolution. Each of the three methods displayed high levels of concordance and discrimination; however, overall lower discrimination was seen with ERIC-PCR than with MLST and PFGE. Analysis of the 50 ERIC-PCR types yielded 54 PFGE types, which were related by ≤ 6 band differences, and 59 sequence types, which were classified into 7 BURST groups and 42 singletons. MLST also proved useful for detecting novel and known strains and for inferring relatedness among unique PFGE types. However, 47% of the paired isolates produced PFGE patterns that within 1 year differed by one to five bands, whereas with MLST all paired isolates remained identical. MLST thus represents a categorical analysis tool with resolving power similar to that of PFGE for typing P. aeruginosa. Its focus on highly conserved housekeeping genes is particularly suited for long-term clinical monitoring and detecting novel strains.  相似文献   

12.
Multilocus sequence typing (MLST) based on the 16S RNA, pduF, glnA, and manB genes was developed for Salmonella, and its discriminatory ability was compared to those of pulsed-field gel electrophoresis (PFGE) and serotyping. PFGE differentiated several strains undifferentiable by serotyping, and 78 distinct PFGE types were identified among 231 Salmonella isolates grouped into 22 serotypes and 12 strains of undetermined serotype. The strains of several PFGE types were further differentiated by MLST, which suggests that the discriminatory ability of MLST for the typing of Salmonella is better than that of serotyping and/or PFGE typing. manB-based sequence typing identified two distinct genetic clusters containing 32 of 54 (59%) clinical isolates whose manB gene sequences were analyzed. The G+C contents and Splitstree analysis of the manB, glnA, and pduF genes of Salmonella indicated that the genes differ in their evolutionary origins and that recombination played a significant role in their evolution.  相似文献   

13.
Vancomycin-resistant Enterococcus faecium (VREF) strains represent an important threat in hospital infections in the United States and are found at high frequencies in both the community and farm animals in Europe. We evaluated automated ribotyping for interlaboratory reproducibility by using the restriction enzymes EcoRI and BamHI and compared ribotyping to both amplification of fragment length polymorphism (AFLP) analysis and multilocus sequence typing (MLST) to assess its discriminatory power and capacity for the identification of epidemiologically important strains. Of 19 (EcoRI) and 16 (BamHI) isolates tested in duplicate in two laboratories, 18 (95%) and 16 (100%), respectively, showed reproducible ribotypes. These high reproducibility rates were obtained only after manual refinement of the automated fingerprint analysis. A group of 49 VREF strains initially selected to represent 32 distinct AFLP types were separated into 28 EcoRI ribotypes, 25 BamHI ribotypes, and 28 sequence types. Ribotyping with EcoRI and BamHI was able to discern the host-specific genogroups recently disclosed by AFLP typing and MLST and to distinguish most strains containing the esp gene, a marker specific for strains causing hospital outbreaks. An expandable ribotype identification library was created. We recommend EcoRI as the enzyme of choice for automated ribotyping of VREF strains. Given the high level of discrimination of VREF strains, the high rate of interlaboratory reproducibility, and the potential for the identification of epidemiologically important genotypes, automated ribotyping appears to be a very valuable approach for characterizing VREF strains.  相似文献   

14.
The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how “epidemic clones” should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the “epidemic clone” denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space.  相似文献   

15.
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains are emerging pathogens. Molecular typing of ESBL-producing E. coli is useful for surveillance purposes, to monitor outbreaks and track nosocomial spread. Although pulsed-field gel electrophoresis (PFGE) is the current "gold standard" for bacterial molecular typing, multilocus sequence typing (MLST) may offer advantages. Forty ESBL-producing E. coli isolates were selected at random from a cohort of intensive care unit patients who had active surveillance perirectal cultures done. PFGE identified 19 unique PFGE types (PT) among the 40 isolates; MLST identified 22 unique sequence types. MLST had greater discriminatory ability than PFGE for ESBL-producing E. coli. Simpson's indices of diversity for PFGE and MLST were 0.895 and 0.956, respectively. There were five clonal complexes (CCs) (isolates with differences of no more than two loci) that each contained multiple PT, but each PT was found in only one CC, indicating genetic consistency within a CC. MLST has clear utility in studies of ESBL-producing E. coli, based on a greater discriminatory ability and reproducibility than PFGE and the ability to a priori define genetically related bacterial strains.  相似文献   

16.
Repetitive DNA motifs with potential variable-number tandem repeats (VNTR) were identified in the genome of Neisseria meningitidis and used to develop a typing method. A total of 146 meningococcal isolates recovered from carriers and patients were studied. These included 82 of the 107 N. meningitidis isolates previously used in the development of multilocus sequence typing (MLST), 45 isolates recovered from different counties in Norway in connection with local outbreaks, and 19 serogroup W135 isolates of sequence type 11 (ST-11), which were recovered in several parts of the world. The latter group comprised isolates related to the Hajj outbreak of 2000 and isolates recovered from outbreaks in Burkina Faso in 2001 and 2002. All isolates had been characterized previously by MLST or multilocus enzyme electrophoresis (MLEE). VNTR analysis showed that meningococcal isolates with similar MLST or MLEE types recovered from epidemiologically linked cases in a defined geographical area often presented similar VNTR patterns while isolates of the same MLST or MLEE types without an obvious epidemiological link showed variable VNTR patterns. Thus, VNTR analysis may be used for fine typing of meningococcal isolates after MLST or MLEE typing. The method might be especially valuable for differentiating among ST-11 strains, as shown by the VNTR analyses of serogroup W135 ST-11 meningococcal isolates recovered since the mid-1990s.  相似文献   

17.
We investigated the genetic relationships of 54 Escherichia coli O103 strains from humans, animals, and meat by molecular typing of housekeeping and virulence genes and by pulsed-field gel electrophoresis (PFGE). Multilocus sequence typing (MLST) of seven housekeeping genes revealed seven profiles, I through VII. MLST profiles I plus III cover 45 Shiga toxin-producing E. coli (STEC) O103:H2 strains from Australia, Canada, France, Germany, and Northern Ireland that are characterized by the intimin (eae) epsilon gene and carry enterohemorrhagic E. coli (EHEC) virulence plasmids. MLST profile II groups five human and animal enteropathogenic E. coli (EPEC) O103:H2 strains that were positive for intimin (eae) beta. Although strains belonging to MLST groups II and I plus III are closely related to each other (92.6% identity), major differences were found in the housekeeping icdA gene and in the virulence-associated genes eae and escD. E. coli O103 strains with MLST patterns IV to VII are genetically distant from MLST I, II, and III strains, as are the non-O103 E. coli strains EDL933 (O157), MG1655 (K-12), and CFT073 (O6). Comparison of MLST results with those of PFGE and virulence typing demonstrated that E. coli O103 STEC and EPEC have recently acquired different virulence genes and DNA rearrangements, causing alterations in their PFGE patterns. PFGE typing was very useful for identification of genetically closely related subgroups among MLST I strains, such as Stx2-producing STEC O103 strains from patients with hemolytic uremic syndrome. Analysis of virulence genes contributed to grouping of E. coli O103 strains into EPEC and STEC. Novel virulence markers, such as efa (EHEC factor for adherence), paa (porcine adherence factor), and cif (cell cycle-inhibiting factor), were found widely associated with E. coli O103 EPEC and STEC strains.  相似文献   

18.
Molecular characterization (e.g., DNA-based typing methods) of Salmonella isolates is frequently employed to compare and distinguish clinical isolates recovered from animals and from patients with food-borne disease and nosocomial infections. In this study, we compared the abilities of different phenotyping and genotyping methods to distinguish isolates of Salmonella enterica serovar Typhimurium from different food animal sources. One hundred twenty-eight S. enterica serovar Typhimurium strains isolated from cattle, pigs, chickens, and turkeys or derived food products were characterized using pulsed-field gel electrophoresis (PFGE), repetitive element PCR (Rep-PCR), multilocus sequence typing (MLST), plasmid profiling, and antimicrobial susceptibility testing. Among the 128 Salmonella isolates tested, we observed 84 Rep-PCR profiles, 86 PFGE patterns, 89 MLST patterns, 36 plasmid profiles, and 38 susceptibility profiles. The molecular typing methods, i.e., PFGE, MLST, and Rep-PCR, demonstrated the best discriminatory power among Salmonella isolates. However, no apparent correlation was evident between the results of one molecular typing method and those of the others, suggesting that a combination of multiple methods is needed to differentiate S. enterica serovar Typhimurium isolates that genetically cluster according to one particular typing method.  相似文献   

19.
Molecular strain typing is essential for deciphering the epidemiology of Campylobacter jejuni infections. We applied two different methods, multilocus sequence typing (MLST) and analysis of the flaA short variable repeat (SVR), to 289 isolates (163 human, 56 chicken, 34 raw milk, and 36 environmental water isolates) collected in the province of Québec, Canada, over 3 years; in addition, the analysis included the pulsed-field gel electrophoresis (PFGE) typing results for a subset of 131 isolates studied previously. MLST defined 96 sequence types (STs) and 20 clonal complexes (CCs), including 49 STs (73 isolates, 25%) and 39 alleles not previously documented in an international database. The frequency of new STs was significantly higher among water isolates than among isolates from other sources (18/36 [50%] and 55/253 [22%], respectively; P < 0.001). Nine of the 10 most prevalent CCs included isolates from humans and at least one other source; five CCs comprised exclusively or mostly human and chicken isolates. However, water and milk were the predominant nonhuman sources among the remaining CCs, suggesting that sporadic C. jejuni infections in humans may frequently arise from sources other than chickens. All three typing systems were discriminatory (discriminatory index > 0.9). Among 131 isolates analyzed by PFGE, each of the 20 types represented by two or more isolates corresponded to a single CC. In contrast, among the 14 most prevalent types detected by analysis of the flaA SVR (5 to 27 isolates each), 8 (57%) included isolates that represented multiple different CCs. The basis for these discordant results was uncertain. Antimicrobial resistance was randomly distributed among the CCs and appeared to be more closely related to the source of an isolate than its genotype. Although MLST is labor-intensive and expensive, it remains the single best method for the genotyping of C. jejuni isolates and deciphering the epidemiologic relationships among isolates.  相似文献   

20.
The intra- and interspecies genetic relationships of 58 strains representing all currently known species of the genus Yersinia were examined by multilocus sequence typing (MLST), using sequence data from 16S RNA, glnA, gyrB, recA, and Y-HSP60 loci. Yersinia aldovae, Y. bercovieri, Y. intermedia, Y. pestis, Y. pseudotuberculosis, Y. rohdei, and Y. ruckeri were genetically more homogeneous than were Y. enterocolitica, Y. frederiksenii, Y. kristensenii, and Y. mollaretii. The MLST data concerning the genetic relatedness within and among various species of Yersinia support the idea that Y. pestis and Y. pseudotuberculosis are two lineages within the same species rather than two distinct species. Y. ruckeri is the genetically most distant species within the genus. There was evidence of O-antigen switching and genetic recombination within and among various species of Yersinia. The genetic relatedness data obtained by MLST of the four housekeeping genes and 16S RNA agreed in most, but not all, instances. MLST was better suited for determining genetic relatedness among yersiniae than was 16S RNA analysis. Some strains of Y. frederiksenii and Y. kristensenii are genetically less related to other strains within those species, compared to strains of all other species within the genus. The taxonomic standing of these strains should be further examined because they may represent currently unrecognized Yersinia species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号