首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-HT2C receptors are predominantly localised in the brain and their dysregulation may contribute to particular symptoms of anxiety and depression. The marked affinity of several clinically established psychotropic agents sites (e.g., tricyclic antidepressants, clozapine, fluoxetine) for 5-HT2C receptor has generated interest in the therapeutic potential of selective, high affinity 5-HT2C receptor ligands. Like the selective serotonin re-uptake inhibitor (SSRI) fluoxetine, high affinity selective agonists such as Ro 60-0175 and Ro 60-0332 have potent in vivo activity in animal models suggestive of therapeutic action against depression, obsessive-compulsive disorder (OCD) and panic disorders. In contrast, 5-HT2C receptor antagonists such as SB-200646A or SB-221284 show signs of anxiolytic-like activity in tests for conditioned and phobic-like anxiety in rodents whereas they are inactive in tests indicative of antidepressant, antiOCD and antipanic activity. These results are consistent with an important hypothesis proposing that 5-HT has a complex, dual action on the neural mechanism of anxiety by either facilitating or inhibiting different kinds of anxiety in different brain regions. They also suggest that 5-HT2C receptor subtypes play an important role in the therapeutic properties of SSRIs. Certain 5-HT2C receptor antagonists may possess negative efficacy at 5-HT2C receptors and, as inverse agonists, may control constitutive receptor activity possibly characterising some psychopathological states. Receptor variants exist in the human population and indicate possible associations between somatic mutations in the 5-HT2C receptor and psychopathology or response to drug treatment. Selective 5-HT2C receptor ligands may offer innovative and improved therapeutic opportunities for the biological treatment of specific aspects of psychiatric syndromes.  相似文献   

2.
Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT7) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT7 receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT7 receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT7 receptor antagonists may represent a new class of antidepressants with faster therapeutic action.  相似文献   

3.
The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT2B receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied.We analyzed here, a putative role of 5-HT2B receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT2B−/− mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT2B receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT2B−/− mice after the administration of 5-HT1A, 5-HT2A or 5-HT2C receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT2B receptor agonist BW723C86 (3 mg/kg) or 5-HT1B receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT2B−/− mice by administration of 5-HT1A and 5-HT2C receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT2A receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT2B−/− mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes.This evidence suggests that the presence of 5-HT2B receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism/antagonism of 5-HT receptors should be considered in the search of therapeutic targets for treating this serious disorder.  相似文献   

4.
Improved clinical antidepressant efficacy may result if the acute inhibition of 5-HT cell firing induced by antidepressants is prevented. Here we examined whether inhibition of 5-HT cell firing by non-selective 5-HT uptake inhibiting antidepressant drugs is reversed by a selective 5-HT1A receptor antagonist. In addition, we examined whether concomitant blockade of NA uptake offsets the inhibition of 5-HT cell firing resulting from 5-HT uptake blockade. Antidepressants which block 5-HT uptake (paroxetine, clomipramine, amitriptyline, venlafaxine), all caused dose-dependent and complete inhibition of 5-HT cell firing. Desipramine, a selective NA uptake blocker, caused a slight reduction in firing. The selective 5-HT1A receptor antagonist, WAY 100635, reversed the inhibition of 5-HT cell firing induced by clomipramine, amitriptyline, venlafaxine, and paroxetine, but not that induced by the α1 adrenoceptor antagonist, prazosin. Desipramine, at a dose which increased extracellular NA in the DRN, reversed the effect of prazosin but did not alter the ability of paroxetine to inhibit 5-HT cell firing. Our data indicate that antidepressant drugs with 5-HT uptake blocking properties inhibit 5-HT cell firing via activation of 5-HT1A autoreceptors, and do so irrespective of their effects on NA uptake. These data are discussed in relation to the application of 5-HT1A receptor antagonists to enhance the clinical efficacy of antidepressant drugs. Received: 15 July 1996 / Final version: 11 November 1996  相似文献   

5.
The effect of serotonergic agents was studied on the adenosine A2 receptor agonist NECA-induced catalepsy in mice. The 5-HT releaser fenfluramine, the 5-HT1A agonist 8-OH-DPAT, the 5-HT2A/1C receptor agonist DOI and the 5-HT2A/1C receptor antagonists ketanserin and mianserin reversed NECA-induced catalepsy. p-MPPI and ketanserin reversed the anticataleptic actions of 8-OH-DPAT and DOI, respectively. Further, the 5-HT reuptake inhibitor fluoxetine, the 5-HT1B/1C receptor agonist TFMPP, the 5-HT synthesis inhibitor p-CPA, the selective 5-HT1A receptor antagonist p-MPPI, the 5-HT1A/1B receptor antagonist pindolol and the 5-HT3 receptor antagonist LY 278, 584 had no effect on NECA-induced catalepsy. The anticataleptic action of fenfluramine was not affected by pretreatment with p-CPA. In p-CPA treated rats, ketanserin did not affect the anticataleptic effect of fenfluramine, whereas p-MPPI partially reversed this effect. It is concluded that modulation of serotonergic neurotransmission at 5-HT1A and 5-HT2A/1C receptors affects the cataleptic action of experimental antipsychotic agents with adenosine A2 receptor agonistic activity. Received: 5 May 1997/Final version: 2 September 1997  相似文献   

6.
Rationale We have recently reported that acute treatment with the selective serotonin reuptake inhibitor fluoxetine exacerbates escape responses to airjet and facilitates airjet-induced activation of locus coeruleus (LC) neurons.Objective Here we aimed to identify the 5-HT receptor subtype(s) mediating the anxiogenic-like effects of acute fluoxetine in this paradigm and to study whether chronic fluoxetine treatment would alter these responses.Methods The expression of the immediate early gene c-fos was used as a marker of neuronal activation.Results Acute fluoxetine increased the airjet-induced escape behaviour and Fos expression in the LC of saline-pretreated rats. Pretreatment with the 5-HT2C/2B antagonist SB 206553, but not with the 5-HT1A antagonist WAY 100635, the 5-HT1B antagonist SB 224289 or the 5-HT3 antagonist Y-25130 inhibited the fluoxetine-induced increase in escape behaviour and the associated elevated LC Fos response. The selective 5-HT2C agonist MK-212 mimicked the anxiogenic response of fluoxetine. Chronic treatment with fluoxetine abolished the anxiogenic-like effect and led to a normalization of the enhanced fluoxetine-induced Fos response to airjet.Conclusions Taken together, the results indicate that the anxiogenic-like effect as well as the facilitated neuronal reactivity induced by acute fluoxetine in the airjet model is mediated primarily by activation of 5-HT2C receptors.  相似文献   

7.
Recent evidence that 5-HT2 receptors exert a negative influence on central 5-hydroxytryptamine (5-HT) neurones suggests that 5-HT2 receptor antagonists may augment the effects of serotonin selective reuptake inhibitors (SSRIs). The present study investigated whether pre-treatment with 5-HT2 receptor antagonists enhances the effect of SSRI administration on hippocampal extracellular 5-HT of freely moving rats. Administration of the SSRI citalopram at a low (2 mg kg−1) and higher (4 mg kg−1) dose, increased dialysate 5-HT by 5- and 8-fold, respectively. Pre-treatment with the 5-HT2 receptor antagonist ketanserin (4 mg kg−1) augmented the effect of 4 mg kg−1 but not 2 mg kg−1 citalopram. The effect of 4 mg kg−1 citalopram was also augmented by pre-treatment with either the 5-HT2C receptor antagonist SB 242084 (0.5 mg kg−1) or the 5-HT2A receptor antagonist MDL 100907 (0.5 mg kg−1). As with citalopram, fluoxetine elevated dialysate 5-HT at both a low (5 mg kg−1) and higher (20 mg kg−1) dose. However, neither dose of fluoxetine was augmented by ketanserin (4 mg kg−1). These results confirm recent findings that 5-HT2 receptor antagonists augment the effect of citalopram on extracellular 5-HT, and indicate the involvement of 5-HT2C and possibly 5-HT2A receptors. The lack of augmentation of fluoxetine might reflect the intrinsic 5-HT2 receptor antagonist properties of this drug.  相似文献   

8.
Major depressive disorder (MDD) is a severe psychiatric syndrome with high prevalence and socioeconomic impact. Current antidepressant treatments are based on the blockade of serotonin (5-hydroxytryptamine, 5-HT) and/or noradrenaline transporters. These drugs show slow onset of clinical action and limited efficacy, partly due to the activation of physiological negative feed-back mechanisms operating through autoreceptors (5-HT1A, 5-HT1B, α2-adrenoceptors) and postsynaptic receptors (e.g., 5-HT3). As a result, clinically-relevant doses of reuptake inhibitors increase extracellular (active) 5-HT concentrations in the midbrain raphe nuclei but not in forebrain, as indicated by rodent microdialysis studies and by PET-scan studies in primate/human brain. The prevention of these self-inhibitory mechanisms by antagonists of the above receptors augments preclinical and clinical antidepressant effects. Hence, the mixed ß-adrenoceptor/5-HT1A antagonist pindolol accelerated, and in some cases enhanced, the clinical action of selective serotonin reuptake inhibitors (SSRI). This strategy has been incorporated into two new multi-target antidepressant drugs, vilazodone and vortioxetine, which combine 5-HT reuptake inhibition and partial agonism at 5-HT1A receptors. Vortioxetine shows also high affinity for other 5-HT receptors, including excitatory 5-HT3 receptors located in cortical and hippocampal GABA interneurons. 5-HT3 receptor blockade by vortioxetine enhances pyramidal neuron activity in prefrontal cortex as well as cortical and hippocampal 5-HT release. It is still too soon to know whether these new antidepressants will represent a real advance over existing drugs in the real world. However, their development opened the way to future antidepressant drugs based on the prevention of local and distal self-inhibitory mechanisms attenuating monoamine activity.  相似文献   

9.
The functional role of brain 5-HT and 5-HT receptor subtypes in periaqueductal gray (PAG) induced aversion has been investigated in rats. Antiaversive effects were found with the serotonin agonists TFMPP, mCPP and DOI but not with RU 24969 which was found to facilitate PAG aversion. The first three serotonin agonists share potent 5-HT1C activity while RU 24969 differs with a high 5-HT1A activity. Proaversive effects were found with the mixed 5-HT1C/5-HT2 antagonists cyproheptadine and ritanserin; this effect was already reported for the mixed 5-HT1C/5-HT2 antagonists metergoline and mianserin and is opposite to the effects of the selective 5-HT2 antagonists ketanserin, pirenperone, trazodone and spiperone. The antiaversive effects of mCPP (1 mg/kg) could be prevented by pretreatment of the animals with mianserin (1 and 10 mg/kg). These results suggest that 5-HT1C receptors play an important role in the serotonergic control of PAG aversion. 5-HT1C receptor activation seems to mediate antiaversive effects whereas acute 5-HT1C receptor blockade appears to facilitate PAG aversion. Functional interactions take place between several receptor types in the in vivo control of PAG aversion, where 5-HT1C receptors appear to play a predominant function.  相似文献   

10.
In order to evaluate serotonin (5-HT) function in panic disorder, a double blind placebo controlled study was conducted with ritanserin, a specific 5-HT2 receptor antagonist, and fluvoxamine, a selective 5-HT reuptake inhibitor, in 60 patients with panic disorder. Patients were treated for 8 weeks with 150 mg fluvoxamine, 20 mg ritanserin or placebo; these dose levels were reached after 1 week. In addition, as an index of 5-HT function in panic disorder, plasma concentration of -endorphin, cortisol and 5-hydroxyindolacetic-acid (5-HIAA) were measured. Furthermore, 5-HT uptake in blood platelets was assessed. Noradrenergic function was assessed by measuring plasma MHPG concentration. In addition, plasma melatonin concentration was measured. Treatment with fluvoxamine resulted in a profound reduction in the number of panic attacks, followed by a decrease in avoidance behavior. Treatment with ritanserin appeared to be ineffective. During treatment no significant changes were observed in plasma concentrations of -endorphin, cortisol, 5-HIAA and MHPG. With respect to 5-HT kinetics in blood platelets, a substantial increase in Km was observed after treatment with fluvoxamine, whereas Vmax decreased. After treatment with fluvoxamine, plasma concentration of melatonin was significantly increased, which suggests that melatonin synthesis is in part under serotonergic control. The findings of the present study do not support the hypothesis that 5-HT2 receptors are supersensitive in patients suffering from panic disorder, but allow no conclusions about the involvement of other 5-HT receptor subtypes.  相似文献   

11.
Rationale 5-Hydroxytryptamine, via stimulation of 5-HT2C receptors, exerts a tonic inhibitory influence on dopaminergic neurotransmission, whereas activation of 5-HT2A receptors enhances stimulated DAergic neurotransmission. The antidepressant trazodone is a 5-HT2A/2C receptor antagonist.Objectives To evaluate the effect of trazodone treatment on behaviors dependent on the functional status of the nigrostriatal DAergic system.Methods The effect of pretreatment with trazodone on dexamphetamine- and apomorphine-induced oral stereotypies, on catalepsy induced by haloperidol and apomorphine (0.05 mg/kg, i.p.), on ergometrine-induced wet dog shake (WDS) behavior and fluoxetine-induced penile erections was studied in rats. We also investigated whether trazodone induces catalepsy in rats.Results Trazodone at 2.5–20 mg/kg i.p. did not induce catalepsy, and did not antagonize apomorphine (1.5 and 3 mg/kg) stereotypy and apomorphine (0.05 mg/kg)-induced catalepsy. However, pretreatment with 5, 10 and 20 mg/kg i.p. trazodone enhanced dexamphetamine stereotypy, and antagonized haloperidol catalepsy, ergometrine-induced WDS behavior and fluoxetine-induced penile erections. Trazodone at 30, 40 and 50 mg/kg i.p. induced catalepsy and antagonized apomorphine and dexamphetamine stereotypies.Conclusions Our results indicate that trazodone at 2.5–20 mg/kg does not block pre- and postsynaptic striatal D2 DA receptors, while at 30, 40 and 50 mg/kg it blocks postsynaptic striatal D2 DA receptors. Furthermore, at 5, 10 and 20 mg/kg, trazodone blocks 5-HT2A and 5-HT2C receptors. We suggest that trazodone (5, 10 and 20 mg/kg), by blocking the 5-HT2C receptors, releases the nigrostriatal DAergic neurons from tonic inhibition caused by 5-HT, and thereby potentiates dexamphetamine stereotypy and antagonizes haloperidol catalepsy.  相似文献   

12.
Previous study has documented the long-term effects of the antidepressant trazodone on the serotonin (5-HT) system. The present work examined the impact of sustained trazodone on ventral tegmental area (VTA) dopamine (DA) and locus ceruleus (LC) norepinephrine (NE) neurons firing activity, and characterized its effects at 5-HT2C, 5-HT2A receptors and α1- and α2-adrenoceptors. Electrophysiological recordings were carried out in anesthetized rats. Subcutaneously implanted minipumps delivered vehicle or trazodone (10 mg/kg/day) for 2 or 14 days. Administration of trazodone for 2 and 14 days did not alter the firing activity of DA neurons. Systemic injection of trazodone, however, reversed the inhibitory effect of the 5-HT2C receptor agonist Ro 60,0175 on the DA neuronal firing, suggesting an antagonistic action of trazodone at this receptor. Administration of trazodone for 2 days significantly enhanced the NE neurons firing. Despite a return of the NE neurons firing rate to the baseline following 14-day trazodone, the percentage of neurons discharging in burst was increased by this regimen. Administration of trazodone for 14 days enhanced the tonic activation of postsynaptic α2-adrenoceptors, as indicated by the disinhibitory effect of the α2-adrenoceptor antagonist idazoxan on hippocampus pyramidal neurons firing. The inhibitory effect of acute trazodone on dorsal raphe (DR) 5-HT neurons firing was shown to be through the 5-HT1A receptor. Systemic injection of trazodone reversed the inhibitory action of 5-HT2A agonist DOI on the NE neurons firing rate, indicating its antagonistic action at 5-HT2A receptors. The enhancement in α2-adrenergic transmission by trazodone, and its 5-HT2A and 5-HT2C receptor antagonism may contribute to its therapeutic action in major depression.  相似文献   

13.
Interactions of the selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine and its main metabolite norfluoxetine, and the tricyclic anti-depressant (TCA) imipramine with the rat serotonin 5-HT2C receptor in a clonal cell line and in the rat choroid plexus were investigated by radioligand binding and phosphoinositide (PI) hydrolysis assays. For comparison, the affinities of a variety of other antidepressants of different chemical classes for the cloned rat 5-HT2C and 5-HT2A receptors were also determined by radioligand binding assays. Fluoxetine displayed relatively high affinity for the 5-HT2C receptor in the choroid plexus, with a Ki value for inhibition of [3H]mesulergine binding of 55.4 nM. The Ki values for imipramine, norfluoxetine and citalopram were 136 nM, 203 nM, and 298 nM, respectively. Similar rank order of potency was detected in PI hydrolysis assays, which showed that these drugs are antagonists at the 5-HT2C receptor without exhibiting inverse agonist activity. [3H]Ketanserin (5-HT2A) binding assays revealed that the SSRIs fluoxetine, norfluoxetine and citalopram show 10- to 23-fold selectivity for the 5-HT2C receptor in vitro, whereas the TCA imipramine does not. Many other TCAs also had high to intermediate affinity for both 5-HT2A and 5-HT2C receptors. The present data provide evidence that fluoxetine, norfluoxetine and citalopram, along with many other antidepressant compounds, interact directly with the 5-HT2C receptor.  相似文献   

14.
Rationale Global serotonin (5-HT) depletion increases the number of premature responses made on the five-choice serial reaction time task (5CSRT) in rats. In contrast, the 5-HT2A receptor antagonist M100907 decreases this measure of impulsivity. Mounting evidence suggests that 5-HT2A and 5-HT2C receptors have opposing effects on behaviour, and that the 5-HT2C receptor antagonist SB 242084 produces a pattern of behaviour similar to 5-HT depletion.Objectives To assess the effects of 5-HT2A and 5-HT2C receptor antagonists on performance of the 5CSRT, to directly compare the effects of these drugs with those of ICV 5,7-dihydroxytryptamine (5,7-DHT) lesions and to investigate whether 5-HT depletion affects the action of these agents.Methods The effects of M100907 (0, 0.01, 0.03, 0.1 mg/kg IP) and SB 242084 (0, 0.1, 0.25, 0.5 mg/kg IP) were investigated on performance of the 5CSRT in both ICV 5,7-DHT-lesioned and sham-operated rats.Results ICV 5,7-DHT lesions, which significantly decreased forebrain levels of 5-HT by around 90%, increased levels of premature responding, decreased omissions and the latency to respond correctly, yet did not affect performance accuracy. M100907 decreased premature responding in sham-operated controls but not in 5-HT-depleted rats. In contrast, SB 242084 increased premature responding in all animals, and also decreased the latency to make a correct response in sham-operated controls.Conclusions These data support the view that serotonergic regulation of impulsive behaviour through different members of the 5-HT2 receptor family is functionally heterogeneous. Although both 5-HT2A and 5-HT2C receptors participate in controlling this form of impulsive action, their relative contribution may depend on the endogenous state of the 5-HT system.  相似文献   

15.
Rationale Administration of 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptor agonists into the dorsal periaqueductal gray (DPAG) inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with the antipanic compound imipramine enhances the DPAG 5-HT1A- and 5-HT2A-receptor-mediated inhibition of escape, implicating these receptors in the mode of action of panicolytic drugs. Objectives In the present study, we investigated whether the inhibitory effect on escape elicited by the intra-DPAG injection of 5-HT1A and 5-HT2A receptor agonists is also enhanced after treatment with fluoxetine, another widely used antipanic drug. The effects of fluoxetine were compared to those of buspirone, an anxiolytic drug without major effect on panic disorder. Methods Male Wistar rats, subchronically (3–6 days) or chronically (21–24 days) treated with fluoxetine (10 mg/kg i.p.) or chronically treated with buspirone (0.3 mg/kg i.p.), were intra-DPAG injected with 5-HT (20 nmol), the 5-HT1A receptor agonist (±)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 8 nmol) or the preferential 5-HT2A receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI; 16 nmol). The intensity of electrical current that applied to the DPAG-evoked escape behavior was measured before and after the microinjection of these agonists. Results The electrical current necessary to produce escape was increased after the microinjection of the three 5-HT receptor agonists in all groups of animals tested. However, this panicolytic-like effect was significantly higher in animals receiving long-term treatment with fluoxetine. Conclusions The results suggest that facilitation of the 5-HT1A- and 5-HT2A-receptor-mediated inhibition of DPAG neuronal activity is implicated in the beneficial effect of antidepressants in panic disorder.  相似文献   

16.
Rationale The novel antidepressant agent, agomelatine, behaves as an agonist at melatonin receptors and as an antagonist at serotonin (5-HT)2C receptors.Objectives To determine whether, by virtue of its antagonist properties at 5-HT2C receptors, agomelatine elicits anxiolytic properties in rats.Methods Employing a combined neurochemical and behavioural approach, actions of agomelatine were compared to those of melatonin, the selective 5-HT2C receptor antagonist, SB243,213, and the benzodiazepine, clorazepate.Results In unfamiliar pairs of rats exposed to a novel environment, agomelatine enhanced the time devoted to active social interaction, an action mimicked by clorazepate and by SB243,213. In a Vogel conflict procedure, agomelatine likewise displayed dose-dependent anxiolytic activity with a maximal effect comparable to clorazepate, and SB243,213 was similarly active in this procedure. In a plus-maze procedure in which clorazepate significantly enhanced percentage entries into open arms, agomelatine revealed only modest activity and SB243,213 was inactive. Further, like SB243,213, and in contrast to clorazepate, agomelatine did not suppress ultrasonic vocalizations emitted by rats re-exposed to an environment associated with an aversive stimulus. Whereas clorazepate reduced dialysate levels of 5-HT and noradrenaline in hippocampus and frontal cortex of freely moving rats, agomelatine did not affect extracellular levels of 5-HT and elevated those of noradrenaline. SB243,213 acted similarly to agomelatine. Melatonin, which did not modify extracellular levels of 5-HT or noradrenaline, was ineffective in all models of anxiolytic activity. Furthermore, the selective melatonin antagonist, S22153, did not modify anxiolytic properties of agomelatine in either the social interaction or the Vogel Conflict tests.Conclusions In contrast to melatonin, and reflecting blockade of 5-HT2C receptors, agomelatine is active in several models of anxiolytic properties in rodents. The anxiolytic profile of agomelatine differs from that of benzodiazepines from which it may also be distinguished by its contrasting influence on corticolimbic monoaminergic pathways.  相似文献   

17.
Rationale Central 5-hydroxytryptamine (5-HT) release is regulated by inhibitory 5-HT autoreceptors, including 5-HT1A and 5-HT1B receptors.Objectives The purpose of this study was to use combinations of selective autoreceptor antagonists to elucidate the role of these receptors in controlling extracellular 5-HT in terminal areas.Methods Microdialysis was carried out in awake rats and guinea pigs to measure extracellular 5-HT in the frontal cortex and dentate gyrus. Using the selective 5-HT1A receptor antagonist, WAY-100635, and the selective 5-HT1B receptor antagonist, SB-224289, we have compared the roles of 5-HT1A and 5-HT1B autoreceptors in controlling extracellular 5-HT.Results SB-224289 (4 mg/kg i.p.) alone produced a significant 50% increase in extracellular 5-HT in the dentate gyrus of guinea pigs, but not in the frontal cortex of the same animals. Co-administration of WAY-100635 (0.3 mg/kg s.c.), did not change the SB-224289-induced increase in dentate gyrus 5-HT but did produce a significant augmentation (60% increase) of guinea pig frontal cortex 5-HT. In contrast, neither autoreceptor antagonist, alone or in combination, affected extracellular 5-HT in the frontal cortex or dentate gyrus of rats.Conclusions These data indicate that there is a species difference in the autoreceptor control of 5-HT release. Furthermore, in the guinea pig there is a divergence between dorsal and median raphe innervated brain regions. On the basis that antagonism of 5-HT1A and 5-HT1B receptors produced an immediate increase in extracellular 5-HT in multiple brain regions in the guinea pig, it is suggested that this might be a novel mechanism for achieving antidepressant efficacy.  相似文献   

18.
Desensitisation of 5-HT1A and 5-HT1B autoreceptors is thought to be the mechanism underlying the therapeutic effects of fluoxetine and other selective serotonin re-uptake inhibitors (SSRIs) when these are administered chronically, while blockade of these autoreceptors occurring on administration of an SSRI together with an autoreceptor antagonist is responsible for the acute increase in 5-HT levels in vivo observed under these circumstances. The effects of repeated administration of SSRIs together with 5-HT1B receptor antagonists on 5-HT levels and autoreceptor activity have not been studied previously with an in vivo method. In this work we found, using in vivo microdialysis that the effect of fluoxetine (5 mg/kg i.p. daily for 7 days) to desensitise 5-HT1B autoreceptors in frontal cortex, as measured by the action of CP 93129 (10 M) to reduce 5-HT levels, was prevented by concomitant administration of the 5-HT1B receptor antagonist SB 224289 (2.5 mg/kg s.c.). 5-HT1B receptor activity in hypothalamus and 5-HT1A autoreceptor activity, as determined by the effects of s.c. 8-OH-DPAT to reduce 5-HT levels, were not altered either by fluoxetine alone at this dose or by fluoxetine in the presence of SB 224289. We conclude that the effects obtained when 5-HT1B autoreceptor antagonists are administered acutely together with SSRIs may not be maintained after repeated administration.  相似文献   

19.

Background and purpose:

Recent experiments using non-selective 5-hydroxytryptamine (5-HT)2C receptor agonists including WAY 161503 suggested that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, acting via neighbouring gamma-aminobutyric acid (GABA) neurones. The present study extended this pharmacological characterization by comparing the actions of WAY 161503 with the 5-HT2C receptor agonists, Ro 60-0275 and 1-(3-chlorophenyl) piperazine (mCPP), as well as the non-selective 5-HT agonist lysergic acid diethylamide (LSD) and the 5-HT releasing agent 3,4-methylenedioxymethamphetamine (MDMA).

Experimental approach:

5-HT neuronal activity was measured in the dorsal raphe nucleus (DRN) using extracellular recordings in anaesthetized rats. The activity of DRN GABA neurones was assessed using double-label immunohistochemical measurements of Fos and glutamate decarboxylase (GAD).

Key results:

Ro 60-0175, like WAY 161503, inhibited 5-HT neurone firing, and the 5-HT2C antagonist SB 242084 reversed this effect. mCPP also inhibited 5-HT neurone firing (∼60% neurones) in a SB 242084-reversible manner. LSD inhibited 5-HT neurone firing; however, this effect was not altered by either SB 242084 or the 5-HT2A/C receptor antagonist ritanserin but was reversed by the 5-HT1A receptor antagonist WAY 100635. Similarly, MDMA inhibited 5-HT neurone firing in a manner reversible by WAY 100635, but not SB 242084 or ritanserin. Finally, both Ro 60-0275 and mCPP, like WAY 161503, increased Fos expression in GAD-positive DRN neurones.

Conclusions and implications:

These data strengthen the hypothesis that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, and suggest that the 5-HT2C agonists Ro 60-0175, mCPP and WAY 161503, but not LSD or MDMA, are useful probes of the mechanism(s) involved.  相似文献   

20.
Rationale Though 5-HT plays an important role in the modulation of motor function, which is perturbed in depressive states, little is known concerning the influence of serotonin reuptake inhibitors (SSRIs) on locomotor activity (LA). Recently, we demonstrated that SSRIs, such as citalopram, enhance LA in mice exposed to a novel environment. Objectives This study examined the role of multiple classes of 5-HT receptor in citalopram-induced LA. Methods The most selective antagonists currently available were used. Results Citalopram-induced LA was dose-dependently attenuated by the 5-HT1B/1D receptor antagonists, S18127, GR125,743 and GR127,935, and by the selective 5-HT1B antagonist, SB224,289, but unaffected by the selective 5-HT1A antagonist, WAY100,635. The selective antagonists at 5-HT2A receptors, MDL100,907 and SR46,349 also dose-dependently attenuated induction of locomotion by citalopram, whereas the 5-HT2B antagonist, SB204,741, and the 5-HT2B/2C antagonist, SB206,553 were ineffective. Further, the selective 5-HT2C antagonist, SB242,084, potentiated the response to citalopram. Selective antagonists at 5-HT3 (ondansetron), 5-HT4 (GR125,487), 5-HT6 (SB271,046) and 5-HT7 (SB269,970) receptors did not significantly modify the action of citalopram. Underpinning these findings, SB224,289, GR125,743, MDL100,907 and SR46,349 likewise attenuated induction of locomotion by a further SSRI, fluvoxamine. Conclusions The locomotor response to SSRIs of mice exposed to a novel environment is mediated via 5-HT1B and 5-HT2A receptors. In view of the importance of motor function to the etiology and treatment of depression, the significance of these observations to the clinical actions of SSRIs will be of interest to elucidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号