首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Vibrio vulnificus expresses a multitude of cell-associated and secreted factors that potentially contribute to pathogenicity, although the specific roles of most of these factors have been difficult to define. Previously we have shown that a mutation in pilD (originally designated vvpD), which encodes a type IV prepilin peptidase/N-methyltransferase, abolishes expression of surface pili, suggesting that they belong to the type IV class. In addition, a pilD mutant exhibits reduced adherence to HEp-2 cells, a block in secretion of several exoenzymes that follow the type II secretion pathway, and decreased virulence. In this study, we have cloned and characterized a V. vulnificus type IV pilin (PilA) that shares extensive homology to group A type IV pilins expressed by many pathogens, including Vibrio cholerae (PilA), Pseudomonas aeruginosa (PilA), and Aeromonas hydrophila (TapA). The V. vulnificus pilA gene is part of an operon and is clustered with three other pilus biogenesis genes, pilBCD. Inactivation of pilA reduces the ability of V. vulnificus to form biofilms and significantly decreases adherence to HEp-2 cells and virulence in iron dextran-treated mice. Southern blot analysis demonstrates the widespread presence of both pilA and pilD in clinical as well as environmental strains of V. vulnificus.  相似文献   

2.
3.
The Vibrio cholerae genome contains a 5.4-kb pil gene cluster that resembles the Aeromonas hydrophila tap gene cluster and other type IV-A pilus assembly operons. The region consists of five complete open reading frames designated pilABCD and yacE, based on the nomenclature of related genes from Pseudomonas aeruginosa and Escherichia coli K-12. This cluster is present in both classical and El Tor biotypes, and the pilA and pilD genes are 100% conserved. The pilA gene encodes a putative type IV pilus subunit. However, deletion of pilA had no effect on either colonization of infant mice or adherence to HEp-2 cells, demonstrating that pilA does not encode the primary subunit of a pilus essential for these processes. The pilD gene product is similar to other type IV prepilin peptidases, proteins that process type IV signal sequences. Mutational analysis of the pilD gene showed that pilD is essential for secretion of cholera toxin and hemagglutinin-protease, mannose-sensitive hemagglutination (MSHA), production of toxin-coregulated pili, and colonization of infant mice. Defects in these functions are likely due to the lack of processing of N termini of four Eps secretion proteins, four proteins of the MSHA cluster, and TcpB, all of which contain type IV-A leader sequences. Some pilD mutants also showed reduced adherence to HEp-2 cells, but this defect could not be complemented in trans, indicating that the defect may not be directly due to a loss of pilD. Taken together, these data demonstrate the effectiveness of the V. cholerae genome project for rapid identification and characterization of potential virulence factors.  相似文献   

4.
Type IV pili of the opportunistic pathogen Pseudomonas aeruginosa mediate twitching motility and act as receptors for bacteriophage infection. They are also important bacterial adhesins, and nonpiliated mutants of P. aeruginosa have been shown to cause less epithelial cell damage in vitro and have decreased virulence in animal models. This finding raises the question as to whether the reduction in cytotoxicity and virulence of nonpiliated P. aeruginosa mutants are primarily due to defects in cell adhesion or loss of twitching motility, or both. This work describes the role of PilT and PilU, putative nucleotide-binding proteins involved in pili function, in mediating epithelial cell injury in vitro and virulence in vivo. Mutants of pilT and pilU retain surface pili but have lost twitching motility. In three different epithelial cell lines, pilT or pilU mutants of the strain PAK caused less cytotoxicity than the wild-type strain but more than isogenic, nonpiliated pilA or rpoN mutants. The pilT and pilU mutants also showed reduced association with these same epithelial cell lines compared both to the wild type, and surprisingly, to a pilA mutant. In a mouse model of acute pneumonia, the pilT and pilU mutants showed decreased colonization of the liver but not of the lung relative to the parental strain, though they exhibited no change in the ability to cause mortality. These results demonstrate that pilus function mediated by PilT and PilU is required for in vitro adherence and cytotoxicity toward epithelial cells and is important in virulence in vivo.  相似文献   

5.
Twitching motility is a form of surface-associated bacterial movement mediated by type IV pili of Pseudomonas aeruginosa. Others have shown that pilT and pilU mutants, which are piliated but defective in twitching motility, display reduced cytotoxic capacity towards epithelial cells in vitro. Although these mutants efficiently infected lungs in vivo, they were defective in dissemination to the liver. In this study the role of twitching motility in P. aeruginosa epithelial cell invasion and corneal disease pathogenesis was explored. pilU and pilT mutants of P. aeruginosa strain PAK were compared to a nonpiliated pilA mutant and to wild-type bacteria in their ability to associate with and to invade corneal epithelial cells in vitro and to cause disease in a murine model of corneal infection. As expected, the pilA mutant demonstrated reduced association and invasion of corneal epithelial cells (P < 0.05 in both cases). The pilT mutant, but not the pilU mutant, was less invasive than wild-type PAK was (P < 0.05 versus P = 0.43), while both pilU and pilT mutants exhibited association levels similar to those of the wild type (P = 0.31 and 0.52, respectively). In vivo, all mutants were markedly attenuated in virulence and showed reduced ability to colonize the cornea at 4 and 48 h (all P values < 0.02). Thus, twitching motility contributed to the role of pili in corneal disease but was not involved in the role of pili in adherence to or invasion of corneal epithelial cells.  相似文献   

6.
Burkholderia pseudomallei produces an extracellular polysaccharide capsule -3)-2-O-acetyl-6-deoxy-beta-D-manno-heptopyranose-(1- which has been shown to be an essential virulence determinant. The addition of purified capsule was shown to increase the virulence of a capsule mutant strain in the Syrian hamster model of acute melioidosis. An increase in the number of wild-type B. pseudomallei cells in the blood was seen by 48 h, while the number of capsule mutant cells in the blood declined by 48 h. Capsule expression was shown to be induced in the presence of serum using a lux reporter fusion to the capsule gene wcbB. The addition of purified B. pseudomallei capsule to serum bactericidal assays increased the survival of B. pseudomallei SLR5, a serum-sensitive strain, by 1,000-fold in normal human serum. Capsule production by B. pseudomallei contributed to reduced activation of the complement cascade by reducing the levels of complement factor C3b deposition. An increase in phagocytosis of the capsule mutant compared to the wild type was observed in the presence of normal human serum. These results suggest that the production of this capsule contributes to resistance to phagocytosis by reducing C3b deposition on the surface of the bacterium, thereby contributing to the persistence of bacteria in the blood of the infected host. Continued studies to characterize this capsule are essential for understanding the pathogenesis of B. pseudomallei infections and the development of preventive strategies for treatment of this disease.  相似文献   

7.
Burkholderia pseudomallei is an emerging bacterial pathogen and category B biothreat. Human infections with B. pseudomallei (called melioidosis) present as a range of manifestations, including acute septicemia and pneumonia. Although melioidosis can be fatal, little is known about the molecular basis of B. pseudomallei pathogenicity, in part because of the lack of simple, genetically tractable eukaryotic models to facilitate en masse identification of virulence determinants or explore host-pathogen interactions. Two assays, one high-throughput and one quantitative, were developed to monitor levels of resistance of B. pseudomallei and the closely related nearly avirulent species Burkholderia thailandensis to predation by the phagocytic amoeba Dictyostelium discoideum. The quantitative assay showed that levels of resistance to, and survival within, amoeba by these bacteria and their known virulence mutants correlate well with their published levels of virulence in animals. Using the high-throughput assay, we screened a 1,500-member B. thailandensis transposon mutant library and identified 13 genes involved in resistance to predation by D. discoideum. Orthologs of these genes were disrupted in B. pseudomallei, and nearly all mutants had similarly decreased resistance to predation by D. discoideum. For some mutants, decreased resistance also correlated with reduced survival in and cytotoxicity toward macrophages, as well as attenuated virulence in mice. These observations suggest that some factors required by B. pseudomallei for resistance to environmental phagocytes also aid in resistance to phagocytic immune cells and contribute to disease in animals. Thus, D. discoideum provides a novel, high-throughput model system for facilitating inquiry into B. pseudomallei virulence.  相似文献   

8.
Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts.  相似文献   

9.
Melioidosis is an infectious disease caused by Burkholderia pseudomallei. Genomic subtractive hybridisation was performed with the closely related avirulent species B. thailandensis to identify virulence genes of B. pseudomallei. The subtractive hybridisation products were highly specific for B. pseudomallei. Sequence analysis revealed a number of putative virulence factors, as well as apparently novel sequences of unknown function. The subtracted library contained DNA regions of relatively low G + C mol% content, which were distributed throughout the B. pseudomallei genome. The distribution of subtracted sequences amongst a collection of 22 B. pseudomallei isolates was found to be variable, with the exception of three strains which almost universally lacked the subtracted sequences. These three strains also differed in that they were highly haemolytic, indicating a possible separate virotype.  相似文献   

10.
The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD(50)s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD(50) for the Δhcp1 mutant was >10(3) bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.  相似文献   

11.
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to regions of Southeast Asia and Northern Australia. Both humans and a range of other animal species are susceptible to melioidosis, and the production of a group 3 polysaccharide capsule in B. pseudomallei is essential for virulence. B. pseudomallei capsular polysaccharide (CPS) I comprises unbranched manno-heptopyranose residues and is encoded by a 34.5-kb locus on chromosome 1. Despite the importance of this locus, the role of all of the genes within this region is unclear. We inactivated 18 of these genes and analyzed their phenotype using Western blotting and immunofluorescence staining. Furthermore, by combining this approach with bioinformatic analysis, we were able to develop a model for CPS I biosynthesis and export. We report that inactivating gmhA, wcbJ, and wcbN in B. pseudomallei K96243 retains the immunogenic integrity of the polysaccharide despite causing attenuation in the BALB/c murine infection model. Mice immunized with the B. pseudomallei K96243 mutants lacking a functional copy of either gmhA or wcbJ were afforded significant levels of protection against a wild-type B. pseudomallei K96243 challenge.  相似文献   

12.
Flagella are virulence determinants of Burkholderia pseudomallei   总被引:2,自引:0,他引:2       下载免费PDF全文
Burkholderia pseudomallei, a facultatively intracellular pathogen, is a flagellated and motile gram-negative bacterium and is the causative agent of melioidosis in humans. Flagella are commonly recognized as important virulence determinants expressed by bacterial pathogens since the motility phenotype imparted by these organelles often correlates with the ability of an organism to cause disease. We used a virulent isolate of B. pseudomallei, KHW, to construct an isogenic deletion mutant with a mutation in the flagellin gene (fliC) by gene replacement transposon mutagenesis. The KHWDeltafliCKm mutant was aflagellate and nonmotile in semisolid agar. The isogenic KHWDeltafliCKm mutant was not impaired in terms of the ability to invade and replicate in cultured human lung cells compared with the wild type. It was also equally virulent in slow-killing assays involving Caenorhabditis elegans, but it was avirulent during intranasal infection of BALB/c mice. Very few bacteria, if any, were isolated from the lungs and spleens of KHWDeltafliCKm-infected mice. In contrast, the bacterial loads in the lungs and spleens were similar in mice infected with KHW and in mice infected with the complemented mutant, KHWDeltafliCKm/pUCP28TfliC. Unlike the Syrian hamster or diabetic rat models of infection, the B. pseudomallei flagellin was also a virulence factor during intraperitoneal infection of BALB/c mice. In this study, all animals infected with KHWDeltafliCKm remained healthy and did not succumb to disease regardless of the route of infection. The flagellum is therefore an important and necessary virulence determinant of B. pseudomallei during intranasal and intraperitoneal infection of mice.  相似文献   

13.
Burkholderia pseudomallei is a Gram-negative soil bacterium and the causative agent of melioidosis, a disease of humans and animals. It is also listed as a category B bioterrorism threat agent by the U.S. Centers for Disease Control and Prevention, and there is currently no melioidosis vaccine available. Small modified nucleotides such as the hyperphosphorylated guanosine molecules ppGpp and pppGpp play an important role as signaling molecules in prokaryotes. They mediate a global stress response under starvation conditions and have been implicated in the regulation of virulence and survival factors in many bacterial species. In this study, we created a relA spoT double mutant in B. pseudomallei strain K96243, which lacks (p)ppGpp-synthesizing enzymes, and investigated its phenotype in vitro and in vivo. The B. pseudomallei ΔrelA ΔspoT mutant displayed a defect in stationary-phase survival and intracellular replication in murine macrophages. Moreover, the mutant was attenuated in the Galleria mellonella insect model and in both acute and chronic mouse models of melioidosis. Vaccination of mice with the ΔrelA ΔspoT mutant resulted in partial protection against infection with wild-type B. pseudomallei. In summary, (p)ppGpp signaling appears to represent an essential component of the regulatory network governing virulence gene expression and stress adaptation in B. pseudomallei, and the ΔrelA ΔspoT mutant may be a promising live-attenuated vaccine candidate.  相似文献   

14.
Burkholderia pseudomallei, the etiologic agent of melioidosis, is responsible for a broad spectrum of illnesses in humans and animals particularly in Southeast Asia and northern Australia, where it is endemic. Burkholderia thailandensis is a nonpathogenic environmental organism closely related to B. pseudomallei. Subtractive hybridization was carried out between these two species to identify genes encoding virulence determinants in B. pseudomallei. Screening of the subtraction library revealed A-T-rich DNA sequences unique to B. pseudomallei, suggesting they may have been acquired by horizontal transfer. One of the subtraction clones, pDD1015, encoded a protein with homology to a glycosyltransferase from Pseudomonas aeruginosa. This gene was insertionally inactivated in wild-type B. pseudomallei to create SR1015. It was determined by enzyme-linked immunosorbent assay and immunoelectron microscopy that the inactivated gene was involved in the production of a major surface polysaccharide. The 50% lethal dose (LD(50)) for wild-type B. pseudomallei is <10 CFU; the LD(50) for SR1015 was determined to be 3.5 x 10(5) CFU, similar to that of B. thailandensis (6.8 x 10(5) CFU). DNA sequencing of the region flanking the glycosyltransferase gene revealed open reading frames similar to capsular polysaccharide genes in Haemophilus influenzae, Escherichia coli, and Neisseria meningitidis. In addition, DNA from Burkholderia mallei and Burkholderia stabilis hybridized to a glycosyltransferase fragment probe, and a capsular structure was identified on the surface of B. stabilis via immunoelectron microscopy. Thus, the combination of PCR-based subtractive hybridization, insertional inactivation, and animal virulence studies has facilitated the identification of an important virulence determinant in B. pseudomallei.  相似文献   

15.
A type 1 pilus-deficient mutant of a systemically invasive Escherichia coli K1 strain was constructed by directed mutagenesis of pilA, the gene that codes for the major structural subunit of type 1 pili. By comparing this mutant with an isogenic pilA+ strain, we were able to assess the role of type 1 piliation in alimentary tract colonization and bloodstream invasion in neonatal rats. Intestinal colonization was not significantly affected by the pilA mutation; in contrast, loss of type 1 piliation correlated with a dramatic decrease in oropharyngeal colonization. Nevertheless, development of bacteremia after oral administration of E. coli K1 was not diminished by the mutation in pilA. Thus, loss of type 1 piliation correlated with a site-dependent effect on colonization within the alimentary tract while not interfering with bloodstream invasion.  相似文献   

16.
Melioidosis: epidemiology, pathophysiology, and management   总被引:18,自引:0,他引:18       下载免费PDF全文
Melioidosis, caused by the gram-negative saprophyte Burkholderia pseudomallei, is a disease of public health importance in southeast Asia and northern Australia that is associated with high case-fatality rates in animals and humans. It has the potential for epidemic spread to areas where it is not endemic, and sporadic case reports elsewhere in the world suggest that as-yet-unrecognized foci of infection may exist. Environmental determinants of this infection, apart from a close association with rainfall, are yet to be elucidated. The sequencing of the genome of a strain of B. pseudomallei has recently been completed and will help in the further identification of virulence factors. The presence of specific risk factors for infection, such as diabetes, suggests that functional neutrophil defects are important in the pathogenesis of melioidosis; other studies have defined virulence factors (including a type III secretion system) that allow evasion of killing mechanisms by phagocytes. There is a possible role for cell-mediated immunity, but repeated environmental exposure does not elicit protective humoral or cellular immunity. A vaccine is under development, but economic constraints may make vaccination an unrealistic option for many regions of endemicity. Disease manifestations are protean, and no inexpensive, practical, and accurate rapid diagnostic tests are commercially available; diagnosis relies on culture of the organism. Despite the introduction of ceftazidime- and carbapenem-based intravenous treatments, melioidosis is still associated with a significant mortality attributable to severe sepsis and its complications. A long course of oral eradication therapy is required to prevent relapse. Studies exploring the role of preventative measures, earlier clinical identification, and better management of severe sepsis are required to reduce the burden of this disease.  相似文献   

17.
Burkholderia pseudomallei is the causative agent of melioidosis, a disease increasingly recognized as an important cause of morbidity and mortality in many regions of the world. B. pseudomallei is a facultative intracellular pathogen capable of invading eukaryotic cells. We used Tn5-OT182 mutagenesis to generate mutants deficient in the ability to invade a human type II pneumocyte cell line (A549 cells). One of these mutants, AJ1D8, exhibited approximately 10% of the ability of the parental strain, 1026b, to invade A549 cells. There was no difference in the abilities of 1026b and AJ1D8 to resist killing by RAW macrophages or the human defensin HNP-1. The nucleotide sequence flanking the Tn5-OT182 integration in AJ1D8 was determined, and two open reading frames were identified. The predicted proteins shared considerable homology with two-component regulatory systems involved in the regulation of heavy-metal resistance in other organisms. AJ1D8 was 16-fold more sensitive to Cd2+ and twofold more sensitive to Zn2+ than was 1026b but was not sensitive to any of the other heavy metals examined. The B. pseudomallei two-component regulatory system, termed irlRS, complemented the invasion-deficient and heavy-metal-sensitive phenotype of AJ1D8 in trans. There was no significant difference between the virulence of AJ1D8 and that of 1026b in infant diabetic rats and Syrian hamsters, suggesting that the irlRS locus is probably not a virulence determinant in these animal models of acute B. pseudomallei infection.  相似文献   

18.
The bacterial pathogen Burkholderia pseudomallei invades host cells, escapes from endocytic vesicles, multiplies intracellularly, and induces the formation of actin tails and membrane protrusions, leading to direct cell-to-cell spreading. This study was aimed at the identification of B. pseudomallei genes responsible for the different steps of this intracellular life cycle. B. pseudomallei transposon mutants were screened for a reduced ability to form plaques on PtK2 cell monolayers as a result of reduced intercellular spreading. Nine plaque assay mutants with insertions in different open reading frames were selected for further studies. One mutant defective in a hypothetical protein encoded within the Bsa type III secretion system gene cluster was found to be unable to escape from endocytic vesicles after invasion but still multiplied within the vacuoles. Another mutant with a defect in a putative exported protein reached the cytoplasm but exhibited impaired actin tail formation in addition to a severe intracellular growth defect. In four mutants, the transposon had inserted into genes involved in either purine, histidine, or p-aminobenzoate biosynthesis, suggesting that these pathways are essential for intracellular growth. Three mutants with reduced plaque formation were shown to have gene defects in a putative cytidyltransferase, a putative lipoate-protein ligase B, and a hypothetical protein. All nine mutants proved to be significantly attenuated in a murine model of infection, with some mutants being essentially avirulent. In conclusion, we have identified a number of novel major B. pseudomallei virulence genes which are essential for the intracellular life cycle of this pathogen.  相似文献   

19.
Dot blot hybridization and PCR amplification of 14 Ara(+) and 8 Ara(-) Burkholderia pseudomallei strains showed that type III secretion (TTS) genes were present in all the Ara(-) strains but absent from all but one of the Ara(+) strains. The link between TTS genes and an Ara(-) phenotype suggests a role for TTS in virulence.  相似文献   

20.
Burkholderia pseudomallei is a causative agent of melioidosis. The present study investigated IL-1beta mRNA and protein expression by peripheral blood mononuclear cells and purified monocytes (n = 10) in response to infection with B. pseudomallei and B. thailandensis. Similarly increased IL-1beta mRNA and protein expression was found in both PBMC and purified monocytes stimulated with B. pseudomallei and B. thailandensis. Thus, this study suggests that IL-1beta response does not differ between infections with B. pseudomallei and its non-virulent counterpart and other mechanisms may be involved in their distinct virulence in causing the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号