首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in DJ-1, a human gene with homologues in organisms from all kingdoms of life, have been shown to be associated with autosomal recessive, early onset Parkinson's disease (PARK7). We report here the three-dimensional structure of the DJ-1 protein, determined at a resolution of 1.1 A by x-ray crystallography. The chain fold of DJ-1 resembles those of a bacterial protein, PfpI, that has been annotated as a cysteine protease, and of a domain of a bacterial catalase whose role in the activity of that enzyme is uncertain. In contrast to PfpI, a hexameric protein whose oligomeric structure is essential for its putative proteolytic activity, DJ-1 is a dimer with completely different intersubunit contacts. The proposed catalytic triad of PfpI is absent from the corresponding region of the structure of DJ-1, and biochemical assays fail to detect any protease activity for purified DJ-1. A highly conserved cysteine residue, which is catalytically essential in homologues of DJ-1, shows an extreme sensitivity to radiation damage and may be subject to other forms of oxidative modification as well. The structure suggests that the loss of function caused by the Parkinson's-associated mutation L166P in DJ-1 is due to destabilization of the dimer interface. Taken together, the crystal structure of human DJ-1 plus other observations suggest the possible involvement of this protein in the cellular oxidative stress response and a general etiology of neurodegenerative diseases.  相似文献   

2.
The crystal structure of an allosteric chorismate mutase, the Thr-226-->Ile mutant, from yeast Saccharomyces cerevisiae has been determined to 2.2-A resolution by using the multiple isomorphous replacement method. Solvent-flattening and electron-density modification were applied for phase improvement. The current crystallographic R factor is 0.196. The final model includes 504 of the 512 residues and 97 water molecules. In addition, two tryptophan molecules were identified in the interface between monomers. The overall structure is completely different from the reported structure of chorismate mutase from Bacillus subtilis. This structure showed 71% helices with essentially no beta-sheet structures.  相似文献   

3.
The crystal structure of DsRed, a red fluorescent protein from a corallimorpharian, has been determined at 2.0-A resolution by multiple-wavelength anomalous dispersion and crystallographic refinement. Crystals of the selenomethionine-substituted protein have space group P2(1) and contain a tetramer with 222 noncrystallographic symmetry in the asymmetric unit. The refined model has satisfactory stereochemistry and a final crystallographic R factor of 0.162. The protein, which forms an obligatory tetramer in solution and in the crystal, is a squat rectangular prism comprising four protomers whose fold is extremely similar to that of the Aequorea victoria green fluorescent protein despite low ( approximately 23%) amino acid sequence homology. The monomer consists of an 11-stranded beta barrel with a coaxial helix. The chromophores, formed from the primary sequence -Gln-Tyr-Gly- (residues 66-68), are arranged in a approximately 27 x 34-A rectangular array in two approximately antiparallel pairs. The geometry at the alpha carbon of Gln-66 (refined without stereochemical restraints) is consistent with an sp(2) hybridized center, in accord with the proposal that red fluorescence is because of an additional oxidation step that forms an acylimine extension to the chromophore [Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K. & Tsien, R. Y. (2000) Proc. Natl. Acad. Sci. USA 87, 11990-11995]. The carbonyl oxygen of Phe-65 is almost 90 degrees out of the plane of the chromophore, consistent with theoretical calculations suggesting that this is the minimum energy conformation of this moiety despite the conjugation of this group with the rest of the chromophore.  相似文献   

4.
The phospholipase D (PLD) superfamily is a diverse group of proteins that includes enzymes involved in phospholipid metabolism, a bacterial toxin, poxvirus envelope proteins, and bacterial nucleases. Based on sequence comparisons, we show here that the tyrosyl-DNA phosphodiesterase (Tdp1) that has been implicated in the repair of topoisomerase I covalent complexes with DNA contains two unusual HKD signature motifs that place the enzyme in a distinct class within the PLD superfamily. Mutagenesis studies with the human enzyme in which the invariant histidines and lysines of the HKD motifs are changed confirm that these highly conserved residues are essential for Tdp1 activity. Furthermore, we show that, like other members of the family for which it has been examined, the reaction involves the formation of an intermediate in which the cleaved substrate is covalently linked to the enzyme. These results reveal that the hydrolytic reaction catalyzed by Tdp1 occurs by the phosphoryl transfer chemistry that is common to all members of the PLD superfamily.  相似文献   

5.
The 3.0-A-resolution x-ray structure of rat liver 3 alpha-hydroxysteroid dehydrogenase/dihydrodiol dehydrogenase (3 alpha-HSD, EC 1.1.1.50) was determined by molecular replacement using human placental aldose reductase as the search model. The protein folds into an alpha/beta or triose-phosphate isomerase barrel and lacks a canonical Rossmann fold for binding pyridine nucleotide. The structure contains a concentration of hydrophobic amino acids that lie in a cavity near the top of the barrel and that are presumed to be involved in binding hydrophobic substrates (steroids, prostaglandins, and polycyclic aromatic hydrocarbons) and inhibitors (nonsteroidal antiinflammatory drugs). At the distal end of this cavity lie three residues in close proximity that have been implicated in catalysis by site-directed mutagenesis--Tyr-55, Asp-50, and Lys-84. Tyr-55 is postulated to act as the general acid. 3 alpha-HSD shares significant sequence identity with other HSDs that belong to the aldo-keto reductase superfamily and these may show similar architecture. Other members of this family include prostaglandin F synthase and rho-crystallin. By contrast, 3 alpha-HSD shares no sequence identity with HSDs that are members of the short-chain alcohol dehydrogenase family but does contain the Tyr-Xaa-Xaa-Xaa-Lys consensus sequence implicated in catalysis in this family. In the 3 alpha-HSD structure these residues are on the periphery of the barrel and are unlikely to participate in catalysis.  相似文献   

6.
The binding of the cell surface molecule CD58 (formerly lymphocyte function-associated antigen 3) to its ligand, CD2, significantly increases the sensitivity of antigen recognition by T cells. This was the first heterophilic cell adhesion interaction to be discovered and is now an important paradigm for analyzing the structural basis of cell-cell recognition. The crystal structure of a CD2-binding chimeric form of CD58, solved to 1.8-A resolution, reveals that the ligand binding domain of CD58 has the expected Ig superfamily V-set topology and shares several of the hitherto unique structural features of CD2, consistent with previous speculation that the genes encoding these molecules arose via duplication of a common precursor. Nevertheless, evidence for considerable divergence of CD2 and CD58 is also implicit in the structures. Mutations that disrupt CD2 binding map to the highly acidic surface of the AGFCC'C" beta-sheet of CD58, which, unexpectedly, lacks marked shape complementarity to the equivalent, rather more basic CD58-binding face of human CD2. The specificity of the very weak interactions of proteins mediating cell-cell recognition may often derive largely from electrostatic complementarity, with shape matching at the protein-protein interface being less exact than for interactions that combine specificity with high affinity, such as those involving antibodies.  相似文献   

7.
Manganese-containing superoxide dismutase (SOD2) plays a critical role in guarding against mitochondrial oxidative stress and is essential for survival of many organisms. Despite the recognized importance of SOD2, nothing is known regarding the mechanisms by which this nuclear-encoded protein is converted to an active enzyme in the mitochondrial matrix. To search for factors that participate in the posttranslational activation of SOD2, we screened for yeast genes that when mutated lead to SOD2 inactivation and identified a single ORF, YGR257c. The encoded protein localizes to the mitochondria and represents a member of the yeast mitochondrial carrier family. YGR257c was previously recognized as the homologue to human CGI-69, a widely expressed mitochondrial carrier family of unknown function. Our studies suggest a connection with SOD2, and we have named the yeast gene MTM1 for manganese trafficking factor for mitochondrial SOD2. Inactivation of yeast MTM1 leads to loss of SOD2 activity that is restored only when cells are treated with high supplements of manganese, but not other heavy metals, indicative of manganese deficiency in the SOD2 polypeptide. Surprisingly, the mitochondrial organelle of mtm1 Delta mutants shows no deficiency in manganese levels. Moreover, mtm1 Delta mutations do not impair activity of a cytosolic version of manganese SOD. We propose that Mtm1p functions in the mitochondrial activation of SOD2 by specifically facilitating insertion of the essential manganese cofactor.  相似文献   

8.
The structure of the Fab' fragment of a human myeloma immunoglobulin was determined by x-ray crystallographic analysis at 2.8-A resolution. The Fourier map of the electron density was correlated with the aminoacid sequence to obtain a three-dimensional model. Four globular subunits, which correspond to the homology regions of the light and heavy chains, are arranged in a tetrahedral configuration. These subunits closely resemble each other, sharing a basic pattern of polypeptide chain folding. In each subunit, long sequences of tightly packed, hydrogen bonded polypeptide chain run parallel to the major axis of the subunit. No helical conformation can be seen. Different patterns of interchain disulfide linkage and unusual intrachain disulfide bonds that have been observed in other immunoglobulins can be explained with this model. The regions of hypervariable sequences in the light and heavy chains occur at one end of the molecule, in close spatial proximity.  相似文献   

9.
Data from the Women's Health Study show that serum levels of growth-differentiation factor-15 (GDF-15), a distant member of the transforming growth factor-beta superfamily, are an independent risk indicator for adverse cardiovascular events. However, the cellular sources, upstream regulators, and functional effects of GDF-15 in the cardiovascular system have not been elucidated. We have identified GDF-15 by cDNA expression array analysis as a gene that is strongly upregulated by nitrosative stress in cultured cardiomyocytes isolated from 1- to 3-day-old rats. GDF-15 mRNA and pro-peptide expression levels were also induced in cardiomyocytes subjected to simulated ischemia/reperfusion (I/R) via NO-peroxynitrite-dependent signaling pathways. GDF-15 was actively secreted into the culture supernatant, suggesting that it might exert autocrine/paracrine effects during I/R. To explore the in vivo relevance of these findings, mice were subjected to transient or permanent coronary artery ligation. Myocardial GDF-15 mRNA and pro-peptide abundance rapidly increased in the area-at-risk after ischemic injury. Similarly, patients with an acute myocardial infarction had enhanced myocardial GDF-15 pro-peptide expression levels. As shown by immunohistochemistry, cardiomyocytes in the ischemic area contributed significantly to the induction of GDF-15 in the infarcted human heart. To delineate the function of GDF-15 during I/R, Gdf-15 gene-targeted mice were subjected to transient coronary artery ligation for 1 hour followed by reperfusion for 24 hours. Gdf-15-deficient mice developed greater infarct sizes and displayed more cardiomyocyte apoptosis in the infarct border zone after I/R compared with wild-type littermates, indicating that endogenous GDF-15 limits myocardial tissue damage in vivo. Moreover, treatment with recombinant GDF-15 protected cultured cardiomyocytes from apoptosis during simulated I/R as shown by histone ELISA, TUNEL/Hoechst staining, and annexin V/propidium iodide fluorescence-activated cell sorting (FACS) analysis. Mechanistically, the prosurvival effects of GDF-15 in cultured cardiomyocytes were abolished by phosphoinositide 3-OH kinase inhibitors and adenoviral expression of dominant-negative Akt1 (K179M mutation). In conclusion, our study identifies induction of GDF-15 in the heart as a novel defense mechanism that protects from I/R injury.  相似文献   

10.
Ebola virions contain a surface transmembrane glycoprotein (GP) that is responsible for binding to target cells and subsequent fusion of the viral and host-cell membranes. GP is expressed as a single-chain precursor that is posttranslationally processed into the disulfide-linked fragments GP1 and GP2. The GP2 subunit is thought to mediate membrane fusion. A soluble fragment of the GP2 ectodomain, lacking the fusion-peptide region and the transmembrane helix, folds into a stable, highly helical structure in aqueous solution. Limited proteolysis studies identify a stable core of the GP2 ectodomain. This 74-residue core, denoted Ebo-74, was crystallized, and its x-ray structure was determined at 1.9-A resolution. Ebo-74 forms a trimer in which a long, central three-stranded coiled coil is surrounded by shorter C-terminal helices that are packed in an antiparallel orientation into hydrophobic grooves on the surface of the coiled coil. Our results confirm the previously anticipated structural similarity between the Ebola GP2 ectodomain and the core of the transmembrane subunit from oncogenic retroviruses. The Ebo-74 structure likely represents the fusion-active conformation of the protein, and its overall architecture resembles several other viral membrane-fusion proteins, including those from HIV and influenza.  相似文献   

11.
We reported that the common octopus, Octopus vulgaris, in common with vertebrates, possesses two members of the oxytocin/vasopressin superfamily: octopressin (OP) and cephalotocin (CT). This was the first observation of its kind in invertebrates. As OP and CT have different biological activities, the presence of specific receptors has been proposed. We cloned the cDNA of an orphan receptor from Octopus brain and found it to encode a polypeptide of 397 amino acids that displays sequences characteristic of G-protein coupled receptors. The orphan receptor showed high homology to receptors of the oxytocin/vasopressin superfamily and seemed to conserve the agonist-binding pocket common to the oxytocin and vasopressin receptors. Xenopus oocytes that express the orphan receptor responded to the application of CT by an induction of membrane Cl(-) currents coupled to the inositol phosphate/Ca(2+) pathway. OP and the other members of the oxytocin/vasopressin superfamily did not activate this receptor. HPLC fractionation of the Octopus brain extract combined with an oocyte assay yielded a single substance that was identical to CT. On the basis of these results, we conclude that the cloned receptor is the CT receptor (CTR). Expression of CTR mRNA in Octopus was detected in the central and the peripheral nervous systems, the pancreas, the oviduct and the ovary. This receptor may mediate physiological functions of CT in Octopus such as neurotransmission, reproduction and metabolism.  相似文献   

12.
H-protein, a lipoic acid-containing protein of the glycine decarboxylase (EC 1.4.4.2) complex from pea (Pisum sativum) was crystallized from ammonium sulfate solution at pH 5.2 in space group P3(1)21. The x-ray crystal structure was determined to 2.6-A resolution by multiple isomorphous replacement techniques. The structure was refined to an R value of 23% for reflections between 15- and 2.6-A resolution (F > 2 sigma), including the lipoate moiety and 50 water molecules, for the two protein molecules of the asymmetric unit. The 131-amino acid residues form seven beta-strands arranged into two antiparallel beta-sheets forming a "sandwich" structure. One alpha-helix is observed at the C-terminal end. The lipoate cofactor attached to Lys-63 is located in the loop of a hairpin configuration. The lipoate moiety points toward the residues His-34 and Asp-128 and is situated at the surface of the H-protein. This allows the flexibility of the lipoate arm. This is the first x-ray determination of a lipoic acid-containing protein, and the present results are in agreement with previous theoretical predictions and NMR studies of the catalytic domains of lipoic acid- and biotin-containing proteins.  相似文献   

13.
14.
From a 2.7-A resolution electron density map we have built a model of the polypeptide backbone of a monomer of yeast hexokinase B (EC 2.7.1.1). This map was obtained from a third crystal form of hexokinase, called BIII, which exhibits space group P212121 and which contains only one monomer per asymmetric unit. The 51,000 molecular weight monomer has an elongated shape (80 A by 55 A by 50 A) and is divided into two lobes by a deep central cleft. The polypeptide chain is folded into three structural domains, one of which is predominantly alpha-helical and two of which each contain a beta-pleated sheet flanked by alpha-helices. Both glucose and AMP bind to these crystals and produce significant alterations in the protein structure. Glucose binds in the deep cleft, as was observed previously in the BII crystal of the dimeric enzyme. AMP, however, binds to a site that is different from the major intersubunit ATP binding site observed in the crystalline dimer. The AMP is found near one of the beta-pleated sheets. From our current interpretation of this electron density map we conclude that neither of the two nucleotide binding regions has the same structure as has been observed for the nucleotide binding regions of the dehydrogenases, adenylate kinase, and phosphoglycerate kinase, although some similarities exist.  相似文献   

15.
Human CTR1 is a high-affinity copper transporter that also mediates the uptake of the anticancer drug cisplatin by largely unknown transport mechanisms. Here we report the 6-A projection structure obtained for human CTR1 by using electron crystallography of 2D protein crystals in a native phospholipid bilayer. The projection of CTR1 reveals a symmetrical trimer that is <40 A wide. Notably, the center threefold axis of each trimer forms a region of very low electron density likely to be involved in copper translocation. The formation of a putative pore for metal ions at the interface of three identical subunits deviates from the structural design of typical primary and secondary active transporters and reveals that copper uptake transporters have a novel architecture that is structurally more closely related to channel proteins.  相似文献   

16.
The majority of human urinary stones are primarily composed of calcium salts. Although normal urine is frequently supersaturated with respect to calcium oxalate, most humans do not form stones. Inhibitors are among the multiple factors that may influence the complex process of urinary stone formation. We have isolated an inhibitor of calcium oxalate crystal growth from human urine by monoclonal antibody immunoaffinity chromatography. The N-terminal amino acid sequence and acidic amino acid content of this aspartic acid-rich protein, uropontin, are similar to those of other pontin proteins from bone, plasma, breast milk, and cells. The inhibitory effect of uropontin on calcium oxalate crystal growth in vitro supports the concept that pontins may have a regulatory role. This function would be analogous to that of other members of the aspartic acid-rich protein superfamily, which stereospecifically regulate the mineralization fronts of calcium-containing crystals.  相似文献   

17.
The genome of the yeast Saccharomyces cerevisiae contains a family of genes related to the HSP70 genes (encoding the 70-kDa heat shock protein) of other eukaryotes. Mutations in two of these yeast genes (SSC1 and SSD1), whose expression is increased a few fold after temperature upshift, were constructed in vitro and substituted into the yeast genome in place of the wild-type alleles. No phenotypic effects of the mutation in SSD1 were detected. However, a functional SSC1 gene is essential for vegetative growth. This result, in conjunction with experiments involving mutations in other members of this multigene family, indicates that at least three distinct functions are carried out by genes of the HSP70 family.  相似文献   

18.
The flavoprotein nitroalkane oxidase (NAO) from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to the respective aldehydes with production of nitrite and hydrogen peroxide. The sequences of several peptides from the fungal enzyme were used to design oligonucleotides for the isolation of a portion of the NAO gene from an F. oxysporum genomic DNA preparation. This sequence was used to clone the cDNA for NAO from an F. oxysporum cDNA library. The sequence of the cloned cDNA showed that NOA is a member of the acyl-CoA dehydrogenase (ACAD) superfamily. The members of this family share with NAO a mechanism that is initiated by proton removal from carbon, suggesting a common chemical reaction for this superfamily. NAO was expressed in Escherichia coli and the recombinant enzyme was characterized. Recombinant NAO has identical kinetic parameters to enzyme isolated from F. oxysporum but is isolated with oxidized FAD rather than the nitrobutyl-FAD found in the fungal enzyme. NAO purified from E. coli or from F. oxysporum has no detectable ACAD activity on short- or medium-chain acyl CoAs, and medium-chain acyl-CoA dehydrogenase and short-chain acyl-CoA dehydrogenase are unable to catalyze oxidation of nitroalkanes.  相似文献   

19.
The structure of iron superoxide dismutase (EC 1.15.1.1) from Escherichia coli has been determined at 3.1-A resolution. The dimeric molecule is constructed from identical subunits, which are two-domain polypeptides. The NH2-terminal domain is composed of two antiparallel crossing helices and the COOH-terminal domain is a three-layered structure characterized by mixed alpha/beta secondary structural features. The active center iron atoms, separated by 18 A and located near the monomer-monomer interface, are coordinated by two amino acid residues from each domain. Azide binding has been investigated by using difference Fourier techniques. Consistent with the notion of the independent evolution of the copper/zinc dismutase gene, the iron dismutase structure resembles the copper/zinc protein at neither the monomer nor the dimer level.  相似文献   

20.
FTZ-F1, a member of the steroid receptor superfamily, has been implicated in the activation of the homeobox segmentation gene fushi tarazu early in Drosophila embryogenesis. We have cloned a developmental isoform of FTZ-F1 and found that it is expressed as a product of the previously identified, midprepupal chromosome puff at 75CD. The 75CD puff occurs in the midst of a period of intense puffing activity that is triggered in response to the steroid hormone ecdysone at the onset of metamorphosis. Indirect immunofluorescent staining for FTZ-F1 on Drosophila polytene chromosomes reveals binding to over 150 chromosomal targets, which include 75CD itself and prominent late prepupal puffs that are predicted to be regulated by midprepupal puff proteins. These results suggest a role for FTZ-F1 as a regulator of insect metamorphosis and underscore the repeated utilization of a regulatory protein for widely separate developmental pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号