NLRP3 inflammasome, the multimeric protein complexes involved in the processing of IL-1β through Caspase-1 cleavage, facilitates the inflammatory response. The control and activation of NLRP3 after intracerebral hemorrhage have not been fully studied. In the current study, we explore the specific microRNA which could regulate the NLRP3 inflammasome and inflammation after intracerebral hemorrhage. We detected the inverse relationship between the expression of miR-223 and NLRP3. We found that NLRP3 mRNA contains conserved miR-223 binding sites in its 3′ UTR, and miR-223 could directly regulate NLRP3 expression through these 3′ UTR sites. Our results indicate that miR-223 could downregulate NLRP3 to inhibit inflammation through caspase-1 and IL-1β, reduce brain edema and improve neurological functions. Together, miR-223 may be a vital regulator of NLRP3 inflammasome activation. The results suggest that miR-223 represents a novel target reducing the inflammatory response, and offers a new therapeutical strategy following ICH. 相似文献
Sterile cell death mediated inflammation is linked to several pathological disorders and involves danger recognition of intracellular molecules released by necrotic cells that activate different groups of innate pattern recognition receptors. Toll‐like receptors directly interact with their extrinsic or intrinsic agonists and induce multiple proinflammatory mediators. In contrast, the NLRP3 inflammasome is rather thought to represent a downstream element integrating various indirect stimuli into proteolytic cleavage of interleukin (IL)–1β and IL‐18. Here, we report that histones released from necrotic cells induce IL‐1β secretion in an NLRP3–ASC‐caspase‐1‐dependent manner. Genetic deletion of NLRP3 in mice significantly attenuated histone‐induced IL‐1β production and neutrophil recruitment. Furthermore, necrotic cells induced neutrophil recruitment, which was significantly reduced by histone‐neutralizing antibodies or depleting extracellular histones via enzymatic degradation. These results identify cytosolic uptake of necrotic cell‐derived histones as a triggering mechanism of sterile inflammation, which involves NLRP3 inflammasome activation and IL‐1β secretion via oxidative stress. 相似文献
The global increase in obesity-induced type 2 diabetes (T2DM) represents a burden for healthcare systems worldwide. Of particular concern is the increased morbidity associated with T2DM, in particular cardiovascular disease (CVD), leading to premature death. Obesity initially leads to the development of insulin resistance in adipose and other tissues. Insulin resistance is initially compensated by increased insulin secretion but ultimately insufficient insulin is produced and this leads to the development of T2DM. Understanding the causal mechanisms underpinning the development of obesity-induced insulin resistance may be beneficial in improving quality of life and life expectancy, with the potential for a major global impact on healthcare systems. There is abundant evidence from animal, human studies and in vitro studies to support functional roles for a number of inflammatory factors in obesity-induced insulin resistance. In this review we provide an overview of the evidence supporting a fundamental role for the fluid phase (in particular the complement system) and the cellular components of the innate immune system in the pathogenesis of obesity-induced insulin resistance and ultimately development of T2DM. 相似文献
NLRP3 inflammasome not only functions as a critical effector in innate immunity, but also triggers the production of proinflammatory cytokines involved in inflammation-associated diseases. Sirtuin 1 (SIRT1) plays an important role in the regulation of cellular inflammation. However, whether the activation of NLRP3 inflammasome is regulated by SIRT1 remains unknown. In this study, we investigated the regulatory effect of SIRT1 on NLRP3 inflammasome and the underlying mechanisms. We found that lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced the activation of NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs). Activation of SIRT1 inhibited NLRP3 inflammasome activation and subsequent caspase-1 cleavage as well as interleukin (IL)-1β secretion, whereas SIRT1 knockdown obviously enhanced the activation of NLRP3 inflammasome in HUVECs. Importantly, gene silencing of SIRT1 abrogated the inhibitory effect of SIRT1 activator on NLRP3 inflammasome formation and IL-1β production in HUVECs stimulated with LPS plus ATP. Further study indicated that cluster of differentiation 40 (CD40) may be involved in the regulation of NLRP3 inflammasome by SIRT1. In vivo studies indicated that implantation of the periarterial carotid collar increased the arterial expression levels of CD40 and CD40 Ligand (CD40L), but inhibited arterial SIRT1 expression in the rabbits. Moreover, treatment with SIRT1 activator decreased CD40 and CD40L levels in collared arteries. Meanwhile, serum IL-1β level, the marker of inflammasome activation, was also inhibited by SIRT1 activation. Taken together, these findings revealed a novel regulatory mechanism of NLRP3 inflammasome by SIRT1, which may be related to suppression of CD40. 相似文献
The NLRP3 inflammasome is a cytosolic multiprotein complex composed of the innate immune receptor protein NLRP3, adapter protein ASC, and inflammatory protease caspase-1 that responds to microbial infection, endogenous danger signals, and environmental stimuli. The assembled NLRP3 inflammasome can activate the protease caspase‐1 to induce gasdermin D-dependent pyroptosis and facilitate the release of IL-1β and IL-18, which contribute to innate immune defense and homeostatic maintenance. However, aberrant activation of the NLRP3 inflammasome is associated with the pathogenesis of various inflammatory diseases, such as diabetes, cancer, and Alzheimer’s disease. Recent studies have revealed that NLRP3 inflammasome activation contributes to not only pyroptosis but also other types of cell death, including apoptosis, necroptosis, and ferroptosis. In addition, various effectors of cell death have been reported to regulate NLRP3 inflammasome activation, suggesting that cell death is closely related to NLRP3 inflammasome activation. In this review, we summarize the inextricable link between NLRP3 inflammasome activation and cell death and discuss potential therapeutics that target cell death effectors in NLRP3 inflammasome-associated diseases. 相似文献
Context: Pulegone, a key compound in Schizonepeta essential oil, has been identified as an anti-inflammatory. However, its underlying molecular mechanisms on NLR family pyrin domain containing 3 (NLRP3) inflammasome have not been elucidated.
Objective: Here, the modulatory effects of pulegone on NLRP3 inflammasome were investigated.
Materials and methods: The C57BL/6J mice were randomly divided into five groups: Normal, Lipopolysaccharides (LPS), Dexamethasone (DEX, 5?mg/kg), Pulegone (0.095 and 0.190?g/kg) groups. All mice were challenged by LPS except for the Normal group.
Results: A reduced expression of Interleukin-18 (IL-18), Interleukin-1β (IL-1β), Interleukin-5 (IL-5), Tumor necrosis factor-α (TNF-α), Interferon-gamma (IFN-γ), Monocyte chemoattratctant protein-1 (MCP-1), Macrophage inflammatory protein-1β (MIP-1β), Monocyte colony stimulating factor (M-CSF) and Granulocyte-macrophage colony stimulating factor (GM-CSF) in serum were detected in the pulegone groups as compared to the LPS group. In addition, a reduced mRNA and protein expression production of ASC, NLRP3, and Caspase-1 were detected in lungs after pulegone administration. Histological analysis results indicated that the histological changes of lungs caused by LPS were ameliorated by pulegone. Immunohistochemical study showed a decreased positive cell numbers of P2X7R in Pulegone (0.095 and 0.190?g/kg) groups.
Conclusion: Pulegone exerts anti-inflammatory effects on LPS-induced sepsis mice via inhibition of the NLRP3 expression. 相似文献
The NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is a multiprotein complex that orchestrates innate immune responses to infection and cell stress through activation of caspase-1 and maturation of inflammatory cytokines pro-interleukin-1β (pro-IL-1β) and pro-IL-18. Activation of the inflammasome during infection can be protective, but unregulated NLRP3 inflammasome activation in response to non-pathogenic endogenous or exogenous stimuli can lead to unintended pathology. NLRP3 associates with mitochondria and mitochondrial molecules, and activation of the NLRP3 inflammasome in response to diverse stimuli requires cation flux, mitochondrial Ca2+ uptake, and mitochondrial reactive oxygen species accumulation. It remains uncertain whether NLRP3 surveys mitochondrial integrity and senses mitochondrial damage, or whether mitochondria simply serve as a physical platform for inflammasome assembly. The structure of the active, caspase-1-processing NLRP3 inflammasome also requires further clarification, but recent studies describing the prion-like properties of ASC have advanced the understanding of how inflammasome assembly and caspase-1 activation occur while raising new questions regarding the propagation and resolution of NLRP3 inflammasome activation. Here, we review the mechanisms and pathways regulating NLRP3 inflammasome activation, discuss emerging concepts in NLRP3 complex organization, and expose the knowledge gaps hindering a comprehensive understanding of NLRP3 activation. 相似文献
Macrophages play a crucial role in the progression of atherosclerotic lesions. In the current study, we analyzed the expression and function of sestrin1 (SESN1) in the aorta macrophages in a murine atherosclerosis model. We identified high SESN1 expression in the aorta macrophages in atherosclerotic mice. Using lentivirus-mediated SESN1 overexpression in macrophages, we found that SESN1 inhibited oxidized low-density lipoprotein–induced NLRP3 inflammasome activation in lipopolysaccharide (LPS)-primed macrophages, as evidenced by less ASC-NLRP3 complex formation, lower caspase-1 activation, and lower generation of mature IL-1β. Besides, SESN1 impeded oxidized low-density lipoprotein–induced activation of NK-κB signaling in macrophages. Furthermore, SESN1 suppressed cholesterol crystal-induced NLRP3 inflammasome activation and foam cell formation. Adoptive transfer of SESN1 overexpressing macrophages reduced the expression of pro-inflammatory cytokines in infiltrating macrophages and the whole aorta tissue. Adoptive transfer of SESN1 knockdown macrophages enhanced the expression of pro-inflammatory cytokines in infiltrating macrophages and the whole aorta tissue. Overall, our study sheds light on the significance of SESN1 for macrophage-mediated aorta inflammation. 相似文献
The inflammasome pathway functions to regulate caspase‐1 activation in response to a broad range of stimuli. Caspase‐1 activation is required for the maturation of the pivotal pro‐inflammatory cytokines of the pro‐IL‐1β family. In addition, caspase‐1 activation leads to a certain type of cell death known as pyroptosis. Activation of the inflammasome has been shown to play a critical role in the recognition and containment of various microbial pathogens, including the intracellularly replicating Listeria monocytogenes; however, the inflammasome pathways activated during L. monocytogenes infection are only poorly defined. Here, we demonstrate that L. monocytogenes activates both the NLRP3 and the AIM2 inflammasome, with a predominant involvement of the AIM2 inflammasome. In addition, L. monocytogenes‐triggered cell death was diminished in the absence of both AIM2 and NLRP3, and is concomitant with increased intracellular replication of L. monocytogenes. Altogether, these data establish a role for DNA sensing through the AIM2 inflammasome in the detection of intracellularly replicating bacteria. 相似文献
The innate immune system senses danger signals via evolutionary conserved receptors. The nucleotide-binding domain leucine-rich repeat containing receptor (NLR) family is a group of intracellular receptors that drive a wide variety of inflammatory responses. A number of the NLR family members can form inflammasomes, which are multiprotein complexes that can activate caspase-1 and ultimately lead to the processing and secretion of interleukin (IL)-1β, IL-18 and IL-33. One of the best-studied members of the NLR family is NLRP3 for which a number of divergent activators have recently been described. These and other studies examining the NLRP3 inflammasome will be discussed in this review. 相似文献
The NLRP3 inflammasome constitutes a major antiviral host defense mechanism during influenza virus infection. Inflammasome assembly in virus-infected cells facilitates autocatalytic processing of pro-caspase-1 and subsequent cleavage and secretion of proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome is critical for induction of both innate and adaptive immune responses during influenza virus infection. Inflammasome-dependent antiviral responses also regulate immunopathology and tissue repair in the infected lungs. The regulation of NLRP3 inflammasome assembly is an area of active research and recent studies have unraveled multiple cellular and viral factors involved in inflammasome assembly. Emerging studies have also identified the cross talk between inflammasome activation and programmed cell death pathways in influenza virus-infected cells. Here, we review the current literature regarding regulation and functions of NLRP3 inflammasome during influenza virus infection. 相似文献