首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.

Background:

Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity.

Methods:

After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18–52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks.

Results:

At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults.

Conclusions:

Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder.  相似文献   

2.
Multiple structural and functional neuroimaging measures vary over the course of the lifespan and can be used to predict chronological age. Accelerated brain aging, as quantified by deviations in the MRI-based predicted age with respect to chronological age, is associated with risk for neurodegenerative conditions, bipolar disorder, and mortality. Whether age-related changes in resting-state functional connectivity are accelerated in major depressive disorder (MDD) is unknown, and, if so, it is unclear if these changes contribute to specific cognitive weaknesses that often occur in MDD. Here, we delineated age-related functional connectivity changes in a large sample of normal control subjects and tested whether brain aging is accelerated in MDD. Furthermore, we tested whether accelerated brain aging predicts individual differences in cognitive function. We trained a support vector regression model predicting age using resting-state functional connectivity in 710 healthy adults aged 18–89. We applied this model trained on normal aging subjects to a sample of actively depressed MDD participants (n = 109). The difference between predicted brain age and chronological age was 2.11 years greater (p = 0.015) in MDD patients compared to control participants. An older MDD brain age was significantly associated with increased impulsivity and, in males, increased depressive severity. Unexpectedly, accelerated brain aging was also associated with increased placebo response in a sham-controlled trial of high-frequency repetitive transcranial magnetic stimulation targeting the dorsomedial prefrontal cortex. Our results indicate that MDD is associated with accelerated brain aging, and that accelerated aging is selectively associated with greater impulsivity and depression severity.Subject terms: Depression, Cognitive ageing  相似文献   

3.
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are highly prevalent and debilitating disorders. The high overlap on the symptomatic and neurobiological level led to ongoing debates about their diagnostic and neurobiological uniqueness. The present study aims to identify common and disorder-specific neuropathological mechanisms and treatment targets in MDD and GAD. To this end we combined categorical and dimensional disorder models with a fully data-driven intrinsic network-level analysis (intrinsic connectivity contrast, ICC) to resting-state fMRI data acquired in 108 individuals (n = 35 and n = 38 unmedicated patients with first-episode GAD, MDD, respectively, and n = 35 healthy controls). Convergent evidence from categorical and dimensional analyses revealed MDD-specific decreased whole-brain connectivity profiles of the medial prefrontal and dorsolateral prefrontal cortex while GAD was specifically characterized by decreased whole-brain connectivity profiles of the putamen and decreased communication of this region with the amygdala. Together, findings from the present data-driven analysis suggest that intrinsic communication of frontal regions engaged in executive functions and emotion regulation represent depression-specific neurofunctional markers and treatment targets whereas dysregulated intrinsic communication of the striato-amygdala system engaged in reinforcement-based and emotional learning processes represent GAD-specific markers.Subject terms: Biomarkers, Neuroscience  相似文献   

4.
Previous cross-sectional work has demonstrated resting-state connectivity abnormalities in children and adolescents with attention/deficit hyperactivity disorder (ADHD) relative to typically developing controls. However, it is unclear to what extent these neural abnormalities confer risk for later symptoms of the disorder, or represent the downstream effects of symptoms on functional connectivity. Here, we studied 167 children and adolescents (mean age at baseline = 10.74 years (SD = 2.54); mean age at follow-up = 13.3 years (SD = 2.48); 56 females) with varying levels of ADHD symptoms, all of whom underwent resting-state functional magnetic resonance imaging and ADHD symptom assessments on two occasions during development. Resting-state functional connectivity was quantified using eigenvector centrality mapping. Using voxelwise cross-lag modeling, we found that less connectivity at baseline within right inferior frontal gyrus was associated with more follow-up symptoms of inattention (significant at an uncorrected cluster-forming threshold of p ≤ 0.001 and a cluster-level familywise error corrected threshold of p < 0.05). Findings suggest that previously reported cross-sectional abnormalities in functional connectivity within inferior frontal gyrus in patients with ADHD may represent a longitudinal risk factor for the disorder, in line with efforts to target this region with novel therapeutic methods.Subject terms: Attention, Developmental disorders  相似文献   

5.
Glutamatergic abnormalities in corticostriatal brain circuits are thought to underlie obsessive–compulsive disorder (OCD). Whether these abnormalities exist in adults with OCD is not clear. We used proton magnetic resonance spectroscopy (1H MRS) to test our hypothesis that unmedicated adults with OCD have reduced glutamate plus glutamine (Glx) levels in the medial prefrontal cortex (MPFC) compared with healthy controls. Levels of γ-aminobutyric acid (GABA) were also explored. Twenty-four unmedicated adults with OCD and 22 matched healthy control subjects underwent 1H MRS scans at 3.0 T. Resonances of both Glx and GABA were obtained using the standard J-editing technique and assessed as ratios relative to voxel tissue water (W) in the MPFC (the region of interest) and the dorsolateral prefrontal cortex (DLPFC) to explore the regional specificity of any finding. In the MPFC, Glx/W did not differ by diagnostic group (p=0.98) or sex (p=0.57). However, GABA/W was decreased in OCD (2.16±0.46 × 10−3) compared with healthy controls (2.43±0.45 × 10−3, p=0.045); moreover, age of OCD onset was inversely correlated with MPFC GABA/W (r=−0.50, p=0.015). MPFC GABA/W was higher in females than in males. In the DLPFC, there were no main effects of diagnosis or gender on Glx/W or GABA/W. These data indicate that unmedicated adults with OCD do not have Glx abnormalities in a MPFC voxel that includes the pregenual anterior cingulate cortex. However, they may have decreased MPFC GABA levels. How GABA abnormalities might contribute to corticostriatal dysfunction in OCD deserves further study.  相似文献   

6.
Dysfunctional connectivity within the hippocampal-prefrontal circuit (HC-PFC) is associated with schizophrenia, major depression, and neurodegenerative disorders, and both the hippocampus and prefrontal cortex have dense populations of N-methyl-D-aspartate (NMDA) receptors. Ketamine, a potent NMDA receptor antagonist, is of substantial current interest as a mechanistic model of glutamatergic dysfunction in animal and human studies, a psychotomimetic agent and a rapidly acting antidepressant. In this study, we sought to understand the modulatory effect of acute ketamine administration on functional connectivity in the HC-PFC system of the rat brain using resting-state fMRI. Sprague–Dawley rats in four parallel groups (N=9 per group) received either saline or one of three behaviorally relevant, sub-anesthetic doses of S-ketamine (5, 10, and 25 mg/kg, s.c.), and connectivity changes 15- and 30-min post-injection were studied. The strongest effects were dose- and exposure-dependent increases in functional connectivity within the prefrontal cortex and in anterior–posterior connections between the posterior hippocampus and retrosplenial cortex, and prefrontal regions. The increased prefrontal connectivity is consistent with ketamine-induced increases in HC-PFC electroencephalographic gamma band power, possibly reflecting a psychotomimetic aspect of ketamine''s effect, and is contrary to the data from chronic schizophrenic patients suggesting that ketamine effect does not necessarily parallel the disease pattern but might rather reflect a hyperglutamatergic state. These findings may help to clarify the brain systems underlying different dose-dependent behavioral profiles of ketamine in the rat.  相似文献   

7.
Studies reporting significant associations between maternal prenatal stress and child outcomes are frequently confounded by correlates of prenatal stress that influence the postnatal rearing environment. The major objective of this study is to identify whether maternal prenatal stress is associated with variation in human brain functional connectivity prior to birth. We utilized fetal fMRI in 118 fetuses [48 female; mean age 32.9 weeks (SD = 3.87)] to evaluate this association and further addressed whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Community detection was used to empirically define networks and enrichment was used to isolate differential within- or between-network connectivity effects. Significance for χ2 enrichment was determined by randomly permuting the subject pairing of fetal brain connectivity and maternal stress values 10,000 times. Mixtures modelling was used to test whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Increased maternal prenatal negative affect/stress was associated with alterations in fetal frontoparietal, striatal, and temporoparietal connectivity (β = 0.82, p < 0.001). Follow-up analysis demonstrated that these associations were stronger in women with better health behaviors, more positive interpersonal support, and lower overall stress (β = 0.16, p = 0.02). Additionally, magnitude of stress-related differences in neural connectivity was marginally correlated with younger gestational age at delivery (β = −0.18, p = 0.05). This is the first evidence that negative affect/stress during pregnancy is reflected in functional network differences in the human brain in utero, and also provides information about how positive interpersonal and health behaviors could mitigate prenatal brain programming.Subject terms: Risk factors, Neural patterning  相似文献   

8.
Preclinical studies have implicated noradrenergic (NA) dysfunction in cocaine addiction. In particular, the NA system plays a central role in motivated behavior and may partake in the regulation of craving and drug use. Yet, human studies of the NA system are scarce, likely hampered by the difficulty in precisely localizing the locus coeruleus (LC). Here, we used neuromelanin imaging to localize the LC and quantified LC neuromelanin signal (NMS) intensity in 44 current cocaine users (CU; 37 men) and 59 nondrug users (NU; 44 men). We also employed fMRI to investigate cue-induced regional responses and LC functional connectivities, as quantified by generalized psychophysiological interaction (gPPI), in CU. Imaging data were processed by published routines and the findings were evaluated with a corrected threshold. We examined how these neural measures were associated with chronic cocaine craving, as assessed by the Cocaine Craving Questionnaire (CCQ). Compared to NU, CU demonstrated higher LC NMS for all probabilistic thresholds defined of 50–90% of the peak. In contrast, NMS of the ventral tegmental area/substantia nigra (VTA/SN) did not show significant group differences. Drug as compared to neutral cues elicited higher activations of many cortical and subcortical regions, none of which were significantly correlated with CCQ score. Drug vs. neutral cues also elicited “deactivation” of bilateral parahippocampal gyri (PHG) and PHG gPPI with a wide array of cortical and subcortical regions, including the ventral striatum and, with small volume correction, the LC. Less deactivation of the PHG (r = 0.40, p = 0.008) and higher PHG-LC gPPI (r = 0.44, p = 0.003) were positively correlated with the CCQ score. In contrast, PHG-VTA/SN connectivity did not correlate with the CCQ score. Together, chronic cocaine exposure may induce higher NMS intensity, suggesting neurotoxic effects on the LC. The correlation of cue-elicited PHG LC connectivity with CCQ score suggests a noradrenergic correlate of chronic cocaine craving. Potentially compensating for memory functions as in neurodegenerative conditions, cue-elicited PHG LC circuit connectivity plays an ill-adaptive role in supporting cocaine craving.Subject terms: Predictive markers, Motivation  相似文献   

9.
BackgroundKetamine’s potent and rapid antidepressant properties have shown great promise to treat severe forms of major depressive disorder (MDD). A recently hypothesized antidepressant mechanism of action of ketamine is the inhibition of N-methyl-D-aspartate receptor–dependent bursting activity of the habenula (Hb), a small brain structure that modulates reward and affective states.MethodsResting-state functional magnetic resonance imaging was conducted in 35 patients with MDD at baseline and 24 hours following treatment with i.v. ketamine. A seed-to-voxel functional connectivity (FC) analysis was performed with the Hb as a seed-of-interest. Pre-post changes in FC and the associations between changes in FC of the Hb and depressive symptom severity were examined.ResultsA reduction in Montgomery–Åsberg Depression Rating Scale scores from baseline to 24 hours after ketamine infusion was associated with increased FC between the right Hb and a cluster in the right frontal pole (t = 4.65, P = .03, false discovery rate [FDR]-corrected). A reduction in Quick Inventory of Depressive Symptomatology-Self Report score following ketamine was associated with increased FC between the right Hb and clusters in the right occipital pole (t = 5.18, P < .0001, FDR-corrected), right temporal pole (t = 4.97, P < .0001, FDR-corrected), right parahippocampal gyrus (t = 5.80, P = .001, FDR-corrected), and left lateral occipital cortex (t = 4.73, P = .03, FDR-corrected). Given the small size of the Hb, it is possible that peri-habenular regions contributed to the results.ConclusionsThese preliminary results suggest that the Hb might be involved in ketamine’s antidepressant action in patients with MDD, although these findings are limited by the lack of a control group.  相似文献   

10.
Irritability cuts across many pediatric disorders and is a common presenting complaint in child psychiatry; however, its neural mechanisms remain unclear. One core pathophysiological deficit of irritability is aberrant responses to frustrative nonreward. Here, we conducted a preliminary fMRI study to examine the ability of functional connectivity during frustrative nonreward to predict irritability in a transdiagnostic sample. This study included 69 youths (mean age = 14.55 years) with varying levels of irritability across diagnostic groups: disruptive mood dysregulation disorder (n = 20), attention-deficit/hyperactivity disorder (n = 14), anxiety disorder (n = 12), and controls (n = 23). During fMRI, participants completed a frustrating cognitive flexibility task. Frustration was evoked by manipulating task difficulty such that, on trials requiring cognitive flexibility, “frustration” blocks had a 50% error rate and some rigged feedback, while “nonfrustration” blocks had a 10% error rate. Frustration and nonfrustration blocks were randomly interspersed. Child and parent reports of the affective reactivity index were used as dimensional measures of irritability. Connectome-based predictive modeling, a machine learning approach, with tenfold cross-validation was conducted to identify networks predicting irritability. Connectivity during frustration (but not nonfrustration) blocks predicted child-reported irritability (ρ = 0.24, root mean square error = 2.02, p = 0.03, permutation testing, 1000 iterations, one-tailed). Results were adjusted for age, sex, medications, motion, ADHD, and anxiety symptoms. The predictive networks of irritability were primarily within motor-sensory networks; among motor-sensory, subcortical, and salience networks; and between these networks and frontoparietal and medial frontal networks. This study provides preliminary evidence that individual differences in irritability may be associated with functional connectivity during frustration, a phenotype-relevant state.Subject terms: Predictive markers, Reward  相似文献   

11.
Neural signatures of suicide risk likely reflect a combination of specific and non-specific factors, and clarifying specific factors may facilitate development of novel treatments. Previously, we demonstrated an altered pattern of resting state connectivity between the dorsal and ventral posterior cingulate cortex (d/vPCC) and the dorsal anterior cingulate cortex (dACC), as well as altered low frequency oscillations in these regions, in individuals with a history of suicidal thoughts and behaviors (STBs) compared to healthy controls. It remains uncertain, however, whether these markers were directly related to STBs or, more generally, reflect a trait-level risk factor for depression. Here, we examined data from a 3-generational longitudinal study of depression where resting state fMRI data were analyzed from 2nd and 3rd generation offspring of probands with (FH+ = 44: STB+ = 32, STB− = 12) and without (FH− = 25: STB+ = 15, STB− = 10) a family history of major depressive disorder (MDD). Standard seed-based methods and a frequency-based analysis of intrinsic neural activity (ALFF/fALFF) were employed. FH of MDD, but not a personal history of STBs or MDD, was associated with relatively reduced dPCC-dACC, and enhanced vPCC-dACC functional connectivity. FH of MDD showed a pattern of reduced ALFF in the dPCC whereas an STB history was associated with an increase. All findings were invariant to confounding by lifetime MDD and current depression severity. Overall, contrary to predictions, resting state functional connectivity within the default mode network (DMN) was associated with FH of depression rather than STBs. These findings confirm the relevance of DMN functional connectivity for mood disorders and underscore the importance of disambiguating biological factors that differentially relate to mental disorders versus STBs.Subject terms: Diagnostic markers, Emotion  相似文献   

12.
Affective disorders (AD, including bipolar disorder, BD, and major depressive disorder) are severe recurrent illnesses. Identifying neural markers of processes underlying AD development in at-risk youth can provide objective, “early-warning” signs that may predate onset or worsening of symptoms. Using data (n = 34) from the Bipolar Offspring Study, we examined relationships between neural response in regions supporting executive function, and those supporting self-monitoring, during an emotional n-back task (focusing on the 2-back face distractor versus the 0-back no-face control conditions) and future depressive and hypo/manic symptoms across two groups of youth at familial risk for AD: Offspring of parents with BD (n = 15, age = 14.15) and offspring of parents with non-BD psychopathology (n = 19, age = 13.62). Participants were scanned and assessed twice, approximately 4 years apart. Across groups, less deactivation in the mid-cingulate cortex during emotional regulation (Rate Ratio = 3.07(95% CI:1.09–8.66), χ2(1) = 4.48, p = 0.03) at Time-1, and increases in functional connectivity from Time-1 to 2 (Rate Ratio = 1.45(95% CI:1.15–1.84), χ2(1) = 8.69, p = 0.003) between regions that showed deactivation during emotional regulation and the right caudate, predicted higher depression severity at Time-2. Both effects were robust to sensitivity analyses controlling for clinical characteristics. Decreases in deactivation between Times 1 and 2 in the right putamen tail were associated with increases in hypo/mania at Time-2, but this effect was not robust to sensitivity analyses. Our findings reflect neural mechanisms of risk for worsening affective symptoms, particularly depression, in youth across a range of familial risk for affective disorders. They may serve as potential objective, early-warning signs of AD in youth.Subject terms: Predictive markers, Depression, Bipolar disorder  相似文献   

13.
Nicotine Withdrawal Syndrome (NWS)-associated cognitive deficits are notably heterogeneous, suggesting underlying endophenotypic variance. However, parsing this variance in smokers has remained challenging. In this study, we identified smoker subgroups based on response accuracy during a Parametric Flanker Task (PFT) and then characterized distinct neuroimaging endophenotypes using a nicotine state manipulation. Smokers completed the PFT in two fMRI sessions (nicotine sated, abstinent). Based on response accuracy in the stressful, high cognitive demand PFT condition, smokers split into high (HTP, n = 21) and low task performer (LTP, n = 24) subgroups. Behaviorally, HTPs showed greater response accuracy (88.68% ± 5.19 SD) vs. LTPs (51.04% ± 4.72 SD), independent of nicotine state, and greater vulnerability to abstinence-induced errors of omission (EOm, p = 0.01). Neurobiologically, HTPs showed greater BOLD responses in attentional control brain regions, including bilateral insula, dorsal ACC, and frontoparietal Cx for the [correct responses (–) errors of commission] PFT contrast in both states. A whole-brain functional connectivity (FC) analysis with these subgroup-derived regions as seeds identified two circuits: Precentral Cx↔Insula and Insula↔Occipital Cx, with abstinence-induced FC strength increases seen only in HTPs. Finally, abstinence-induced FC and behavior (EOm) differences were positively correlated for HTPs in a Precentral Cx↔Orbitofrontal cortical circuit. In sum, only the HTP subgroup demonstrated sustained attention deficits following 48-hr nicotine abstinence, a stressor in dependent smokers. Unpacking underlying smoker heterogeneity with this ‘dual (task and abstinence) stressor’ approach revealed discrete smoker subgroups with differential attentional deficits to withdrawal that could be novel pharmacological/behavioral targets for therapeutic interventions to improve cessation outcomes.Subject terms: Attention, Addiction  相似文献   

14.
Generalized social anxiety disorder (GSAD) is characterized by aberrant patterns of amygdala-frontal connectivity to social signals of threat and at rest. The neuropeptide oxytocin (OXT) modulates anxiety, stress, and social behaviors. Recent functional neuroimaging studies suggest that these effects are mediated through OXT''s effects on amygdala reactivity and/or amygdala-frontal connectivity. The aim of the current study was to examine OXT''s effects on amygdala-frontal resting-state functional connectivity (rsFC) in GSAD patients and healthy controls (HCs). In a randomized, double-blind, cross-over design, 18 GSAD and 18 HC participants received intranasal OXT (24 IU or 40.32 μg) or placebo (PBO) before resting-state functional magnetic resonance imaging. In individuals with GSAD, OXT enhanced rsFC of the left and right amygdala with rostral anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC), and in doing so, reversed (ie, ‘normalized'') the reduced amygdala-frontal connectivity observed relative to HCs evident on PBO. Higher social anxiety severity in GSAD subjects correlated with lower amygdala-ACC/mPFC connectivity on PBO and higher social anxiety also correlated with greater enhancement in amygdala-frontal connectivity induced by OXT. These findings show that OXT modulates a neural circuit known for social threat processing and emotion regulation, suggesting a neural mechanism by which OXT may have a role in the pathophysiology and treatment of social anxiety disorder.  相似文献   

15.
It has been reported that serotonergic hallucinogens like lysergic acid diethylamide (LSD) induce decreases in functional connectivity within various resting-state networks. These alterations were seen as reflecting specific neuronal effects of hallucinogens and it was speculated that these shifts in connectivity underlie the characteristic subjective drug effects. In this study, we test the hypothesis that these alterations are not specific for hallucinogens but that they can be induced by monoaminergic stimulation using the non-hallucinogenic serotonin–norepinephrine–dopamine releasing agent 3,4-methylenedioxymethamphetamine (MDMA). In a randomized, placebo-controlled, double-blind, crossover design, 45 healthy participants underwent functional magnetic resonance imaging (fMRI) following oral administration of 125 mg MDMA. The networks under question were identified using independent component analysis (ICA) and were tested with regard to within-network connectivity. Results revealed decreased connectivity within two visual networks, the default mode network (DMN), and the sensorimotor network. These findings were almost identical to the results previously reported for hallucinogenic drugs. Therefore, our results suggest that monoaminergic substances can induce widespread changes in within-network connectivity in the absence of marked subjective drug effects. This contradicts the notion that these alterations can be regarded as specific for serotonergic hallucinogens. However, changes within the DMN might explain antidepressants effects of some of these substances.Subject terms: Translational research, Neuroscience  相似文献   

16.
Little is known regarding the underlying neurobiology of smoking cessation. Neuroimaging studies indicate a role for the insula in connecting the interoceptive awareness of tobacco craving with a larger brain network that motivates smoking. We investigated differences in insula-based functional connectivity between smokers who did not relapse during a quit attempt vs those who relapsed. Smokers (n=85) underwent a resting-state functional connectivity scan and were then randomized into two groups (either smoking usual brand cigarettes or smoking very low nicotine cigarettes plus nicotine replacement therapy) for 30 days before their target quit date. Following the quit date, all participants received nicotine replacement therapy and their smoking behavior was observed for 10 weeks. Participants were subsequently classified as nonrelapsed (n=44) or relapsed (i.e., seven consecutive days of smoking ⩾1 cigarette/day; n=41). The right and left insula, as well as insula subdivisions (posterior, ventroanterior, and dorsoanterior) were used as seed regions of interest in the connectivity analysis. Using the right and left whole-insula seed regions, the nonrelapsed group had greater functional connectivity than the relapsed group with the bilateral pre- and postcentral gyri. This effect was isolated to the right and left posterior insula seed regions. Our results suggest that relapse vulnerability is associated with weaker connectivity between the posterior insula and primary sensorimotor cortices. Perhaps greater connectivity in this network improves the ability to inhibit a motor response to cigarette cravings when those cravings conflict with a goal to remain abstinent. These results are consistent with recent studies demonstrating a positive relationship between insula-related functional connectivity and cessation likelihood among neurologically intact smokers.  相似文献   

17.
Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD−DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD−DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception—implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD.  相似文献   

18.
The amygdala is a major structure that orchestrates defensive reactions to environmental threats and is implicated in hypervigilance and symptoms of heightened arousal in posttraumatic stress disorder (PTSD). The basolateral and centromedial amygdala (CMA) complexes are functionally heterogeneous, with distinct roles in learning and expressing fear behaviors. PTSD differences in amygdala-complex function and functional connectivity with cortical and subcortical structures remain unclear. Recent military veterans with PTSD (n=20) and matched trauma-exposed controls (n=22) underwent a resting-state fMRI scan to measure task-free synchronous blood-oxygen level dependent activity. Whole-brain voxel-wise functional connectivity of basolateral and CMA seeds was compared between groups. The PTSD group had stronger functional connectivity of the basolateral amygdala (BLA) complex with the pregenual anterior cingulate cortex (ACC), dorsomedial prefrontal cortex, and dorsal ACC than the trauma-exposed control group (p<0.05; corrected). The trauma-exposed control group had stronger functional connectivity of the BLA complex with the left inferior frontal gyrus than the PTSD group (p<0.05; corrected). The CMA complex lacked connectivity differences between groups. We found PTSD modulates BLA complex connectivity with prefrontal cortical targets implicated in cognitive control of emotional information, which are central to explanations of core PTSD symptoms. PTSD differences in resting-state connectivity of BLA complex could be biasing processes in target regions that support behaviors central to prevailing laboratory models of PTSD such as associative fear learning. Further research is needed to investigate how differences in functional connectivity of amygdala complexes affect target regions that govern behavior, cognition, and affect in PTSD.  相似文献   

19.
The goals of the current study were to determine whether topological organization of brain structural networks is altered in youth with bipolar disorder, whether such alterations predict treatment outcomes, and whether they are normalized by treatment. Youth with bipolar disorder were randomized to double-blind treatment with quetiapine or lithium and assessed weekly. High-resolution MRI images were collected from children and adolescents with bipolar disorder who were experiencing a mixed or manic episode (n = 100) and healthy youth (n = 63). Brain networks were constructed based on the similarity of morphological features across regions and analyzed using graph theory approaches. We tested for pretreatment anatomical differences between bipolar and healthy youth and for changes in neuroanatomic network metrics following treatment in the youth with bipolar disorder. Youth with bipolar disorder showed significantly increased clustering coefficient (Cp) (p = 0.009) and characteristic path length (Lp) (p = 0.04) at baseline, and altered nodal centralities in insula, inferior frontal gyrus, and supplementary motor area. Cp, Lp, and nodal centrality of the insula exhibited normalization in patients following treatment. Changes in these neuroanatomic parameters were correlated with improvement in manic symptoms but did not differ between the two drug therapies. Baseline structural network matrices significantly differentiated medication responders and non-responders with 80% accuracy. These findings demonstrate that both global and nodal structural network features are altered in early course bipolar disorder, and that pretreatment alterations in neuroanatomic features predicted treatment outcome and were reduced by treatment. Similar connectome normalization with lithium and quetiapine suggests that the connectome changes are a downstream effect of both therapies that is related to their clinical efficacy.Subject terms: Bipolar disorder, Outcomes research  相似文献   

20.
Alcohol use disorder (AUD) is closely linked to the brain regions forming the neurocircuitry of addiction. Postmortem human brain tissue enables the direct study of the molecular pathomechanisms of AUD. This study aims to identify these mechanisms by examining differential DNA-methylation between cases with severe AUD (n = 53) and controls (n = 58) using a brain-region-specific approach, in which sample sizes ranged between 46 and 94. Samples of the anterior cingulate cortex (ACC), Brodmann Area 9 (BA9), caudate nucleus (CN), ventral striatum (VS), and putamen (PUT) were investigated. DNA-methylation levels were determined using the Illumina HumanMethylationEPIC Beadchip. Epigenome-wide association analyses were carried out to identify differentially methylated CpG-sites and regions between cases and controls in each brain region. Weighted correlation network analysis (WGCNA), gene-set, and GWAS-enrichment analyses were performed. Two differentially methylated CpG-sites were associated with AUD in the CN, and 18 in VS (q < 0.05). No epigenome-wide significant CpG-sites were found in BA9, ACC, or PUT. Differentially methylated regions associated with AUD case-/control status (q < 0.05) were found in the CN (n = 6), VS (n = 18), and ACC (n = 1). In the VS, the WGCNA-module showing the strongest association with AUD was enriched for immune-related pathways. This study is the first to analyze methylation differences between AUD cases and controls in multiple brain regions and consists of the largest sample to date. Several novel CpG-sites and regions implicated in AUD were identified, providing a first basis to explore epigenetic correlates of AUD.Subject terms: Epigenetics and behaviour, DNA methylation, Addiction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号