首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date, all human embryonic stem cells (hESCs) available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Activation of STAT3 by leukemia inhibitory factor is required to maintain "stemness" in mouse embryonic stem cells, but not in hESCs, suggesting the existence of alternate signaling pathways for self-renewal and pluripotency in human cells. Here we show that activin A is secreted by mouse embryonic feeder layers (mEFs) and that culture medium enriched with activin A is capable of maintaining hESCs in the undifferentiated state for >20 passages without the need for feeder layers, conditioned medium from mEFs, or STAT3 activation. hESCs retained both normal karyotype and markers of undifferentiated cells, including Oct-4, nanog, and TRA-1-60 and remained pluripotent, as shown by the in vivo formation of teratomas.  相似文献   

2.
The cell-surface markers used routinely to define the undifferentiated state and pluripotency of human embryonic stem cells (hESCs) are those used in mouse embryonic stem cells (mESCs) because of a lack of markers directly originated from hESC itself. To identify more hESC-specific cell-surface markers, we generated a panel of monoclonal antibodies (MAbs) by immunizing the irradiated cell clumps of hESC line Miz-hES1, and selected 26 MAbs that were able to bind to Miz-hES1 cells but not to mESCs, mouse embryonic fibroblast cells, and STO cells. Most antibodies did not bind to human neural progenitor cells derived from the Miz-hES1 cells, either. Of these, MAb 20-202S (IgG1, kappa) immunoprecipitated a cell-surface protein of 72-kDa from the lysate of biotin-labeled Miz-hES1 cells, which was identified to be heat shock 70-kDa protein 8 isoform 1 (HSPA8) by quadrupole time-of-flight tandem mass spectrometry. Immunocytochemical analyses proved that the HSPA8 protein was also present on the surface of hESC lines Miz-hES4, Miz-hES6, and HSF6. Two-color flow cytometric analysis of Miz-hES1 and HSF6 showed the coexpression of the HSPA8 protein with other hESC markers such as stage-specific embryonic antigen 3 (SSEA3), SSEA4, TRA-1-60, and TRA-1-81. Flow cytometric and Western blot analyses using various cells showed that MAb 20-202S specifically bound to the HSPA8 protein on the surface of Miz-hES1, contrary to other anti-HSP70 antibodies examined. Furthermore, the surface expression of the HSPA8 protein on Miz-hES1 was markedly downregulated upon differentiation. These data indicate that a novel MAb 20-202S recognizes the HSPA8 protein on the surface of hESCs and suggest that the HSPA8 protein is a putative cell-surface marker for undifferentiated hESCs.  相似文献   

3.
Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P < 0.05). The hESCs were propagated more than 30 passages on hAF-AFSCs layer with exogenous b-FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×104/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.  相似文献   

4.
5.
6.
Pluripotent human embryonic stem cells (hESCs) provide appropriate systems for developmental studies and prospective donor cell sources for regenerative medicine. Identification of surface markers specific to hESCs is a prerequisite for studying hESC biology and can be used to generate clinical-level donor cell preparations that are free from tumorigenic undifferentiated hESCs. We previously reported the generation of monoclonal antibodies that specifically recognize hESC surface antigens using a decoy immunization strategy. In this study, we show that monoclonal antibody 57-C11 recognizes a phosphorylated form of adenovirus early region 1B-associated protein 5 (E1B-AP5). E1B-AP5 is a nuclear RNA-binding protein, but we report that 57-C11-reactive E1B-AP5 is expressed on the surface of undifferentiated hESCs. In undifferentiated hESCs, 57-C11-reactive E1B-AP5 is localized to SSEA3-, SSEA4-, TRA-1-60-, TRA-1-81-, OCT4-, SOX2-, and NANOG-positive hESCs. In mixtures of undifferentiated hESCs and hESC-derived neurons, 57-C11 exclusively recognizes undifferentiated hESCs but not hESC-derived neuronal cells. Further, the expression of 57-C11-reactive E1B-AP5 decreases upon differentiation. Our results demonstrate that 57-C11-reactive E1B-AP5 is a novel surface molecule that is involved in the undifferentiated state of hESCs. As far as we know, this is the first report demonstrating that heterogeneous nuclear RNA-binding protein is expressed on the surface of undifferentiated hESCs.  相似文献   

7.
Human embryonic stem cells (hESCs) self-renew indefinitely while maintaining pluripotency. The molecular mechanism underlying hESCs self-renewal and pluripotency is poorly understood. To identify the signaling pathway molecules that maintain the proliferation of hESCs, we performed a microarray analysis comparing an aneuploid H1 hESC line (named H1T) versus euploid H1 hESC line because the H1T hESC line demonstrates a self-renewal advantage while maintaining pluripotency. We find differential gene expression for the Nodal/Activin, fibroblast growth factor (FGF), Wnt, and Hedgehog (Hh) signaling pathways in the H1T line, which implicates each of these molecules in maintaining the undifferentiated state, whereas the bone morphogenic protein (BMP) and Notch pathways could promote hESCs differentiation. Experimentally, we find that Activin A is necessary and sufficient for the maintenance of self-renewal and pluripotency of hESCs and supports long-term feeder and serum-free growth of hESCs. We show that Activin A induces the expression of Oct4, Nanog, Nodal, Wnt3, basic FGF, and FGF8 and suppresses the BMP signal. Our data indicates Activin A as a key regulator in maintenance of the stemness in hESCs. This finding will help elucidate the complex signaling network that maintains the hESC phenotype and function.  相似文献   

8.
Human embryonic stem cells (hESCs) provide a renewable source of a variety of cell types with the potential for use in both scientific research and clinical cell-based therapy. Several hESC lines have previously been isolated and characterized, however, the majority of these lines were generated in the presence of animal serum and animal-derived feeder cells. Therefore, the exposure of the hESC to animal products may have induced phenotypic and/or genomic changes in the hESC lines not characteristic of normal hESC. Moreover, those hESC lines exposed to animal components may not be used for therapeutic applications due to the risk of graft rejection and pathogenic transmission from animal sources. In this study, we characterized six new hESC lines derived from human blastocysts under minimal-animal component conditions and cultured with human fetal lung fibroblasts. The hESC lines retained the ability to self-renew, are karytopically normal, and express stage-specific embryonic antigen-3 (SSEA-3), SSEA-4, TRA-1-60, and TRA-1-81, but not SSEA-1, markers of pluripotent hESC. In addition, we show that telomerase activity decreased in each of the hESC lines following differentiation into embryoid bodies, albeit to different degrees. Finally, we demonstrate that the hESC lines are capable of differentiating into the three embryonic germ layers in vitro and form complex teratomas in vivo. This suggests that the hESC lines described here are valuable models for both future in vitro and in vivo studies, which may aid in the progression toward clinical-grade cell therapy.  相似文献   

9.
One of the most frequently used matrices for feeder-free growth of undifferentiated human embryonic stem cells (hESCs) is Matrigel, which supports attachment and growth of undifferentiated hESCs in the presence of mouse embryonic fibroblast-conditioned medium. Unfortunately, application of Matrigel or medium conditioned by mouse embryonic feeder cells is not ideal for potential medical application of hESCs because xenogeneic pathogens can be transmitted through culture conditions. We demonstrate here that human serum as matrix and medium conditioned by differentiated hESCs reduce exposure of hESCs to animal ingredients and provide a safer direction toward completely animal-free conditions for application, handling, and understanding of hESC biology. At the same time, hESCs grown under these conditions maintain all hESC features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype.  相似文献   

10.
Human embryonic stem cells (hESCs) are derived from the inner cell mass of preimplantation embryos; they can be cultured indefinitely and differentiated into many cell types in vitro. These cells therefore have the ability to provide insights into human disease and provide a potential unlimited supply of cells for cell-based therapy. Little is known about the factors that are important for maintaining undifferentiated hESCs in vitro, however. As a tool to investigate these factors, transfected hES clonal cell lines were generated; these lines are able to express the enhanced green fluorescent protein (EGFP) reporter gene under control of the OCT4 promoter. OCT4 is an important marker of the undifferentiated state and a central regulator of pluripotency in ES cells. These OCT4-EGFP clonal cell lines exhibit features similar to parental hESCs, are pluripotent, and are able to produce all three embryonic germ layer cells. Expression of OCT4-EGFP is colocalized with endogenous OCT4, as well as the hESC surface antigens SSEA4 and Tra-1-60. In addition, the expression is retained in culture for an extensive period of time. Differentiation of these cells toward the neural lineage and targeted knockdown of endogenous OCT4 expression by RNA interference downregulated the EGFP expression in these cell lines, and this correlates closely with the reduction of endogenous OCT4 expression. Therefore, these cell lines provide an easy and noninvasive method to monitor expression of OCT4 in hESCs, and they will be invaluable for studying not only OCT4 function in hESC self-renewal and differentiation but also the factors required for maintenance of undifferentiated hESCs in culture.  相似文献   

11.
Derivation and culture of human embryonic stem cells (hESCs) without animal-derived material would be optimal for cell transplantation. We derived two new hES (HS293 and HS306) and 10 early cell lines using serum replacement (SR) medium instead of conventional fetal calf serum and human foreskin fibroblasts as feeder cells. Line HS293 has been in continuous culture, with a passage time of 5-8 days, since October 2003 and is at passage level 56. Line HS306 has been cultured since February 2004, now at passage 41. The lines express markers of pluripotent hESCs (Oct-4, SSEA-4, TRA-1-60, TRA-1-81, GCTM-2, and alkaline phosphatase). The pluripotency has been shown in embryoid bodies in vitro, and the pluripotency of line 293 has also been shown in vivo by teratoma formation in severe combined immunodeficiency/beige mice. The karyotype of HS293 is 46,XY, and that of HS306 is 46,XX. Ten more early lines have been derived under similar conditions since September 2004. We conclude that hESC lines can be successfully derived using SR medium and postnatal human fibroblasts as feeder cells. This is a step toward xeno-free conditions and facilitates the use of these cells in transplantation.  相似文献   

12.
Applications of human embryonic stem cells (hESCs) are limited by the use of mouse embryonic fibroblasts feeder and animal-derived components during culture. In this study, we demonstrated the potential use of extracellular matrix (ECM) derived from the autologous feeders to support long-term undifferentiated growth of hESCs in xeno-free, serum-free, and feeder-free conditions. Autologous H9 ebF (feeder cells derived from outgrowth of embryoid body [EB] predifferentiated from H9 hESCs) was derived from EBs predifferentiated from H9 hESCs through a direct-plating outgrowth system. The ECM comprising collagen VI, laminin, and fibronectin was extracted from H9 ebF through a freeze-thaw procedure. The autologous ECM together with animal component-free TeSR?2 medium was used to support long-term growth of H1 and H9 hESC lines for up to 20 passages. The maintenance of hESC undifferentiated state by autologous ECM was confirmed by the positive staining of hESC-specific markers (Oct4, SSEA-4, and Tra-1-60) and the expression of pluripotency marker genes (Oct4, Nanog, and Sox2). Flow cytometry further showed that more than 99% of hESCs retained the expression of SSEA-3/4 after long-term culture on autologous ECM. Pluripotency of hESCs on ECM was further proven by in vitro EB formation and in vivo teratoma assay. Overall, this study suggested a strategy for efficient propagation of clinically compliant hESCs in an autologous feeder-free culture system.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Irwin EF  Gupta R  Dashti DC  Healy KE 《Biomaterials》2011,32(29):6912-6919
We have developed a synthetic polymer interface for the long-term self-renewal of human embryonic stem cells (hESCs) in defined media. We successfully cultured hESCs on hydrogel interfaces of aminopropylmethacrylamide (APMAAm) for over 20 passages in chemically-defined mTeSR?1 media and demonstrated pluripotency of multiple hESC lines with immunostaining and quantitative RT-PCR studies. Results for hESC proliferation and pluripotency markers were both qualitatively and quantitatively similar to cells cultured on Matrigel?-coated substrates. Mechanistically, it was resolved that bovine serum albumin (BSA) in the mTeSR?1 media was critical for cell adhesion on APMAAm hydrogel interfaces. This study uniquely identified a robust long-term culture surface for the self-renewal of hESCs without the use of biologic coatings (e.g., peptides, proteins, or Matrigel?) in completely chemically-defined media that employed practical culturing techniques amenable to clinical-scale cell expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号