首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to clarify the pharmacological role of carnitine/organic cation transporter (Octn) family members in mouse heart. Immunohistochemical analysis revealed that Octn1 was exclusively expressed on endothelial cells in blood vessels. Octn2 was detected on the plasma membrane of cardiac muscle cells by immunoelectron microscopy. Octn3 was not detected in the heart. Integration plot analysis showed that coadministration of unlabeled L-carnitine reduced distribution of L-[3H]carnitine to the heart. L-[3H]Carnitine uptake in heart slices was reduced by carnitine analogs and various Octn2 substrates. L-[3H]Carnitine uptake by heart slices from juvenile visceral steatosis (jvs) mice, which have a hereditary octn2 gene deficiency, was negligible. Distribution of [3H]quinidine, another Octn2 substrate, to the heart was not reduced by L-carnitine, and [3H]quinidine uptake in heart slices was Na(-)-independent and inhibited by cationic drugs, but not carnitine analogs. [3H]Quinidine uptake by heart slices from jvs mice was similar to that of wild-type mice. These results demonstrate that OCTN2 is functionally expressed on the plasma membrane of muscle cells and is involved in distribution of carnitine to the heart. Some mechanism(s) other than OCTN2 is involved in the distribution of quinidine to the heart.  相似文献   

2.
OCTN2 is an Na(+)-dependent transporter for carnitine, which is essential for fatty acid metabolism, and its functional defect leads to fatal systemic carnitine deficiency (SCD). It also transports the organic cation tetraethylammonium (TEA) in an Na(+)-independent manner. Here, we studied the multifunctionality of OCTN2, by examining the transport characteristics in cells transfected with mouse OCTN2 and in juvenile visceral steatosis (jvs) mice that exhibit a SCD phenotype owing to mutation of the OCTN2 gene. The physiological significance of OCTN2 as an organic cation transporter was confirmed by using jvs mice. The embryonic fibroblasts from jvs mice exhibited significantly decreased transport of [(14)C]TEA. Pharmacokinetic analysis of [(14)C]TEA disposition demonstrated that jvs mice showed decreased tissue distribution and renal secretory clearance. In transport experiments using OCTN2-expressing cells, TEA and carnitine showed mutual trans-stimulation effects in their transport, implying a carnitine/TEA exchange mechanism. In addition, Na(+) affected the affinity of carnitine for OCTN2, whereas Na(+) is unlikely to be involved in TEA transport. This is the first molecular and physiological demonstration of the operation of an organic cation transporter in renal apical membrane. The results are consistent with the physiological coupling of carnitine reabsorption with the secretion of organic cations.  相似文献   

3.
Hepatic cytochrome P450 (P450)-dependent drug oxidation activity has not been completely characterized in chimeric TK-NOG mice with humanized livers (humanized liver mice). In this study, we examined several drug oxidation activities catalyzed by liver microsomes from humans, humanized liver mice, and TK-NOG mice using 9 P450 substrates. The catalytic activities of liver microsomes from humans and humanized liver mice showed relatively similar rates of oxidation of 7-ethoxyresorufin, coumarin, 7-pentoxyresorufin, flurbiprofen, S-mephenytoin, chlorzoxazone, and midazolam, whereas bufuralol 1′-hydroxylation and propafenone 4′-hydroxylation (rodent-specific propafenone oxidation activity) were higher in humanized liver mice than in humans. In addition, P450 protein expression levels in the humanized mouse liver were quantified using a liquid chromatography–tandem mass spectrometry-based protein quantification method. Quantification of P450 enzymes showed a 3-fold difference between human and humanized liver mouse livers, except for CYP2B6, which showed an approximately 6-fold difference. Overall, most P450-dependent drug oxidation activities were comparable between liver microsomes from human and humanized liver mice based on the similar expression levels of human P450 enzymes. However, some differences were observed between both species, including considerable differences in bufuralol 1′-hydroxylation and propafenone 4′-hydroxylation activities.  相似文献   

4.
Exposure to aristolochic acid I (AAI) is associated with aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial cancer. Individual differences in xenobiotic-metabolizing enzyme activities are likely to be a reason for interindividual susceptibility to AA-induced disease. We evaluated the reductive activation and oxidative detoxication of AAI by cytochrome P450 (P450) 1A1 and 1A2 using the Cyp1a1(-/-) and Cyp1a2(-/-) single-knockout and Cyp1a1/1a2(-/-) double-knockout mouse lines. Incubations with hepatic microsomes were also carried out in vitro. P450 1A1 and 1A2 were found to (i) activate AAI to form DNA adducts and (ii) detoxicate it to 8-hydroxyaristolochic acid I (AAIa). AAI-DNA adduct formation was significantly higher in all tissues of Cyp1a1/1a2(-/-) than Cyp1a(+/+) wild-type (WT) mice. AAI-DNA adduct levels were elevated only in selected tissues from Cyp1a1(-/-) versus Cyp1a2(-/-) mice, compared with those in WT mice. In hepatic microsomes, those from WT as well as Cyp1a1(-/-) and Cyp1a2(-/-) mice were able to detoxicate AAI to AAIa, whereas Cyp1a1/1a2(-/-) microsomes were less effective in catalyzing this reaction, confirming that both mouse P450 1A1 and 1A2 are both involved in AAI detoxication. Under hypoxic conditions, mouse P450 1A1 and 1A2 were capable of reducing AAI to form DNA adducts in hepatic microsomes; the major roles of P450 1A1 and 1A2 in AAI-DNA adduct formation were further confirmed using selective inhibitors. Our results suggest that, in addition to P450 1A1 and 1A2 expression levels in liver, in vivo oxygen concentration in specific tissues might affect the balance between AAI nitroreduction and demethylation, which in turn would influence tissue-specific toxicity or carcinogenicity.  相似文献   

5.
The organic cation/carnitine transporter OCTN2 is responsible for renal tubular reabsorption of its endogenous substrate, carnitine, although its physiological role in small intestine remains controversial. Here we present direct evidence for a predominant role of OCTN2 in small intestinal absorption of carnitine based on experiments with juvenile visceral steatosis (jvs) mice, which have a hereditary deficiency of the octn2 gene. Uptake of carnitine, assessed with an Ussing-type chamber system, from the apical surface of the small intestine was saturable and higher than that from the basal surface in wild-type mice, whereas carnitine uptake having these characteristics was almost absent in jvs mice. Saturable uptake of carnitine was also confirmed in isolated enterocytes obtained from wild-type mice, and the Km value obtained (approximately 20 microM) was close to that reported for carnitine uptake by human embryonic kidney 293 cells stably expressing mouse OCTN2 (Slc22a5). The carnitine uptake by enterocytes was decreased in the presence of various types of organic cations, and this inhibition profile was similar to that of mouse OCTN2, whereas uptake of carnitine was quite small and unsaturable in enterocytes obtained from jvs mice. Immunohistochemical and immunoprecipitation analyses suggested colocalization of OCTN2 with PDZK1, an adaptor protein that functionally regulates OCTN2. Immunoelectron microscopy visualized both OCTN2 and PDZK1 in microvilli of absorptive epithelial cells. These findings indicate that OCTN2 is predominantly responsible for the uptake of carnitine from the apical surface of mouse small intestinal epithelial cells, and it may therefore be a promising target for oral delivery of therapeutic agents that are OCTN2 substrates.  相似文献   

6.
Chalepensin, a furanocoumarin, is present in several medicinal Rutaceae plants and causes a mechanism-based inhibition of human and mouse cytochrome P450 (P450, CYP) 2A in vitro. To address the in vivo effect, we investigated the effects of chalepensin on multiple hepatic P450 enzymes in C57BL/6JNarl mice. Oral administration of 10?mg/kg chalepensin to mice for 7?days significantly decreased hepatic coumarin 7-hydroxylation (Cyp2a) and increased 7-pentoxyresorufin O-dealkylation (Cyp2b) activities, whereas activities of Cyp1a, Cyp2c, Cyp2e1, and Cyp3a were not affected. Without affecting its mRNA level, the decreased Cyp2a activity was accompanied by an increase in the immunodetected Cyp2a5 protein level. In chalepensin-treated mice, microsomal Cyp2a5 was less susceptible to ATP-fortified cytosolic degradation than that in control mice, resulting in the elevated protein level. The in vitro inactivation through NADPH-fortified pre-incubation with chalepensin also protected microsomal Cyp2a5 against protein degradation. Using cell-based reporter systems, chalepensin at a concentration near unbound plasma concentration activated mouse constitutive androstane receptor (CAR), in agreement with the observed induction of Cyp2b. These findings revealed that suicidal inhibition of Cyp2a5 and the CAR-mediated Cyp2b9/10 induction concurrently occurred in chalepensin-treated mice.  相似文献   

7.
Hypericum perforatum [St. John’s wort (SJW)] is known to cause a drug interaction with the substrates of cytochrome P450 (P450, CYP) isoforms, mainly CYP3A. This study aims to determine the dose response and time course of the effects of SJW extract on P450s, UDP-glucuronosyltransferase (UGT), glutathione S-transferase (GST), and NAD(P)H-quinone oxidoreductase (NQO) in mice. The oral administration of SJW extract to male mice at 0.6 g/kg/d for 21 days increased hepatic oxidation activity toward a Cyp3a substrate nifedipine. By extending the SJW treatment to 28 days, hepatic nifedipine oxidation (NFO) and warfarin 7-hydroxylation (WOH) (Cyp2c) activities were increased by 95% and 34%, respectively. Immunoblot analysis of liver microsomal proteins revealed that the Cyp2c protein level was elevated by the 28-day treatment. However, the liver microsomal activities of the oxidation of the respective substrates of Cyp1a, Cyp2a, Cyp2b, Cyp2d, and Cyp2e1 remained unchanged. In the kidney, SJW increased the NFO, but not the WOH activity. The extended 28-day treatment did not alter mouse hepatic and renal UGT, GST, and NQO activities. These findings demonstrate that SJW stimulates hepatic and renal Cyp3a activity and hepatic Cyp2c activity and expression. The induction of hepatic Cyp2c requires repeated treatment for a period longer than the initial induction of Cyp3a.  相似文献   

8.
1. Cytochrome P450 (P450, CYP) enzymes involved in drug oxidations in mouse intestines were characterized for their role in the first-pass metabolism of xenobiotics. 2. Preparation of mouse intestinal microsomes using a buffer containing glycerol and protease inhibitors including (p-amidinophenyl) methanesulphonyl fluoride, EDTA, soybean trypsin inhibitor, aprotinin, bestatin and leupeptine gave the highest testosterone 6beta-hydroxylase activity among several preparation buffers tested in this study. Testosterone 6beta-hydroxylase activity catalysed by mouse intestinal microsomes subjected to freezing and thawing was lower than that catalysed by unfrozen intestinal microsomes. 3. Low but significant catalytic activities of nifedipine oxidation, midazolam 1'- and 4-hydroxylation, chlorzoxazone 6-hydroxylation, bufuralol 1'- and 6-hydroxylations and tolbutamide methylhydroxylation were observed in mouse intestinal microsomes. Testosterone 6beta-hydroxylation, chlorzoxazone 6-hydroxylation, and bufuralol 1'- and 6-hydroxylations were inhibited by ketoconazole, diethyldithiocarbamate and quinine respectively. 4. Immunoblot analysis using anti-rat CYP3A antibodies demonstrated two immunoreactive bands showing similar migration in mouse intestinal and hepatic microsomes, although studies using anti-CYP1A, anti-CYP2C, anti-CYP2D and anti-CYP2E1 antibodies did not detect any band in mouse intestinal microsomes. 5. The results suggest that mouse intestinal microsomes should be prepared with glycerol and several protease inhibitors and that Cyp3a enzymes probably play an important role in drug oxidations catalysed by mouse intestine.  相似文献   

9.
Enzymatic activities are routinely used to identify the contribution of individual forms of cytochrome P450 in a particular biotransformation. p-Nitrophenol O-hydroxylation (PNPH) has been widely used as a measure of CYP2E1 catalytic activity. However, rat and human forms of CYP3A have also been shown to catalyze this activity. In mice, the contributions of CYP3A and CYP2E1 to PNPH activity are not known. Here we used hepatic microsomes from Cyp2e1(-/-) and wild-type mice to investigate the contributions of constitutively expressed and alcohol-induced murine CYP2E1 and CYP3A to PNPH activity. In liver microsomes from untreated mice, PNPH activity was much greater in wild-type mice compared with Cyp2e1(-/-) mice, suggesting a major role for CYP2E1 in catalyzing PNPH activity. Hepatic PNPH activities were not significantly different in microsomes from male and female mice, although the microsomes from females have dramatically higher levels of CYP3A. Treatment with a combination of ethanol and isopentanol resulted in induction of CYP3A proteins in wild-type and Cyp2e1(-/-) mice, as well as CYP2E1 protein in wild-type mice. The alcohol treatment increased PNPH activities in hepatic microsomes from wild-type mice but not from Cyp2e1(-/-) mice. Our findings suggest that in untreated and alcohol-treated mice, PNPH activity may be used as a specific probe for CYP2E1 and that constitutively expressed and alcohol-induced forms of mouse CYP3A have little to no role in catalyzing PNPH activity.  相似文献   

10.
1,8-Cineole, the monoterpene cyclic ether known as eucalyptol, is one of the components in essential oils from Eucalyptus polybractea. We investigated the metabolism of 1,8-cineole by liver microsomes of rats and humans and by recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human P450 and NADPH-P450 reductase cDNAs had been introduced. 1,8-Cineole was found to be oxidized at high rates to 2-exo-hydroxy-1,8-cineole by rat and human liver microsomal P450 enzymes. In rats, pregenolone-16alpha-carbonitrile (PCN) and phenobarbital induced the 1,8-cineole 2-hydroxylation activities by liver microsomes. Several lines of evidence suggested that CYP3A4 is a major enzyme involved in the oxidation of 1,8-cineole by human liver microsomes: (1), 1,8-cineole 2-hydroxylation activities by liver microsomes were inhibited very significantly by ketoconazole, a CYP3A inhibitor, and anti-CYP3A4 immunoglobulin G; (2), there was a good correlation between CYP3A4 contents and 1,8-cineole 2-hydroxylation activities in liver microsomes of eighteen human samples; and (3), of various recombinant human P450 enzymes examined, CYP3A4 had the highest activities for 1,8-cineole 2-hydroxylation; the rate catalyzed by CYP3A5 was about one-fourth of that catalyzed by CYP3A4. Kinetic analysis showed that K(m) and V(max) values for the oxidation of 1,8-cineole by liver microsomes of human sample HL-104 and rats treated with PCN were 50 microM and 91 nmol/min/nmol P450 and 20 microM and 12 nmol/min/nmol P450, respectively. The rates observed using human liver microsomes and recombinant CYP3A4 were very high among other CYP3A4 substrates reported so far. These results suggest that 1,8-cineole, a monoterpenoid present in nature, is one of the effective substrates for CYP3A enzymes in rat and human liver microsomes.  相似文献   

11.
1. Cytochrome P450 (P450, CYP) enzymes involved in drug oxidations in mouse intestines were characterized for their role in the first-pass metabolism of xenobiotics. 2. Preparation of mouse intestinal microsomes using a buffer containing glycerol and protease inhibitors including (p-amidinophenyl) methanesulphonyl fluoride, EDTA, soybean trypsin inhibitor, aprotinin, bestatin and leupeptine gave the highest testosterone 6β-hydroxylase activity among several preparation buffers tested in this study. Testosterone 6β-hydroxylase activity catalysed by mouse intestinal microsomes subjected to freezing and thawing was lower than that catalysed by unfrozen intestinal microsomes. 3. Low but significant catalytic activities of nifedipine oxidation, midazolam 1′ - and 4-hydroxylation, chlorzoxazone 6-hydroxylation, bufuralol 1′ - and 6-hydroxylations and tolbutamide methylhydroxylation were observed in mouse intestinal microsomes. Testosterone 6β-hydroxylation, chlorzoxazone 6-hydroxylation, and bufuralol 1′ - and 6-hydroxylations were inhibited by ketoconazole, diethyldithiocarbamate and quinine respectively. 4. Immunoblot analysis using anti-rat CYP3A antibodies demonstrated two immunoreactive bands showing similar migration in mouse intestinal and hepatic microsomes, although studies using anti-CYP1A, anti-CYP2C, anti-CYP2D and anti-CYP2E1 antibodies did not detect any band in mouse intestinal microsomes. 5. The results suggest that mouse intestinal microsomes should be prepared with glycerol and several protease inhibitors and that Cyp3a enzymes probably play an important role in drug oxidations catalysed by mouse intestine.  相似文献   

12.
By incorporating the transporter-mediated or receptor-mediated transport process in physiologically based pharmacokinetic models, we succeeded in the quantitative prediction of plasma and tissue concentrations of beta-lactam antibiotics, insulin, pentazocine, quinolone antibacterial agents, and inaperizone and digoxin. The author's research on transporter-mediated pharmacokinetics focuses on the molecular and functional characteristics of drug transporters such as oligopeptide transporter, monocarboxylic acid transporter, anion antiporter, organic anion transporters, organic cation/carnitine transporters (OCTNs), and the ATP-binding cassette transporters P-glycoprotein and MRP2. We have successfully demonstrated that these transporters play important roles in the influxes and/or effluxes of drugs in intestinal and renal epithelial cells, hepatocytes, and brain capillary endothelial cells that form the blood-brain barrier. In the systemic carnitine deficiency (SCD) phenotype mouse model, juvenile visceral steatosis (jvs) mouse, a mutation in the OCTN2 gene was found. Furthermore, several types of mutation in human SCD patients were found, demonstrating that OCTN2 is a physiologically important carnitine transporter. Interestingly, OCTNs transport carnitine in a sodium-dependent manner and various cationic drugs transport it in a sodium-independent manner. OCTNs are thought to be multifunctional transporters for the uptake of carnitine into tissue cells and for the elimination of intracellular organic cationic drugs.  相似文献   

13.
1. Oxidation of 1,4-cineole, a monoterpene cyclic ether, was studied in rat and human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes expressed in insect cells in which human P450 and NADPH-P450 reductase cDNAs have been introduced. On analysis with gas chromatography/mass spectrometry, 2-exo-hydroxy-1,4-cineole was identified as a principal oxidation product of 1,4-cineole catalysed by rat and human P450 enzymes. 2. CYP3A4 was a major enzyme involved in the 2-hydroxylation of 1,4-cineole by human liver microsomes, based on the following lines of evidence. First, 1,4-cineole 2-hydroxylation activities catalysed by human liver microsomes were inhibited by ketoconazole, a potent inhibitor of CYP3A activities, and an anti-CYP3A4 antibody. Second, there was a good correlation beteeen CYP3A4 contents and 1,4-cineole 2-hydroxylation activities in liver microsomes of eighteen human samples examined. Finally, of 10 recombinant human P450 enzymes examined, CYP3A4 had the highest activity for 1,4-cineole 2-hydroxylation. 3. Liver microsomal 1,4-cineole 2-hydroxylation activities were induced in rat by pregnenolone 16alpha-carbonitrile and dexamethasone and extensively inhibited by ketoconazole, indicative of the possible roles of CYP3A enzymes in this reaction. 4. Kinetic analysis showed that Vmax/Km for 1,4-cineole 2-hydroxylation catalysed by liver microsomes was higher in a human sample HL-104 (4.6 microM(-1) min(-1)) than those of rat treated with pregnenolone 16alpha-carbonitrile (0.49 microM(-1) min(-1)) and dexamethasone (0.36 microM(-1) min(-1)). 5. 1,8-Cineole, a structurally related monoterpene previously shown to be catalysed by CYP3A enzymes, inhibited 1,4-cineole 2-hydroxylation catalysed by human liver microsomes, whereas 1,4-cineole did not inhibit 1,8-cineole 2-hydroxylation activities. Both compounds caused inhibition of testosterone 6beta-hydroxylation by human liver microsomes, the former compound being more inhibitory than the latter. 6. These results suggest that 1,4-cineole and 1,8-cineole, two plant essential oils present in Citrus medica L. var. acida and Eucalyptus polybractea, respectively, are converted to 2-hydroxylated products by CYP3A enzymes in rat and human liver microsomes. It is unknown at present whether the 2-hydroxylation products of these compounds are more active biologically than the parent compound.  相似文献   

14.
1. Oxidation of 1,4-cineole, a monoterpene cyclic ether, was studied in rat and human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes expressed in insect cells in which human P450 and NADPH-P450 reductase cDNAs have been introduced. On analysis with gas chromatography/mass spectrometry, 2- exo -hydroxy-1,4-cineole was identified as a principal oxidation product of 1,4-cineole catalysed by rat and human P450 enzymes. 2. CYP3A4 was a major enzyme involved in the 2-hydroxylation of 1,4-cineole by human liver microsomes, based on the following lines of evidence. First, 1,4-cineole 2-hydroxylation activities catalysed by human liver microsomes were inhibited by ketoconazole, a potent inhibitor of CYP3A activities, and an anti-CYP3A4 antibody. Second, there was a good correlation between CYP3A4 contents and 1,4-cineole 2-hydroxylation activities in liver microsomes of eighteen human samples examined. Finally, of 10 recombinant human P450 enzymes examined, CYP3A4 had the highest activity for 1,4-cineole 2-hydroxylation. 3. Liver microsomal 1,4-cineole 2-hydroxylation activities were induced in rat by pregnenolone 16 α-carbonitrile and dexamethasone and extensively inhibited by ketoconazole, indicative of the possible roles of CYP3A enzymes in this reaction. 4. Kinetic analysis showed that V max / K m for 1,4-cineole 2-hydroxylation catalysed by liver microsomes was higher in a human sample HL-104 (4.6 μM -1?min -1) than those of rat treated with pregnenolone 16 α-carbonitrile (0.49 μM -1?min -1) and dexamethasone (0.36 μM -1?min -1). 5. 1,8-Cineole, a structurally related monoterpene previously shown to be catalysed by CYP3A enzymes, inhibited 1,4-cineole 2-hydroxylation catalysed by human liver microsomes, whereas 1,4-cineole did not inhibit 1,8-cineole 2-hydroxylation activities. Both compounds caused inhibition of testosterone 6 β -hydroxylation by human liver microsomes, the former compound being more inhibitory than the latter. 6. These results suggest that 1,4-cineole and 1,8-cineole, two plant essential oils present in Citrus medica L. var. acida and Eucalyptus polybractea, respectively, are converted to 2-hydroxylated products by CYP3A enzymes in rat and human liver microsomes. It is unknown at present whether the 2-hydroxylation products of these compounds are more active biologically than the parent compound.  相似文献   

15.
(+)-Limonene is reported to cause nephropathy in male rats, but not in female rats and other species of animals including mice, rabbits, guinea pigs, and dogs. Male rats contain high levels of alpha2u-globulin in kidneys, and it has been shown that limonene and/or its metabolites are able to bind noncovalently to alpha2u-globulin, resulting in an accumulation of protein droplets in the renal tubules. In this study, we investigated whether (+)- and (-)-limonene enantiomers are differentially metabolized by liver microsomes of male and female rats. (+)- and (-)-limonene enantiomers were found to be oxidized to their respective trans-carveol (6-hydroxylation) and perillyl alcohol (7-hydroxylation) derivatives in greater amounts by liver microsomes of male rats than those of female rats. The limonene hydroxylation activities were not detected in liver microsomes of rat fetuses and were increased developmentally after birth, only in male rats. Treatment of male rats with phenobarbital significantly increased liver microsomal 6-hydroxylation activities with both enantiomers whereas beta-naphthoflavone, isosafrole, and pregnenolone 16alpha-carbonitrile did not cause such effects. Anti-P450 2C9 which cross-reacts with rat P450 2C11 inhibited limonene hydroxylations catalyzed by liver microsomes of untreated male rats, and it was also found that anti-P450 2B1 suppressed the activities catalyzed by liver microsomes of phenobarbital-treated rats. Possible roles of P450 2C11 and P450 2B1 in the limonene hydroxylation activities were supported by the experiments with purified rat liver P450s in reconstitution systems and with recombinant rat P450s in Trichoplusia ni. Our present results showing that there are sex-related differences in the oxidative metabolism of limonene enantiomers by liver microsomes may provide useful information on the basis of limonene-induced toxicities in different animal species.  相似文献   

16.
Hypericum perforatum [St. John’s wort (SJW)] is known to cause a drug interaction with the substrates of cytochrome P450 (P450, CYP) isoforms, mainly CYP3A. This study aims to determine the dose response and time course of the effects of SJW extract on P450s, UDP-glucuronosyltransferase (UGT), glutathione S-transferase (GST), and NAD(P)H-quinone oxidoreductase (NQO) in mice. The oral administration of SJW extract to male mice at 0.6 g/kg/d for 21 days increased hepatic oxidation activity toward a Cyp3a substrate nifedipine. By extending the SJW treatment to 28 days, hepatic nifedipine oxidation (NFO) and warfarin 7-hydroxylation (WOH) (Cyp2c) activities were increased by 95% and 34%, respectively. Immunoblot analysis of liver microsomal proteins revealed that the Cyp2c protein level was elevated by the 28-day treatment. However, the liver microsomal activities of the oxidation of the respective substrates of Cyp1a, Cyp2a, Cyp2b, Cyp2d, and Cyp2e1 remained unchanged. In the kidney, SJW increased the NFO, but not the WOH activity. The extended 28-day treatment did not alter mouse hepatic and renal UGT, GST, and NQO activities. These findings demonstrate that SJW stimulates hepatic and renal Cyp3a activity and hepatic Cyp2c activity and expression. The induction of hepatic Cyp2c requires repeated treatment for a period longer than the initial induction of Cyp3a.  相似文献   

17.
1. The contribution of human P450 2A6 and mouse P450 2a-5 isoenzymes, both highly active in coumarin 7-hydroxylation, to the metabolism of warfarin was studied in several in vitro systems with human and mouse liver preparations. 2. The reconstituted P450 2a-5 purified from DBA/2 mouse liver did not metabolize warfarin. 3. An anti-P450 2a-5 antibody did not consistently inhibit any of the warfarin biotransformation reactions catalyzed by human or mouse liver microsomes, although coumarin 7-hydroxylation was inhibited by over 90%. 4. In some human microsomal samples, 4- and 8-hydroxylations of warfarin were inhibited to some extent by the anti-P450 2a-5 antibody. 5. Warfarin (less than 1 mM) did not inhibit coumarin 7-hydroxylation by human or mouse liver microsomes in vitro. 6. We conclude that mouse and human coumarin 7-hydroxylases do not oxidise warfarin.  相似文献   

18.
Propiconazole is a N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. In the present study, propiconazole was examined for its effects on the expression of hepatic cytochrome P450 genes and on the activities of P450 enzymes in male Sprague-Dawley rats and male CD-1 mice. Rats and mice were administered propiconazole by gavage daily for 14 days at doses of 10, 75, and 150 mg/kg body weight/day. Quantitative real time RT-PCR assays of rat hepatic RNA samples from animals treated at the 150 mg/kg body weight/day dose revealed significant mRNA overexpression of the following genes compared to control: CYP1A2 (1.62-fold), CYP2B1 (10.8-fold), CYP3A1/CYP3A23 (2.78-fold), and CYP3A2 (1.84-fold). In mouse liver, propiconazole produced mRNA overexpression of Cyp2b10 (2.39-fold) and Cyp3a11 (5.19-fold). mRNA expression of CYP1A1 was not detected in liver tissues from treated or controls animals from either species. Propiconazole significantly induced both pentoxyresorufin O-dealkylation (PROD) and methoxyresorufin O-dealkylation (MROD) activities in both rat and mouse liver at the 150 mg/kg body weight/day and 75 mg/kg body weight/day doses. In summary, these results indicated that propiconazole induced CYP1A2 in rat liver and CYP2B and CYP3A families of isoforms in rat and mouse liver.  相似文献   

19.
OCTN2 (SLC22A5), an organic cation/carnitine transporter, is widely distributed throughout the body, including the brain. In the present study, the involvement of OCTN2 in acetyl-L-carnitine (ALCAR) permeation across the blood-brain barrier (BBB) was examined using a microdialysis method in mouse. OCTN2 function was examined by comparison of wild-type mice with jvs mice, which express defective OCTN2 and are considered a model for primary systemic carnitine deficiency. Zero-net-flux method analysis indicated higher in vivo recovery of ALCAR and lower physiological ALCAR concentration in thalamus extracellular fluid (ECF) in jvs mice compared with wild-type mice. Externally added ALCAR showed significantly slower initial uptake across the BBB in jvs mouse. These results indicated that OCTN2 is functionally involved in ALCAR transfer across the BBB. Total radioactivity in ECF after i.v. administration of radiolabelled ALCAR remained constant for the rest of the experimental period. Accordingly, our results indicate that ALCAR is transported from blood to brain ECF by OCTN2 at least in part, and its concentration in brain ECF is regulated by other events such as protein binding and anabolic reactions in the brain, as well as by transport across the BBB.  相似文献   

20.
A cytochrome P-450 isozyme, P-450 bunitrolol (BTL), catalyzing bunitrolol 4-hydroxylation was partially purified from liver microsomes of adult male Sprague-Dawley rats by hydrophobic affinity chromatographic (omega-aminooctyl-Sepharose 4B) and high-performance liquid chromatographic (anion-exchange diethylaminoethyl-5PW) techniques. The specific content of the final preparation was 5.02 nmol/mg protein, which was 7.8-fold that of microsomes. It showed two protein bands of 49 and 32 kDa in sodium dodecylsulfate-polyacrylamide gel electrophoresis. N-Terminal 20 amino acid sequence of the protein of a higher molecular mass (49 kDa) isolated by an electroblotting technique is 94% homologous with that of CYP2D2. In a reconstituted system including NADPH-cytochrome P-450 reductase and an NADPH-generating system, the final preparation had the highest activity toward BTL and debrisoquine 4-hydroxylation among 12 isozymes of cytochrome P-450 examined. Kinetic parameters, KM and Vmax values, of P-450 BTL calculated for BTL 4-hydroxylation were 10.7 microM and 19.68 nmol/min/nmol P-450, respectively, whereas those values (mean +/- SE) of rat liver microsomes were 0.84 +/- 0.05 microM and 2.05 +/- 0.11 nmol/min/nmol P-450. When preincubated with rat liver microsomes, the antibody against the final P-450 BTL preparation suppressed bunitrolol and debrisoquine 4-hydroxylase activities dose-dependently and almost completely. These results suggest that cytochrome P-450 BTL and its immunochemically related P-450 isozyme(s) play a major role in debrisoquine 4-hydroxylation as well as in BTL 4-hydroxylation in rat liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号