首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Effects of quinidine on plateau currents of guinea-pig ventricular myocytes   总被引:4,自引:0,他引:4  
Effects of quinidine on membrane currents forming the plateau of action potentials were studied using an isolated single ventricular cell from guinea-pig hearts. Quinidine (5 mg/l) produced a fall and shortening of the early part of the plateau, and delayed its later part and final repolarization, without changes in resting membrane potential. Application of quinidine caused a reversible depression of the peak Ca2+ current by about 30% of the control. Delayed outward K+ current, iK, also decreased to less than 20% of the control. Thus, an outward tail current upon repolarization to -40 mV from depolarizing voltage steps of the plateau ranges became inward. Current values at the end of 200 ms pulses in response to voltage steps to -60-0 mV were always positive and were not changed by the drug. The inward current elicited at potentials negative to resting potential level, also, decreased by 13% to 23% of the control in the presence of the drug, but the effect was not reversible upon wash-out of the drug. These results suggest that quinidine causes a non-specific depression of inward rectifier K+ current, iK1, with minor degree but has little effect on the window sodium current. Therefore, changes in the action potential repolarization produced by quinidine can be explained by its effects on both calcium current and delayed outward K+ current.  相似文献   

2.
We examined the effects of quinidine (5-20 microM) on transmembrane action potentials and ionic currents of isolated canine ventricular myocytes. Collagenase treatment of canine ventricular tissue produced a yield of 40-60% healthy cells. Myocytes had normal resting and action potentials as measured using conventional microelectrodes. Quinidine decreased Vmax, amplitude, overshoot, and the duration of action potentials stimulated by passage of brief current pulses through the recording pipette. Recovery was complete after washout except that action potential duration was prolonged compared with control. A discontinuous single microelectrode voltage ("switch") clamp was used to measure ionic currents. Quinidine irreversibly reduced steady-state outward current as measured with three different voltage clamp protocols. Quinidine reversibly decreased peak calcium current as well as the slowly inactivating and/or steady-state inward currents in the plateau voltage range, presumably both "late" sodium (tetrodotoxin-sensitive) and calcium (tetrodotoxin-insensitive) currents. The effect on calcium current showed both tonic and use-dependent block. Thus, quinidine has a multitude of actions on both inward and outward currents, which combine to produce the net effect of quinidine on action potential configuration.  相似文献   

3.
OBJECTIVES: The effects of almokalant (4-[3-ethyl[3-(propylsulphinyl)propyl]-amino]-2-hydroxy-propoxy]- benzonitrile), E-4031 (1-[2-(6-methyl-2-pyridyl)-ethyl]-4-(4-methylsulphonyl-amino- benzoyl)piperidine), d-sotalol, and quinidine were investigated on the delayed K+ rectifier current IK. The aim of the study was to compare the drug action on the two components of this current. METHODS: Membrane currents were measured in ventricular myocytes from guinea pig hearts with the whole cell voltage clamp technique. IK was activated during clamp steps from a holding potential of -40 mV to test potentials -30 and +50 mV. The tail current Itail was measured upon stepping back to holding potential. RESULTS: In control experiments. IK and Itail declined spontaneously ("run down"). With 300 ms long test pulses to +50 mV, only d-sotalol (10(-4) M) caused a significant further decrease in IK, whereas all four agents significantly reduced Itail (almokalant 10(-6) M, E-4031 10(-7) M, quinidine 10(-5) M). When tested with 1 s long clamp steps at various potentials almokalant (3 x 10(-6) M), E-4031 (10(-6) M), quinidine (10(-5) M), and d-sotalol (10(-4) M) reduced IK in the potential range between -20 and +40 mV, yielding a bell shaped inward rectifying drug sensitive current. Itail was reduced by almokalant and E-4031 over the whole voltage range with saturation of block positive to +20 mV. Similar reductions with quinidine but not with d-sotalol were also significant. With rest pulses to +50 mV of increasing duration (25 ms-4000 ms), Itail developed with a faster time course than IK and therefore the ratio of Itail/IK declined with pulse duration. With almokalant and E-4031, this ratio became independent of test pulse duration. For 250 ms pulses, Itail/IK was also significantly reduced by d-sotalol and quinidine. CONCLUSION: Inhibition of the rapidly activating inwardly rectifying component of IK is prominent with almokalant and E-4031 and less pronounced with d-sotalol and quinidine. Since inhibition of this component prolongs the cardiac action potential, it should contribute to the antiarrhythmic properties of the agents.  相似文献   

4.
Membrane currents from single smooth muscle cells enzymatically isolated from canine renal artery were recorded using the patch-clamp technique in the whole-cell and cell-attached configurations. These cells exhibited a mean resting potential, input resistance, membrane time constant, and cell capacitance of -51.8 +/- 2.1 mV, 5.2 +/- 0.98 G omega, 116.2 +/- 16.4 msec, and 29.1 +/- 2.0 pF, respectively. Inward current, when elicited from a holding potential of -80 mV, activated near -50 mV, reached a maximum near 0 mV and was sensitive to the dihydropyridine agonist Bay K 8644 and dihydropyridine antagonist nisoldipine. Two components of macroscopic outward current were identified from voltage-step and ramp depolarizations. The predominant charge carrier of the net outward current was identified as K+ by tail-current experiments (reversal potential, -61.0 +/- 0.8 mV in 10.8 mM [K+]o 0 mM [K+]i). The first component was a small, low-noise, voltage- and time-dependent current that activated between -40 and -30 mV (IK(dr)), and the second component was a larger, noisier, voltage- and time-dependent current that activated at potentials positive to +10 mV (IK(Ca)). Both IK(dr) and IK(Ca) displayed little inactivation during long (4-second) voltage steps. IK(Ca) and IK(dr) could be pharmacologically separated by using various Ca2+ and K+ channel blockers. IK(Ca) was substantially inhibited by external NiCl2 (500 microM), CdCl2 (300 microM), EGTA (5 mM), tetraethylammonium (Ki at +60 mV, 307 microM), and charybdotoxin (100 nM) but was insensitive to 4-aminopyridine (0.1-10 mM). IK(dr) was inhibited by 4-aminopyridine (Ki at +10 mV, 723 microM) and tetraethylammonium (Ki at +10 mV, 908 microM) but was insensitive to external NiCl2 (500 microM), CdCl2 (300 microM), EGTA (5 mM), and charybdotoxin (100 nM). Two types of single K+ channels were identified in cell-attached patches. The most abundant K+ channel that was recorded exhibited voltage-dependent activation, was blocked by external tetraethylammonium (250 microM), and had a large single-channel conductance (232 +/- 12 pS with 150 mM K+ in the patch pipette, 130 +/- 17 pS with 5.4 mM K+ in the patch pipette). The second channel was also voltage dependent, was blocked by 4-aminopyridine (5 mM), and exhibited a smaller single-channel conductance (104 +/- 8 pS with 150 mM K+ in the patch pipette, 57 +/- 6 pS with 5.4 mM K+ in the patch pipette). These results suggest that depolarization of canine renal artery cells opens dihydropyridine-sensitive Ca2+ channels and at least two K+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Quinidine delays IK activation in guinea pig ventricular myocytes   总被引:3,自引:0,他引:3  
A major action of the antiarrhythmic agent quinidine is prolongation of cardiac repolarization. In these experiments, the time-dependent effects of quinidine on the delayed rectifier potassium current, IK, a current contributing to cardiac repolarization, were investigated in acutely disaggregated guinea pig ventricular myocytes using the whole-cell recording configuration of the patch-clamp method. The effect of quinidine on IK was dependent on the duration of depolarization. After long (2,000 msec) pulses, IK was reduced by 30 +/- 27% (SD; n = 8, paired) by 10 microM quinidine; in contrast, after short (100 msec) pulses, the drug decreased IK 65 +/- 35% (p less than 0.05). This effect was found both in paired experiments as well as when quinidine-pretreated cells were compared to non-pretreated cells. Quinidine significantly delayed IK activation (9 +/- 20 msec at baseline vs. 44 +/- 25 msec in drug, p less than 0.05), but did not alter the subsequent time course of activation (time constant 659 +/- 118 msec). These findings are consistent with the hypothesis that quinidine promotes occupancy of a channel state from which opening does not occur.  相似文献   

6.
Voltage- and ligand-activated channels in embryonic neurons containing luteinizing hormone-releasing hormone (LHRH) were studied by patch-pipette, whole-cell current and voltage clamp techniques. LHRH neurons were maintained in explant cultures derived from olfactory pit regions of embryonic mice. Cells were marked intracellularly with Lucifer yellow following recording. Sixty-two cells were unequivocally identified as LHRH neurons by Lucifer yellow and LHRH immunocytochemistry. The cultured LHRH neurons had resting potentials around -50 mV, exhibited spontaneous discharges generated by intrinsic and/or synaptic activities and contained a time-dependent inward rectifier (Iir). Voltage clamp analysis of ionic currents in the LHRH neuron soma revealed a tetrodotoxin-sensitive Na+ current (INa) and two major types of K+ currents, a transient current (IA), a delayed rectifier current (IK) and low- and high-voltage-activated Ca2+ currents. Spontaneous depolarizing synaptic potentials and depolarizations induced by direct application of gamma-aminobutyrate were both inhibited by picrotoxin or bicuculline, demonstrating the presence of functional gamma-aminobutyrate type A synapses on these neurons. Responses to glutamate were found in LHRH neurons in older cultures. Thus, embryonic LHRH neurons not yet positioned in their postnatal environment in the forebrain contained a highly differentiated repertoire of voltage- and ligand-gated channels.  相似文献   

7.
Whole-cell voltage-dependent currents in isolated mesophyll protoplasts of Vicia faba were investigated by patch-clamp techniques. With 104 mM K+ in the cytosol and 13 mM K+ in the external solution, depolarization of the plasma membrane from -47 mV to potentials between -15 and +85 mV activated a voltage- and time-dependent outward current (Iout). The average magnitude of Iout at +85 mV was 28.5 +/- 3.3 pA.pF-1. No inward voltage-dependent current was observed upon hyperpolarization of the plasma membrane from -55 mV to potentials as negative as -175 mV. Time-activated outward current was blocked by Ba2+ (1 mM BaCl2) and was not observed when K+ was eliminated from the external and internal solutions, indicating that this outward current was carried primarily by K+ ions. The voltage dependency of outward K+ current revealed a possible mechanism for K+ efflux from mesophyll cells. A GDP analogue guanosine 5'-[beta-thio]diphosphate (500 microM) significantly enhanced outward K+ current. The outward K+ current was inhibited by the GTP analogue guanosine 5'-[gamma-thio]triphosphate (500 microM) and by an increase in cytoplasmic free Ca2+ concentrations. Cholera toxin, which ADP-ribosylates guanine nucleotide-binding regulatory proteins, also inhibited outward K+ current. These findings illustrate the presence in mesophyll cells of outward-rectifying K+ channels that are regulated by GTP-binding proteins and calcium.  相似文献   

8.
To determine if the fast sodium current inactivation process is necessary for sodium current (INa) blockade by quinidine, we studied the effects of quinidine on INa in guinea-pig ventricular myocytes treated with chloramine-T, which removes the fast inactivation process of INa. Following exposure to chloramine-T (2 mM), INa amplitude was reduced at all voltages and INa decay was irreversibly prevented. Quinidine (10 microM) produced resting block of INa of 36 +/- 2% (n = 5) at the peak potential of -30 mV in chloramine-T treated myocytes. Quinidine decreased INa in a dose-dependent manner. The half-blocking concentration (KD) was 1.9 +/- 0.2 x 10(-5) M (n = 4). The steady-state inactivation curve (hx) was shifted in the negative potential direction (-5.2 +/- 0.4 mV, n = 4). Even after removal of the fast inactivation process of INa, use-dependent block was observed in the presence of quinidine when various depolarizing pulse durations (5 ms approximately 200 ms) were applied repetitively at intervals of 300 ms approximately 2 s. Longer depolarizing pulses and higher frequency pulse trains produced greater use-dependent block. Use-dependent block was also enhanced at more positive holding potentials. These results suggest that quinidine produces both resting block and use-dependent block of sodium channels in the absence of the fast INa inactivation process.  相似文献   

9.
目的研究芍药苷对内向整流钾电流(IK1)、瞬时外向钾电流(Ito)以及延迟整流钾电流(IKs和IKr)的作用。方法用全细胞膜片钳技术记录大鼠心室肌细胞的Ito和IK1电流。而IKs和IKr电流在转染相应质粒的HEK293细胞上记录。对比芍药苷使用前后的电流图,观察芍药苷对各种离子通道电流的影响。结果在-100mV测试电压下,100μmol/L的芍药苷能使IK1峰值密度从(-25.26±8.21)pA/pF降至(-17.65±6.52)pA/pF,平均抑制率为30.13%(n=6,P<0.05),但对其反转电位以及内向整流特性无影响。此外,100μmol/L芍药苷对Ito、IKs和IKr电流无明显作用。结论芍药苷对IK1电流具有明显的抑制作用,而对Ito、IKs及IKr无明显作用。  相似文献   

10.
Whole-cell voltage-clamp experiments and single-channel current recordings in cell-attached patch mode were performed on enzymatically dissociated single ventricular myocytes harvested from feline endocardial and epicardial surfaces. The studies were designed to compare the characteristics of inward rectifier K+ current (IK1) and delayed rectifier K+ current (IK) between endocardial and epicardial cells and to test the hypothesis that the differential characteristics of IK1 and/or IK are responsible for the differences in action potential configuration between the two cell types. IK1 in endocardial cells displayed a distinct N-shaped current-voltage (I-V) relation, with a prominent outward current at potentials between -80 and -30 mV. In epicardial cells, an outward current region was much smaller, and the I-V relation demonstrated a blunted N-shaped I-V relation. In single-channel current recordings in cell-attached patch mode, neither unitary current amplitude of IK1 nor probability of channel opening was different between endocardial and epicardial cells, suggesting that the difference in the number of functional channels might be responsible for the differential IK1 I-V relations. The characteristics of IK also differed between endocardial and epicardial cells. The time course of growth of tail current of IK (IK,tail) (activation of IK) was significantly enhanced and that of IK,tail deactivation was delayed in epicardial cells compared with endocardial cells. The time constant of the slow component of IK activation at +20 mV was 3,950 +/- 787 msec in endocardial cells and 2,746 +/- 689 msec in epicardial cells (p less than 0.05); the corresponding values for IK deactivation at -50 mV were 1,041 +/- 387 msec and 1,959 +/- 551 msec, respectively (p less than 0.01). The voltage dependence of steady-state activation of IK,tail was similar between endocardial and epicardial cells, suggesting that the probability of channel opening at any potential was not different in the two cell types. The amplitude and density of fully activated IK (IK,full) were significantly greater in epicardial cells than in endocardial cells. At repolarization to -20 mV, IK,full amplitude was 452 +/- 113 pA in endocardial cells and 578 +/- 135 pA in epicardial cells (p less than 0.05), and the corresponding values for IK,full density were 2.86 +/- 0.73 and 4.21 +/- 0.83 microA/cm2, respectively (p less than 0.05). A nonstationary fluctuation analysis revealed that the amplitude of IK unitary current was similar between endocardial and epicardial cells (0.23 +/- 0.07 versus 0.22 +/- 0.03 pA, p = NS).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Patch clamp techniques were used to study ionic currents in cultured mouse peritoneal macrophages. Whole-cell voltage clamp studies of cells 1-5 hr after isolation showed only a high-resistance linear membrane. After 1 day in culture, 82 of 85 cells studied had developed a voltage- and time-dependent potassium (K+) conductance similar to the delayed outward rectifier in nerve and muscle cells. The current activated when the membrane was depolarized above -50 mV. The sigmoidally rising current rose to a peak at a rate that increased with depolarization. Inactivation proceeded exponentially with a time constant of approximately equal to 450 ms. Recovery from inactivation was slow (tau = 12 s). The reversal potentials for varying extracellular K+ concentrations followed the Nernst predictions for a K+ -specific channel. The conductance was blocked by extracellular 4-aminopyridine and by intracellular tetraethylammonium chloride, barium, and cesium. Single-channel K+ currents comprising this net current had a conductance of 16 pS, exhibited bursting behavior, and inactivated with time. No inward currents were ever detected in macrophages cultivated for up to 4 days. Short-term exposure to chemoattractant and transmitter agents failed to activate an inward current. Macrophages may change their membrane electrophysiological properties depending on their state of functional activation. We postulate that the K+ conductance develops prior to depolarizing conductances involved in the macrophage's immunological functions.  相似文献   

12.
Block of the delayed rectifier potassium current, IK, by the class IC antiarrhythmic agent, flecainide, and by the novel selective class III antiarrhythmic agent, E-4031, were compared in isolated cat ventricular myocytes using the single suction-pipette, voltage-clamp technique. Flecainide (10 microM) markedly reduced IK elicited on depolarization steps to plateau voltages (+10 mV) and nearly completely blocked the "tail currents" elicited on repolarization to -40 mV (93 +/- 4% block at +40 mV, n = 3). E-4031 (1 microM) produced similar effects (96 +/- 3% block at +40 mV, n = 3). Slow voltage ramps from -100 to +40 mV confirmed inward rectifying properties of IK and showed that flecainide and E-4031 have no effects on the background potassium current, IK1. Thus, the results demonstrate that block of IK is a common feature of flecainide and E-4031. IK block by E-4031 most likely underlies the drug's potent class III antiarrhythmic properties. On the other hand, flecainide block of IK during an action potential would tend to prolong repolarization, but this effect may be obscured by concomitant block of plateau Na+ channels to produce little or no change in action potential duration, consistent with its class IC classification.  相似文献   

13.
OBJECTIVE: To elucidate the regional difference of the K+ current blocking effects of methanesulfonanilide class III agents. METHODS: Regional differences in action potential duration (APD) and E-4031-sensitive component (IKr) as well as -insensitive component (IKs) of the delayed rectifier K+ current (IK) were investigated in enzymatically isolated myocytes from apical and basal regions of the rabbit left ventricle using the whole-cell clamp technique. RESULTS: At 1 Hz stimulation, APD was significantly longer in the apex than in the base (223.1 +/- 10.6 vs. 182.7 +/- 14.5 ms, p < 0.05); application of 1 microM E-4031 caused more significant APD prolongation in the apex than in the base (32.5 +/- 6.4% vs. 21.0 +/- 8.8%, p < 0.05), resulting in an augmentation of regional dispersion of APD. In response to a 3-s depolarization pulse to +40 mV from a holding potential of -50 mV, both IK tail and IKs tail densities were significantly smaller in apical than in basal myocytes (IK: 1.56 +/- 0.13 vs. 2.09 +/- 0.21 pA/pF, p < 0.05; IKs: 0.40 +/- 0.15 vs. 1.43 +/- 0.23, p < 0.01), whereas IKr tail density was significantly greater in the apex than in the base (1.15 +/- 0.13 vs. 0.66 +/- 0.11 pA/pF, p < 0.01). The ratio of IKs/IKr for the tail current in the apex was significantly smaller than that in the base (0.51 +/- 0.21 vs. 3.09 +/- 0.89; p < 0.05). No statistical difference was observed in the voltage dependence as well as activation and deactivation kinetics of IKr and IKs between the apex and base. Isoproterenol (1 microM) increased the time-dependent outward current of IKs by 111 +/- 8% during the 3-s depolarizing step at +40 mV and its tail current by 120 +/- 9% on repolarization to the holding potential of -50 mV, whereas it did not affect IKr. CONCLUSIONS: The regional differences in IK, in particular differences in its two components may underlie the regional disparity in APD, and that methanesulfonanilide class III antiarrhythmic agents such as E-4031 may cause a greater spatial inhomogeneity of ventricular repolarization, leading to re-entrant arrhythmias.  相似文献   

14.
OBJECTIVE: It was the aim of our study to describe repolarizing currents in ventricular myocytes isolated from children with tetralogy of Fallot. This is the first report on outward currents in ventricular myocytes from children. METHODS: Ventricular myocytes were isolated from tissue samples of the outflow tract of the right ventricle which were obtained during corrective surgery of tetralogy of Fallot. Action potentials and whole-cell currents were recorded with the patch clamp technique at a temperature of 36-37 degrees C. RESULTS: The mean resting potential was -71.7 +/- 1.92 mV, action potential amplitude was 110 +/- 2.96 mV and action potential duration at 90% repolarization was 794 +/- 99.5 ms (n = 12). In four out of 12 myocytes early afterdepolarizations (EADs) were observed. Upon hyperpolarization Ba(2+)-sensitive inward currents similar to the inward rectifier current (IKl) could be observed. The current density at -120 mV was -22.8 +/- 2.47 pA/pF (n = 14). A transient outward current (Itol) could be recorded in all myocytes studied, the current density varied from 0.3 to 8.6 pA/pF with a mean of 3.77 +/- 0.47 pA/pF at +40 mV (n = 38). Recovery of Itol from inactivation was fast (70% recovery within 100 ms), rate-dependent reduction amounted to 38.2% at 4 Hz. A delayed rectifier current was seen in only two out of 38 myocytes (rapid component IKr). CONCLUSIONS: The electrophysiological characteristics of right ventricular myocytes isolated from children with tetralogy of Fallot resemble in most cases subendocardial myocytes from adults. The most prominent difference is a fast recovery from inactivation as well as a small rate dependent reduction of Itol. The observed EADs may have clinical implications.  相似文献   

15.
目的研究生理状态下及异丙肾上腺素灌流对兔界嵴(CT)与梳状肌(PM)细胞动作电位(AP)及钠电流(INa)、短暂外向钾电流(Ito)、L型钙电流(ICa-L)、延迟整流钾电流(IK)及内向整流性钾电流(IK1)的影响,探讨CT与房性心律失常的关系。方法酶解法分离兔CT及PM细胞,利用全细胞膜片钳技术,记录生理状态下及异丙肾上腺素灌流后CT与PM细胞AP及INa、Ito、ICa-L、IK及IK1的变化。结果①生理状态下,CT细胞动作电位时程(APD)较长,可见明显的平台期;PM细胞AP形态与普通心房肌细胞相似,1期复极迅速,平台期短,类似三角形。②生理状态下,CT细胞Ito电流密度比PM细胞明显降低(7.13±0.38 pA/pF vs 10.70±0.62 pA/pF,n=9,P<0.01),而INa、Ito、ICa-L、IK及IK1则无明显差别。③异丙肾上腺素灌流时CT与PM细胞APD20、APD50、APD90均延长(n=8,P<0.01);指令电位+50 mV时,CT与PM细胞Ito电流密度均减少(n=9,P<0.01)而IK均增加(n=8,P<0.05);指令电位+10 mV时,CT与PM细胞ICa-L电流密度均增加(n=9,P<0.01);IK1在两种心肌细胞均无明显差异。结论 CT与PM细胞AP差异与Ito有关。异丙肾上腺素灌流时ICa-L与IK增强,Ito抑制使CT与PM细胞APD延长,触发机制可能是CT参与房性心律失常的机制之一。  相似文献   

16.
OBJECTIVE: Capsaicin is a pungent irritant present in peppers of the Capsicum family. Its major target of action is believed to be sensory neurones. Capsaicin has also been shown to prolong cardiac action potential in atrial muscle, perhaps by local release of calcitonin gene related peptide which in turn enhances inward calcium currents. However, capsaicin has been shown to inhibit K+ current in neurones. Since such an action could contribute to action potential prolonging activity of capsaicin in heart, the aim of the study was to examine the effects of capsaicin on cardiac K+ currents. METHODS: Ionic currents and action potentials were examined in isolated adult rat ventricular myocytes using the whole cell variant of the patch clamp technique at 25 degrees C. RESULTS: Capsaicin (10 microM) increased the action potential duration (APD50) from 45 ms to 166 ms. This effect was associated with an inhibition of three distinct K+ currents. The decreasing rank order of potency was: transient outward K+ current (ITO, IC50 = 6.4 microM), a voltage dependent non-inactivating outward current (IK, IC = 11.5 microM), and the inward rectifier K+ current (IK1, IC50 = 46.9 microM). Capsaicin induced block of ITO was characterised by a decrease in the peak current amplitude and an increase in the rate of inactivation. The inactivation of ITO in the absence of capsaicin was well described by a single exponential [tau = 77 (SEM 2) ms at +40 mV, n = 10]. However, in the presence of 10 microM capsaicin inactivation was best described by the sum of two exponentials [tau FAST = 4.4(0.5) ms; tau SLOW = 92.4(3.0) ms, n = 10] with the fast component contributing 46(2)% of the total decay. A small but consistent hyperpolarising shift (approximately 3 mV) in the steady state voltage dependence of inactivation of ITO was induced by 10 microM capsaicin. Capsaicin had no effect on the rate of ITO recovery from inactivation (tau = 49 ms and 48 ms for control and drug respectively). The capsaicin analogue, resiniferatoxin, which as an irritant is up to 10(4)-fold more potent than capsaicin, had no effect on any of the K+ currents when present at concentrations of up to 10 microM. In contrast another capsaicin analogue, zingerone (30 microM) blocked ITO by 52(12)% and IK by 35%. CONCLUSIONS: Capsaicin produces a prolongation of the rat ventricular action potential, an effect which is associated with inhibition of potassium currents.  相似文献   

17.
STUDY OBJECTIVE--The aim was to study the currents that determine the action potential duration in ventricular cells from neonatal rats. DESIGN--Microelectrode measurements of action potentials from ventricle strips were compared with action potentials obtained from isolated myocytes with the whole cell patch clamp method in current clamp mode. Ionic currents were studied in myocytes in voltage clamp mode using recognised modulators of channel activity. EXPERIMENTAL MATERIAL--Neonatal rats (2 d old) were decapitated and myocytes were prepared from the apical third of collagenase treated hearts. MEASUREMENTS AND MAIN RESULTS--Modification of the action potential by 1.8-5.0 mM Ca, 2.0 mM Co, 8 mM 4-aminopyridine, 1.8 mM Sr, and 20 mM tetraethylammonium suggested the presence of the slowly inactivating Ca current ICa,L, an early outward current Ieo, and at least one other K current. Action potentials from myocytes and ventricular strips were comparable. Voltage clamp experiments were confirmatory and revealed currents with the following properties: (1) ICa,L: a Ca current with a current density of 21.7 microA.cm-2, activated between -30 and -20 mV, saturated at 1.8 Cao, inactivated faster at 5 than at 1.8 mM Cao, more permeable to Ba and Sr than to Ca, and with Sr as charge carrier blocked by Ca; (2) Ieo: the peak current had a linear I/V relation between 0 and 70 mV and was abolished by 4 mM 4-aminopyridine; (3) IK1: the current was an inward rectifier that showed a relaxation at potentials negative to -90 mV. CONCLUSIONS--Action potentials obtained from neonatal rat ventricle with microelectrodes are comparable with those measured in myocytes in current clamp mode. The action potential duration is mainly determined by ICa,L, Ieo, and IK1, and there is no evidence for the presence of a delayed rectifier.  相似文献   

18.
STUDY OBJECTIVE--The aim was to study in isolated myocardial cells the role of membrane potential in barium induced spontaneous activity and the ionic mechanism of the underlying pacemaker current. DESIGN--The membrane potential and resistance of single myocytes were studied at different voltage levels by means of current and voltage clamp steps in the absence and presence of barium (Ba). EXPERIMENTAL MATERIAL--The membrane potentials and currents of single guinea pig ventricular myocytes were recorded by means of an intracellular microelectrode through which current could also be passed. MEASUREMENTS AND MAIN RESULTS--In the presence of Ba (0.1-0.2 mM), stepwise depolarisations induced a transient overshoot and initiated action potentials followed by an undershoot, diastolic depolarisation and spontaneous discharge. During progressive depolarisations, membrane resistance (Rm) increased, decreased transiently at the end of the action potential, and reincreased during diastole. Stepwise repolarisations had opposite effects. Hyperpolarisations reversed diastolic depolarisation and could unmask oscillatory potentials (Vos). Voltage clamp steps to +20 mV were followed by outward tail currents during which Rm increased. Larger or longer depolarisations were followed by larger outward tail currents at resting potential level. The outward tail current reversed at potentials negative to EK. CONCLUSIONS--In the presence of Ba, applied depolarisation facilitates the induction of spontaneous activity through an interplay between voltage dependent and time dependent Ba block and unblock of gK1, voltage dependent increase in Rm, increased potassium driving force, and negative shift in the slow inward current threshold and sometimes Vos. The pacemaker potential underlying spontaneous activity is due to the slow re-establishment of Ba block of IK1 during diastole.  相似文献   

19.
奎尼丁对正常大鼠心室肌细胞瞬间外向钾电流的影响   总被引:1,自引:0,他引:1  
研究大鼠心室肌细胞瞬间外向钾电流(Ito1)的特性及奎尼丁对其的影响,从而从细胞离子的层面去探讨奎尼丁作为治疗Brugada综合征的侯选药物的机制。用酶解法分离大鼠单个左室细胞,应用膜片钳全细胞方法记录Ito1,观察不同浓度的奎尼丁对心室肌细胞Ito1的作用。结果:①大鼠心室肌细胞具有强大的Ito1,在0.2Hz,+70mV和32℃条件下,其平均峰值Ito1强度和密度分别为1940±440pA和12.9±2.6pA/pF;②在奎尼丁1,2.5,5,7.5,10μmol/L不同的浓度下,奎尼丁抑制Ito1程度越明显(自身对照P<0.05),其作用呈浓度依赖性。结论:奎尼丁可以通过抑制Ito1,延长动作电位的复极时程,此很有可能是其作为治疗Brugada综合征的侯选药物的机制之一。  相似文献   

20.
OBJECTIVE: A dog atrial ultra-rapid delayed rectifier current (I(Kur. d)) is involved in canine atrial repolarization and shares similarities with the human atrial ultra-rapid delayed rectifier (I(Kur)). Almost no information is available about the actions of antiarrhythmic drugs on I(Kur.d). This study evaluated effects of ambasilide, quinidine, flecainide and verapamil on I(Kur.d) in isolated canine atrial myocytes. METHODS: Standard whole-cell patch clamp techniques were used to study the effects of multiple concentrations of each drug. RESULTS: All drugs produced reversible concentration-, voltage- and time-dependent I(Kur.d) inhibition. Significant effects of quinidine, flecainide and ambasilide were noted at atrial-effective antiarrhythmic concentrations in the dog. Upon the onset of a depolarizing pulse, block developed exponentially in relation to time, with the blocking rate-constant increasing with drug concentration, consistent with open-channel blockade and permitting the calculation of forward and reverse rate-constants. For all drugs, the 50% blocking concentration (EC(50)) showed significant voltage-dependence, decreasing at more positive potentials. The magnitude of voltage-dependent block was directly related to the degree of drug-induced shift in the voltage dependence of activation (r=0.97), pointing to open-channel block as a mechanism for voltage-dependent action. An additional component of voltage-dependence suggested that blocking sites were subjected to 17-21% of the transmembrane voltage field. CONCLUSIONS: Ambasilide, quinidine, flecainide and verapamil inhibit I(Kur.d), with preferential action on the open state. I(Kur.d) inhibition may play a role in antiarrhythmic effects in canine atrial arrhythmia models. Comparisons between the effects of these drugs on I(Kur.d) and previously studied effects on I(Kur) suggest potential opportunities for investigating the molecular structural determinants of drug-blocking action on atrial-specific ultrarapid delayed rectifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号