首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Age is an important predictor of neuromuscular recovery after peripheral nerve injury. Insulin‐like growth factor 1 (IGF‐1) is a potent neurotrophic factor that is known to decline with increasing age. The purpose of this study was to determine if locally delivered IGF‐1 would improve nerve regeneration and neuromuscular recovery in aged animals. Young and aged rats underwent nerve transection and repair with either saline or IGF‐1 continuously delivered to the site of the nerve repair. After 3 months, nerve regeneration and neuromuscular junction morphology were assessed. In both young and aged animals, IGF‐1 significantly improved axon number, diameter, and density. IGF‐1 also significantly increased myelination and Schwann cell activity and preserved the morphology of the postsynaptic neuromuscular junction (NMJ). These results show that aged regenerating nerve is sensitive to IGF‐1 treatment. Muscle Nerve, 2009  相似文献   

2.
3.
Calcitonin gene-related peptide (CGRP) coexists with acetylcholine (ACh) in motor nerve terminals. Externally applied CGRP has been shown to increase the synthesis of ACh receptors in cultured myotubes by a mechanism independent of muscle activity. Thus, CGRP is suggested to be a neurotrophic factor that may regulate the expression of several long-term events occurring at the neuromuscular junction. We have examined the effect of CGRP on the sprouting of motor nerve terminals induced by chronic block of nerve-muscle activity in adult rats. Daily treatment with CGRP suppressed the disuse-induced terminal sprouting in a dose-dependent manner, whereas the morphology of motor nerve terminals in active muscles was unaffected by CGRP. CGRP may be a possible candidate for an antisprouting agent which has been postulated to exist in nerve terminals. The disuse-induced outgrowth of terminal sprouts was accompanied by an increase in the mean quantum content of end-plate potentials, as well as in the frequency of spontaneous miniature end-plate potentials. This increased transmitter release was still maintained at the junctions in which disuse-induced terminal sprouting had been suppressed by CGRP. It is suggested that the formation of terminal sprouts per se is not responsible for the plastic change of transmitter release induced by prolonged disuse of the neuromuscular junction.  相似文献   

4.
In the peripheral nervous system, regeneration of motor and sensory axons into chronically denervated distal nerve segments is impaired compared to regeneration into acutely denervated nerves. In order to find possible causes for this phenomenon we examined the changes in the expression pattern of the glial cell-line-derived neurotrophic factor (GDNF) family of growth factors and their receptors in chronically denervated rat sciatic nerves as a function of time with or without regeneration. Among the GDNF family of growth factors, only GDNF mRNA expression was rapidly upregulated in Schwann cells as early as 48 h after denervation. This upregulation peaked at 1 week and then declined to minimal levels by 6 months of denervation. The changes in the protein expression paralleled the changes in the expression of the GDNF mRNA. The mRNAs for receptors GFRalpha-1 and GFRalpha-2 were upregulated only after maximal GDNF upregulation and remained elevated as late as 6 months. There were no significant changes in the expression of GFRalpha-3 or the tyrosine kinase coreceptor, RET. When we examined the expression of GDNF in a delayed regeneration paradigm, there was no upregulation in the distal chronically denervated tibial nerve even when the freshly axotomized peroneal branch of the sciatic nerve was sutured to the distal tibial nerve. This study suggests that one of the reasons for impaired regeneration into chronically denervated peripheral nerves may be the inability of Schwann cells to maintain important trophic support for both motor and sensory neurons.  相似文献   

5.
Glial-cell-line--derived neurotrophic factor (GDNF) has been identified as a potent survival and differentiation factor for several neuronal populations in the central nervous system (CNS), but to date, distinct effects of GDNF on motor axon growth and regeneration in the adult have not been demonstrated. In the present study, ex vivo gene delivery was used to directly examine whether GDNF can influence axonal growth, expression of neuronal regeneration-related genes, and sustain the motor neuronal phenotype after adult CNS injury. Adult Fischer 344 rats underwent unilateral transections of the hypoglossal nerve, followed by intramedullary grafts of fibroblasts genetically modified to secrete GDNF. Control animals received lesions and grafts of cells expressing a reporter gene. Two weeks later, GDNF gene delivery (1) robustly promoted the growth of lesioned hypoglossal motor axons, (2) altered the expression and intracellular trafficking of the growth-related protein calcitonin gene-related peptide (CGRP), and (3) significantly sustained the cholinergic phenotype in 84 +/- 6% of hypoglossal neurons compared with 39 +/- 6% in control animals (P < 0.001). This is the first neurotrophic factor identified to increase the in vivo expression of the trophic peptide CGRP and the first report that GDNF promotes motor axonal growth in vivo in the adult CNS. Taken together with previous in vitro studies, these findings serve as the foundation for a model wherein GDNF and CGRP interact in a paracrine manner to regulate neuromuscular development and regeneration.  相似文献   

6.
Parkinson’s disease (PD) is characterised by the preferential loss of dopaminergic neurones from the substantia nigra (SN) that leads to the hallmark motor disturbances. Animal and human studies suggest a beneficial effect of oestrogen to the nigrostriatal system, and the regulation of neurotrophic factor expression by oestrogens has been suggested as a possible mechanism contributing to that neuroprotective effect. The present study was designed to investigate whether the neuroprotection exerted by 17β‐oestradiol on nigrostriatal dopaminergic neurones is mediated through the regulation of glial cell line‐derived neurotrophic factor (GDNF) expression. Using an in vivo rat model of PD, we were able to confirm the relevance of 17β‐oestradiol in defending dopaminergic neurones against 6‐hydroxydopamine (6‐OHDA) toxicity. 17β‐oestradiol, released by micro‐osmotic pumps, implanted 10 days before intrastriatal 6‐OHDA injection, prevented the loss of dopaminergic neurones induced by 6‐OHDA. 17β‐oestradiol treatment also promoted an increase in GDNF protein levels both in the SN and striatum. To explore the relevance of GDNF increases to 17β‐oestradiol neuroprotection, we analysed, in SN neurone‐glia cultures, the effect of GDNF antibody neutralisation and RNA interference‐mediated GDNF knockdown. The results showed that both GDNF neutralisation and GDNF silencing abolished the dopaminergic protection provided by 17β‐oestradiol against 6‐OHDA toxicity. Taken together, these results strongly identify GDNF as an important player in 17β‐oestradiol‐mediated dopaminergic neuroprotection.  相似文献   

7.
Previous studies showed that acetyl-11-keto-beta-boswellic acid (AKBA), the active ingredient in the natural Chinese medicine Boswellia, can stimulate sciatic nerve injury repair via promoting Schwann cell proliferation. However, the underlying molecular mechanism remains poorly understood. In this study, we performed genomic sequencing in a rat model of sciatic nerve crush injury after gastric AKBA administration for 30 days. We found that the phagosome pathway was related to AKBA treatment, and brain-derived neurotrophic factor expression in the neurotrophic factor signaling pathway was also highly up-regulated. We further investigated gene and protein expression changes in the phagosome pathway and neurotrophic factor signaling pathway. Myeloperoxidase expression in the phagosome pathway was markedly decreased, and brain-derived neurotrophic factor, nerve growth factor, and nerve growth factor receptor expression levels in the neurotrophic factor signaling pathway were greatly increased. Additionally, expression levels of the inflammatory factors CD68, interleukin-1β, pro-interleukin-1β, and tumor necrosis factor-α were also decreased. Myelin basic protein- and β3-tubulin-positive expression as well as the axon diameter-to-total nerve diameter ratio in the injured sciatic nerve were also increased. These findings suggest that, at the molecular level, AKBA can increase neurotrophic factor expression through inhibiting myeloperoxidase expression and reducing inflammatory reactions, which could promote myelin sheath and axon regeneration in the injured sciatic nerve.  相似文献   

8.
The capacity of Schwann cells (SCs) in the peripheral nervous system to support axonal regeneration, in contrast to the oligodendrocytes in the central nervous system, has led to the misconception that peripheral nerve regeneration always restores function. Here, we consider how prolonged periods of time that injured neurons remain without targets during axonal regeneration (chronic axotomy) and that SCs in the distal nerve stumps remain chronically denervated (chronic denervation) progressively reduce the number of motoneurons that regenerate their axons. We demonstrate the effectiveness of low-dose, brain-derived neurotrophic and glial-derived neurotrophic factors to counteract the effects of chronic axotomy in promoting axonal regeneration. High-dose brain-derived neurotrophic factor (BDNF) on the other hand, acting through the p75 receptor, inhibits axonal regeneration and may be a factor in stopping regenerating axons from forming neuromuscular connections in skeletal muscle. The immunophilin, FK506, is also effective in promoting axonal regeneration after chronic axotomy. Chronic denervation of SCs (>1 month) severely deters axonal regeneration, although the few motor axons that do regenerate to reinnervate muscles become myelinated and form enlarged motor units in the reinnervated muscles. We found that in vitro incubation of chronically denervated SCs with transforming growth factor-beta re-established their growth-supportive phenotype in vivo, consistent with the idea that the interaction between invading macrophages and denervated SCs during Wallerian degeneration is essential to sustain axonal regeneration by promoting the growth-supportive SC phenotype. Finally, we consider the effectiveness of a brief period of 20 Hz electrical stimulation in promoting the regeneration of axons across the surgical gap after nerve repair.  相似文献   

9.
T‐H. Chu, L. Wang, A. Guo, V. W‐K. Chan, C. W‐M. Wong and W. Wu (2012) Neuropathology and Applied Neurobiology 38, 681–695 GDNF‐treated acellular nerve graft promotes motoneuron axon regeneration after implantation into cervical root avulsed spinal cord It is well known that glial cell line‐derived neurotrophic factor (GDNF) is a potent neurotrophic factor for motoneurons. We have previously shown that it greatly enhanced motoneuron survival and axon regeneration after implantation of peripheral nerve graft following spinal root avulsion. Aims: In the current study, we explore whether injection of GDNF promotes axon regeneration in decellularized nerve induced by repeated freeze‐thaw cycles. Methods: We injected saline or GDNF into the decellularized nerve after root avulsion in adult Sprague–Dawley rats and assessed motoneuron axon regeneration and Schwann cell migration by retrograde labelling and immunohistochemistry. Results: We found that no axons were present in saline‐treated acellular nerve whereas Schwann cells migrated into GDNF‐treated acellular nerve grafts. We also found that Schwann cells migrated into the nerve grafts as early as 4 days after implantation, coinciding with the first appearance of regenerating axons in the grafts. Application of GDNF outside the graft did not induce Schwann cell infiltration nor axon regeneration into the graft. Application of pleiotrophin, a trophic factor which promotes axon regeneration but not Schwann cell migration, did not promote axon infiltration into acellular nerve graft. Conclusions: We conclude that GDNF induced Schwann cell migration and axon regeneration into the acellular nerve graft. Our findings can be of potential clinical value to develop acellular nerve grafting for use in spinal root avulsion injuries.  相似文献   

10.
Parkinson's disease (PD), a progressive neurodegenerative movement disorder, is known to be caused by diverse pathological conditions resulting from dysfunction of the ubiquitin‐proteasome system (UPS), mitochondria, and oxidative stress leading to preferential nigral dopamine (DA) neuron degeneration in the substantia nigra. In the present study, we evaluated the novel D3 receptor‐preferring agonist D‐264 in a mouse model of PD to evaluate its neuroprotective properties against both the nigrostriatal dopaminergic toxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐ and the proteasome inhibitor lactacystin‐induced dopaminergic degeneration. C57BL/6 male mice either were given MPTP by intraperitoneal injection twice per day for 2 successive days at a dose 20 mg/kg or were microinjected with lactacystin bilaterally (1.25 μg/side) into the medial forebrain bundle (MFB). Pretreatment with D‐264 (1 mg/kg and 5 mg/kg, intraperitoneally, once per day), started 7 days before administration of MPTP or lactacystin. We found that D‐264 significantly improved behavioral performance, attenuated both MPTP‐ and lactacystin‐induced DA neuron loss, and blocked proteasomal inhibition and microglial activation in the substantia nigra (SN). Furthermore, D‐264 treatment was shown to increase the levels of brain‐derived neurotrophic factor (BDNF) and glial cell line‐derived factor (GDNF) in MPTP‐ and lactacystin‐treated mice, possibly indicating, at least in part, the mechanism of neuroprotection by D‐264. Furthermore, pretreatment with the D3 receptor antagonist U99194 significantly altered the effect of neuroprotection conferred by D‐264. Collectively, our study demonstrates that D‐264 can prevent neurodegeneration induced by the selective neurotoxin MPTP and the UPS inhibitor lactacystin. The results indicate that D‐264 could potentially serve as a symptomatic and neuroprotective treatment agent for PD. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Calcitonin gene-related peptide (CGRP) is expressed at high levels in roughly 50% of spinal sensory neurons and plays a role in peripheral vasodilation as well as nociceptive signalling in the spinal cord. Spinal motoneurons express low levels of CGRP; motoneuronal CGRP is thought to be involved in end-plate plasticity and to have trophic effects on target muscle cells. As both sensory and motoneurons express receptors for glial cell line-derived neurotrophic factor (GDNF) we sought to determine whether CGRP was regulated by GDNF. Rats were treated intrathecally for 1-3 weeks with recombinant human GDNF or nerve growth factor (NGF) (12 microg/day) and dorsal root ganglia and spinal cords were stained for CGRP. The GDNF treatment not only increased CGRP immunoreactivity in both sensory and motoneurons but also resulted in hypertrophy of both populations. By combined in situ hybridization and immunohistochemistry we found that, in the dorsal root ganglia, CGRP was up-regulated specifically in neurons expressing GDNF but not NGF receptors following GDNF treatment. Despite the increase in CGRP in GDNF-treated rats, there was no increase in thermal or mechanical pain sensitivity, while NGF-treated animals showed significant decreases in pain thresholds. In motoneurons, GDNF increased the overall intensity of CGRP immunoreactivity but did not increase the number of immunopositive cells. As GDNF has been shown to promote the regeneration of both sensory and motor axons, and as CGRP appears to be involved in motoneuronal plasticity, we reason that at least some of the regenerative effects of GDNF are mediated through CGRP up-regulation.  相似文献   

12.
Neuronal cell death and the failure of axonal regeneration cause a permanent functional deficit following spinal cord injury (SCI). Administration of recombinant glial cell line-derived neurotrophic factor (GDNF) has previously been reported to rescue neurons following severe SCI, resulting in improved hindlimb locomotion in rats. In this study, thus, GDNF gene therapy using an adenoviral vector (rAd-GDNF) was examined in rats following SCI induced by dropping the NYU weight-drop impactor from a height of 25 mm onto spinal segment T9-T10. To evaluate the efficacy of intraspinal injection of recombinant adenovirus into the injured spinal cord, we observed green fluorescent protein (GFP) gene transfer in the contused spinal cord. GFP was effectively expressed in the injured spinal cord, and the most prominently transduced cells were astrocytes. The expression of GDNF was detected only in rats receiving rAd-GDNF, not the controls, and remained detectable around the injured site for at least 8 days. Open-field locomotion analysis revealed that rats receiving rAd-GDNF exhibited improved locomotor function and hindlimb weight support compared to the control groups. Immunohistochemical examination for the neuronal marker, calcitonin gene-related peptide (CGRP), showed an increase in CGRP+ neuronal fibers in the injured spinal cord in rats receiving rAd-GDNF treatment. Collectively, the results suggest that adenoviral gene transfer of GDNF can preserve neuronal fibers and promote hindlimb locomotor recovery from spinal cord contusion. This research should provide information for developing a clinical strategy for GDNF gene therapy.  相似文献   

13.
This study examined the role of glial cell line-derived neurotrophic factor (GDNF) in synaptic plasticity at the developing neuromuscular junction. Transgenic mice overexpressing GDNF in skeletal muscle under the myosin light chain-1 promoter were isolated. Northern blot and ELISA at 6 weeks of age indicated that GDNF mRNA and protein levels were elevated threefold in the lateral gastrocnemius muscle (LGM) of the GDNF-transgenic animals. Histochemical examination of LGM tissue sections at 6 weeks of age revealed a 70% increase in the number of cholinesterase-positive end plates without changes in end-plate area. Multiple end plates on a single muscle fiber were also observed, in addition to multiple axonal processes terminating on individual end plates. No change in the number of spinal motoneurons, overall LGM size, or muscle type composition was observed. Finally, overexpression of GDNF in muscle caused hypertrophy of neuronal somata in dorsal root ganglia without affecting their number. These findings demonstrate that overexpression of a single neurotrophic factor in skeletal muscle induces multiple end-plate formation and maintains hyperinnervation well beyond the normal developmental period. We suggest that GDNF, a muscle-derived motoneuron neurotrophic factor, serves an important role in the regulation of synaptic plasticity in the developing and adult neuromuscular junction.  相似文献   

14.
Exogenous neurotrophic factors provided at a spinal cord injury site promote regeneration of chronically injured rubrospinal tract (RST) neurons into a peripheral nerve graft. The present study tested whether the response to neurotrophins is associated with changes in the expression of two regeneration-associated genes, betaII-tubulin and growth-associated protein (GAP)-43. Adult female rats were subjected to a right full hemisection lesion via aspiration of the C3 spinal cord. A second aspiration lesion was made 4 weeks later and gel foam saturated in brain-derived neurotrophic factor (BDNF), glial cell-line derived neurotrophic factor (GDNF), or phosphate-buffered saline (PBS) was applied to the lesion site for 60 min. Using in situ hybridization, RST neurons were examined for changes in mRNA levels of betaII-tubulin and GAP-43 at 1, 3, and 7 days after treatment. Based on analysis of gene expression in single cells, there was no effect of BDNF treatment on either betaII-tubulin or GAP-43 mRNA expression at any time point. betaII-Tubulin mRNA levels were enhanced significantly at 1 and 3 days in animals treated with GDNF relative to levels in animals treated with PBS. Treatment with GDNF did not affect GAP-43 mRNA levels at 1 and 3 days, but at 7 days there was a significant increase in mRNA expression. Interestingly, 7 days after GDNF treatment, the mean cell size of chronically injured RST neurons was increased significantly. Although GDNF and BDNF both promote axonal regeneration by chronically injured neurons, only GDNF treatment is associated with upregulation of betaII-tubulin or GAP-43 mRNA. It is not clear from the present study how exogenous BDNF stimulates regrowth of injured axons.  相似文献   

15.
16.
Polysialylated neuronal cell adhesion molecule (PSA‐NCAM), a polysialylated protein constitutively expressed in the hippocampus, is involved in neuronal growth, synaptic plasticity and neurotrophin signaling. In particular, PSA‐NCAM mediates Ret‐independent glial‐derived neurotrophic factor (GDNF) signaling, leading to downstream FAK activation. GDNF has potent seizure‐suppressant action, whereas PSA‐NCAM is upregulated by seizure activity. However, the involvement of Ret‐independent GDNF signaling in temporal lobe epilepsy (TLE) is not established. We tested the effects of PSA‐NCAM inactivation on neurodegeneration and epileptogenesis in a mouse model of TLE. In this model, unilateral intrahippocampal kainic acid (KA) injection induced degeneration of CA1, CA3c and hilar neurons, followed by spontaneous recurrent focal seizures. In the contralateral, morphologically preserved hippocampus, a long‐lasting increase of PSA‐NCAM immunoreactivity was observed. Inactivation of PSA‐NCAM by endoneuraminidase (EndoN) administration into the contralateral ventricle of KA‐treated mice caused severe degeneration of CA3a,b neurons and dentate gyrus granule cells in the epileptic focus, and led to early onset of focal seizures. This striking trans‐hemispheric alteration suggested that PSA‐NCAM mediates GDNF signaling, leading to transport of neuroprotective signals into the lesioned hippocampus. This hypothesis was confirmed by injecting GDNF antibodies into the contralateral hippocampus of KA‐treated mice, thereby reproducing the enhanced neurodegeneration seen after PSA‐NCAM inactivation. Furthermore, contralateral EndoN and anti‐GDNF treatment decreased GDNF family receptor α1 immunoreactivity and FAK phosphorylation in the epileptic focus. Thus, Ret‐independent GDNF signaling across the commissural projection might protect CA3a,b neurons and delay seizure onset. These findings implicate GDNF in the control of epileptogenesis and offer a possible mechanism explaining lesion asymmetry in mesial TLE.  相似文献   

17.
Electrical stimulation (ES) has been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. However, the effect of ES on peripheral remyelination after nerve damage has been investigated less well, and the mechanism underlying its action remains unclear. In the present study, the crush‐injured sciatic nerves in rats were subjected to 1 hr of continuous ES (20 Hz, 100 μsec, 3 V). Electron microscopy and nerve morphometry were performed to investigate the extent of regenerated nerve myelination. The expression profiles of P0, Par‐3, and brain‐derived neurotrophic factor (BDNF) in the injuried sciatic nerves and in the dorsal root ganglion neuron/Schwann cell cocultures were examined by Western blotting. Par‐3 localization in the sciatic nerves was determined by immunohistochemistry to demonstrate Schwann cell polarization during myelination. We reported that 20‐Hz ES increased the number of myelinated fibers and the thickness myelin sheath at 4 and 8 weeks postinjury. P0 level in the ES‐treated groups, both in vitro and in vivo, was enhanced compared with the controls. The earlier peak of Par‐3 in the ES‐treated groups indicated an earlier initiation of Schwann cell myelination. Additionally, ES significantly elevated BDNF expression in nerve tissues and in cocultures. ES on the site of nerve injury potentiates axonal regrowth and myelin maturation during peripheral nerve regeneration. Furthermore, the therapeutic actions of ES on myelination are mediated via enhanced BDNF signals, which drive the promyelination effect on Schwann cells at the onset of myelination. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Slow glutamate‐mediated neuronal degeneration is implicated in the pathophysiology of motor neuron diseases such as amyotrophic lateral sclerosis (ALS). The calcium‐binding proteins calbindin‐D28K and parvalbumin have been reported to protect neurons against excitotoxic insults. Expression of calbindin‐D28K is low in adult human motor neurons, and vulnerable motor neurons additionally may lack parvalbumin. Thus, it has been speculated that the lack of calcium‐binding proteins may, in part, be responsible for early degeneration of the population of motor neurons most vulnerable in ALS. Using a rat organotypic spinal cord slice system, we examined whether the most potent neuroprotective factors for motor neurons can increase the expression of calbindin‐D28K or parvalbumin proteins in the postnatal spinal cord. After 4 weeks of incubation of spinal cord slices with 1) glial cell line‐derived neurotrophic factor (GDNF), 2) neurturin, 3) insulin‐like growth factor I (IGF‐I), or 4) pigment epithelium‐derived factor (PEDF), the number of calbindin‐D28K‐immunopositive large neurons (>20 μm) in the ventral horn was higher under the first three conditions, but not after PEDF, compared with untreated controls. Under the same conditions, parvalbumin was not upregulated by any neuroprotective factor. The same calbindin increase was true of IGF‐I and GDNF in a parallel glutamate toxicity model of motor neuron degeneration. Taken together with our previous reports from the same model, which showed that all these neurotrophic factors can potently protect motor neurons from slow glutamate injury, the data here suggest that upregulation of calbindin‐D28K by some of these factors may be one mechanism by which motor neurons can be protected from glutamate‐induced, calcium‐mediated excitotoxicity. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
GDNF is regulated in an activity-dependent manner in rat skeletal muscle   总被引:3,自引:0,他引:3  
Glial cell line-derived neurotrophic factor (GDNF) is produced by skeletal muscle and affects peripheral motor neurons. Elevated expression of GDNF in skeletal muscle leads to hyperinnervation of neuromuscular junctions, whereas postnatal administration of GDNF causes synaptic remodeling at the neuromuscular junction. Studies have demonstrated that altered physical activity causes changes in the neuromuscular junction. However, the role played by GDNF in this process in not known. The objective of this study was to determine whether changes in neuromuscular activity cause altered GDNF content in rat skeletal muscle. Following 4 weeks of walk-training on a treadmill, or 2 weeks of hindlimb unloading, soleus, gastrocnemius, and pectoralis major were removed and analyzed for GDNF content by enzyme-linked immunosorbant assay. Results indicated that walk-training is associated with increased GDNF content. Skeletal muscle from hindlimb-unloaded animals showed a decrease in GDNF in soleus and gastrocnemius, and an increase in pectoralis major. The altered production of GDNF may be responsible for activity-dependent remodeling of the neuromuscular junction and may aid in recovery from injury and disease.  相似文献   

20.
In contrast to injuries in the central nervous system, injured peripheral neurons will regenerate their axons. However, axotomized motoneurons progressively lose their ability to regenerate their axons, following peripheral nerve injury often resulting in very poor recovery of motor function. A decline in neurotrophic support may be partially responsible for this effect. The initial upregulation of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) by Schwann cells of the distal nerve stump after nerve injury has led to the speculation that they are important for motor axonal regeneration. However, few experiments directly measure the effects of exogenous BDNF or GDNF on motor axonal regeneration. This study provided the first direct and quantitative evidence that long-term continuous treatment with exogenous GDNF significantly increased the number of motoneurons which regenerate their axons, completely reversing the negative effects of chronic axotomy. The beneficial effect of GDNF was not dose-dependent. A combination of exogenous GDNF and BDNF on motor axonal regeneration was significantly greater than either factor alone, and this effect was most pronounced following long-term continuous treatment. The ability of GDNF, either alone or in combination with BDNF, to increase the number of motoneurons that regenerated their axons correlated well with an increase in axon sprouting within the distal nerve stump. Thus long-term continuous treatment with neurotrophic factors, such as GDNF and BDNF, can be used as a viable treatment to sustain motor axon regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号