共查询到20条相似文献,搜索用时 15 毫秒
1.
Loeys‐Dietz syndrome, a rare autosomal dominant disease, is characterized by arterial tortuosity and skeletal manifestations. We report anesthetic management of scoliosis surgery for a pediatric Loeys‐Dietz syndrome patient. During surgery, severe hypotension occurred when a rotation‐correction was performed; blood pressure returned to the baseline level after the maneuver was abandoned. We decided to not conduct rotation correction after discussing risks and benefits of the maneuver with surgeons. Since severe hemodynamic instability is expected in scoliosis surgery for Loeys‐Dietz syndrome patients, we should be prepare for hemodynamic collapse and risks and benefits of the operative procedure should be discussed before undertaking the procedure. 相似文献
2.
Allogeneic demineralized bone is used extensively as a clinical graft material because it has osteo/chondroinductive and osteoconductive properties. Demineralized bone powder (DBP) induces chondrogenic differentiation of human dermal fibroblasts (hDFs) in three‐dimensional collagen cultures, but the initiating mechanisms have not been fully characterized nor has it been shown that bone morphogenetic proteins (BMPs) recapitulate DBP's effects on target cells. Among the many signaling pathways regulated in hDFs by DBP prior to in vitro chondrogenesis, there are changes in Wnts and their receptors that may contribute to DBP actions. This study tests the hypothesis that DBP modulation of Wnt signaling entails both BMP and TGF‐β pathways. We compared the effects of DBP, TGF‐β1, or BMP‐2 on Wnt signaling components in hDFs by Wnt signaling macroarray, RT‐PCR, in situ hybridization, and Western immunoblot analyses. Many effects of DBP on Wnt signaling components were not shared by BMP‐2, and likewise DBP effects on Wnt genes and β‐catenin only partially required the TGF‐β pathway, as shown by selective inhibition of TGF‐β/activin receptor‐like kinase. The analyses revealed that 64% (16/25) of the Wnt signaling components regulated by DBP were regulated similarly by the sum of effects by BMP‐2 and by TGF‐β1. In conclusion, signaling mechanisms of inductive DBP in human dermal fibroblasts involve the modulation of multiple Wnt signals through both BMP and TGF‐β pathways. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 554–560, 2013 相似文献
3.
Anne Gingery Tai‐Hua Yang Sandra M. Passe Kai‐Nan An Chunfeng Zhao Peter C. Amadio 《Journal of orthopaedic research》2014,32(11):1444-1450
Fibrosis of the subsynovial connective tissue (SSCT) is a predominant feature of carpal tunnel syndrome (CTS). While the nature of CTS has been extensively studied, little is known about the etiology of this disease. We investigated SSCT tissue from patients with CTS and control subjects using fibrosis arrays and cell culture analysis. Twofold changes in fibrotic gene expression were found in multiple genes from patient SSCT using fibrosis arrays. This data was confirmed via qRT‐PCR on a subset of genes; collagen I (Col1), collagen III (Col3), connective tissue growth factor (CTGF), transforming growth factor β (TGF‐β), and SMAD3 (P < 0.05) which significantly corroborate the fold changes found in the fibrosis arrays. To further explore the nature of SSCT fibrosis, cells were isolated from patient and control tissue. Col1, Col3, TGF‐β, and SMAD3 were highly expressed in patient SSCT fibroblasts as compared to control (P < 0.05). Further, fibrotic genes expression was decreased by inhibiting TGF‐β receptor I (TβRI) activity (P < 0.05). TGF‐β second messenger SMAD activity was significantly activated in SSCT fibroblasts from patients and this activation was abrogated by inhibiting TβRI signaling (P < 0.05). These findings suggest that blocking TGF‐β signaling may be an important therapeutic approach to treating the underlying fibrosis of SSCT in CTS patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1444–1450, 2014. 相似文献
4.
5.
James R Edwards Jeffry S Nyman Seint T Lwin Megan M Moore Javier Esparza Elizabeth C O'Quinn Andrew J Hart Swati Biswas Chetan A Patil Scott Lonning Anita Mahadevan‐Jansen Gregory R Mundy 《Journal of bone and mineral research》2010,25(11):2419-2426
Transforming growth factor β (TGF‐β) is an abundant bone matrix protein that influences osteoblast and osteoclast interactions to control bone remodeling. As such, TGF‐β represents an obvious pharmacologic target with the potential to regulate both bone formation and resorption to improve bone volume and strength. To investigate the skeletal effect of TGF‐β inhibition in vivo, we used an antibody (1D11) specifically directed at all three isoforms of TGF‐β. Normal mice were treated with 1D11 or control antibody (4 weeks), and cortical and trabecular bone was assessed by micro–computed tomographic (µCT) scanning. Bone volume and cellular distribution were determined by histomorphometric analysis of vertebrae and long bones. Also, whole‐bone strength was assessed biomechanically by three‐point bend testing, and tissue‐level modulus and composition were analyzed by nanoindentation and Raman microspectroscopy, respectively. TGF‐β blockade by 1D11 increased bone mineral density (BMD), trabecular thickness, and bone volume by up to 54%, accompanied by elevated osteoblast numbers and decreased osteoclasts. Biomechanical properties of bone also were enhanced significantly by 1D11 treatment, with increased bending strength and tissue‐level modulus. In addition, Raman microspectroscopy demonstrated that 1D11‐mediated TGF‐β inhibition in the bone environment led to an 11% increase in the mineral‐to‐collagen ratio of trabecular bone. Together these studies demonstrate that neutralizing TGF‐β with 1D11 increases osteoblast numbers while simultaneously decreasing active osteoclasts in the marrow, resulting in a profound increase in bone volume and quality, similar to that seen in parathyroid hormone (PTH)–treated rodent studies. © 2010 American Society for Bone and Mineral Research. 相似文献
6.
Jonathan D. Holz Eric Beier Tzong‐Jen Sheu Resika Ubayawardena Meina Wang Erik R. Sampson Randy N. Rosier Michael Zuscik J. Edward Puzas 《Journal of orthopaedic research》2012,30(11):1760-1766
Lead remains a significant environmental toxin, and we believe we may have identified a novel target of lead toxicity in articular chondrocytes. These cells are responsible for the maintenance of joint matrix, and do so under the regulation of TGF‐β signaling. As lead is concentrated in articular cartilage, we hypothesize that it can disrupt normal chondrocyte phenotype through suppression of TGF‐β signaling. These experiments examine the effects of lead exposure in vivo and in vitro at biologically relevant levels, from 1 nM to 10 µM on viability, collagen levels, matrix degrading enzyme activity, TGF‐β signaling, and articular surface morphology. Our results indicate that viability was unchanged at levels ≤100 µM Pb, but low and high level lead in vivo exposure resulted in fibrillation and degeneration of the articular surface. Lead treatment also decreased levels of type II collagen and increased type X collagen, in vivo and in vitro. Additionally, MMP13 activity increased in a dose‐dependent manner. Active caspase 3 and 8 were dose‐dependently elevated, and treatment with 10 µM Pb resulted in increases of 30% and 500%, respectively. Increasing lead treatment resulted in a corresponding reduction in TGF‐β reporter activity, with a 95% reduction at 10µM. Levels of phosphoSmad2 and 3 were suppressed in vitro and in vivo and lead dose‐dependently increased Smurf2. These changes closely parallel those seen in osteoarthritis. Over time this phenotypic shift could compromise maintenance of the joint matrix. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1760–1766, 2012 相似文献
7.
Takako Chikenji Anne Gingery Chunfeng Zhao Sandra M. Passe Yasuhiro Ozasa Dirk Larson Kai‐Nan An Peter C. Amadio 《Journal of orthopaedic research》2014,32(1):116-122
Non‐inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor‐β (TGF‐β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF‐β and connective tissue growth factor (CTGF), a downstream mediator of TGF‐β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF‐β1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF‐β1 (p < 0.01), CTGF (p < 0.01), and Col3 (p < 0.01) were increased in SSCT of CTS patients compared with control tissue. In addition, a strong positive correlation was found between TGF‐β1 and CTGF, (R2 = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF‐β1 (R2 = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF‐β and CTGF, a TGF‐β regulated protein, and that this TGF‐β activation may be responsible for SSCT fibrosis in CTS patients. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:116–122, 2014. 相似文献
8.
9.
10.
Shiguang Liu Wenping Song Joseph H Boulanger Wen Tang Yves Sabbagh Brian Kelley Russell Gotschall Susan Ryan Lucy Phillips Katie Malley Xiaohong Cao Tai‐He Xia Gehua Zhen Xu Cao Hong Ling Paul C Dechow Teresita M Bellido Steven R Ledbetter Susan C Schiavi 《Journal of bone and mineral research》2014,29(5):1141-1157
Altered bone turnover is a key pathologic feature of chronic kidney disease‐mineral and bone disorder (CKD‐MBD). Expression of TGF‐β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF‐β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high‐turnover renal osteodystrophy. A neutralizing anti‐TGF‐β antibody (1D11) was used to explore TGF‐β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C‐telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose‐dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro‐computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high‐turnover bone disease in the adenine‐induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β‐catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF‐β may contribute to the pathogenesis of high‐turnover disease partially through inhibition of β‐catenin signaling. © 2014 American Society for Bone and Mineral Research. 相似文献
11.
Tetsuro Yasui Yuho Kadono Masaki Nakamura Yasushi Oshima Takumi Matsumoto Hironari Masuda Jun Hirose Yasunori Omata Hisataka Yasuda Takeshi Imamura Kozo Nakamura Sakae Tanaka 《Journal of bone and mineral research》2011,26(7):1447-1456
Previous studies have shown that transforming growth factor β (TGF‐β) promotes receptor activator of nuclear factor‐κB ligand (RANKL)–induced osteoclastogenesis. However, the underlying molecular mechanisms have not been elucidated. When TGF‐β signals were blocked either by a specific inhibitor of TGF‐β type 1 receptor kinase activity, SB431542, or by introducing a dominant‐negative mutant of TGF‐β type 2 receptor, RANKL‐induced osteoclastogenesis was almost completely suppressed. Blockade of Smad signaling by overexpression of Smad7 or c‐Ski markedly suppressed RANKL‐induced osteoclastogenesis, and retroviral induction of an activated mutant of Smad2 or Smad3 reversed the inhibitory effect of SB431542. Immunoprecipitation analysis revealed that Smad2/3 directly associates with the TRAF6‐TAB1‐TAK1 molecular complex, which is generated in response to RANKL stimulation and plays an essential role in osteoclast differentiation. TRAF6‐TAB1‐TAK1 complex formation was not observed when TGF‐β signaling was blocked. Analysis using deletion mutants revealed that the MH2 domain of Smad3 is necessary for TRAF6‐TAB1‐TAK1 complex formation, downstream signal transduction, and osteoclast formation. In addition, gene silencing of Smad3 in osteoclast precursors markedly suppressed RANKL‐induced osteoclast differentiation. In summary, TGF‐β is indispensable in RANKL‐induced osteoclastogenesis, and the binding of Smad3 to the TRAF6‐TAB1‐TAK1 complex is crucial for RANKL‐induced osteoclastogenic signaling. © 2011 American Society for Bone and Mineral Research. 相似文献
12.
13.
Yong Zhu Tetsuro Ohba Takashi Ando Koji Fujita Kensuke Koyama Yuki Nakamura Ryohei Katoh Hirotaka Haro Atsuhito Nakao 《Journal of orthopaedic research》2013,31(7):1144-1149
Thymic stromal lymphopoietin (TSLP), an IL‐7‐like cytokine, is highly expressed in herniated disc (HD) tissue and may act as a key molecule for the initiation of macrophage recruitment into the tissue and natural resorption of HD. However, it remains unclear how TSLP expression is regulated in the intervertebral discs. This study showed that expression of TSLP and phosphorylated NF‐κB in HD tissue samples was inversely correlated with expression of phosphorylated Smad2/3 (an indicator of active TGF‐β signaling) and vice versa in posterior lumbar spinal fusion samples. The pharmacological blockades of endogenous TGF‐β activity induced TSLP expression in mouse intervertebral disc tissue culture, which was inhibited by NF‐κB inhibitors. Additionally, phosphorylation of Smad2/3 was constitutively detected in mouse intervertebral disc tissue in the steady states. Collectively, these results suggest that endogenous TGF‐β activity limits TSLP expression in intervertebral disc tissue in the steady states by suppressing NF‐κB activation. The findings reveal a regulatory mechanism how TSLP expression is induced in the intervertebral disc tissue and suggest a novel role of TGF‐β in maintaining the homeostasis of intervertebral disc tissue. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1144–1149, 2013 相似文献
14.
15.
We present a case of a 12‐year‐old male with Loeys‐Dietz syndrome (LDS), a rare life‐threatening genetic disorder. Multiple manifestations of LDS were present, including easy bruising, aortic root dilatation, multiple areas of vessel tortuosity, and joint laxity. The patient's medications included a beta‐blocker and an angiotensin II receptor antagonist for prophylaxis against further aortic root dilatation due to his LDS. He experienced intraoperative hemodynamic instability and became pulseless during an orthopedic procedure, which had to be abandoned. Anesthesia was reattempted 2 days after cessation of the patient's antihypertensive medications and was successful with only minor postoperative hypertension. 相似文献
16.
Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF‐β signaling 下载免费PDF全文
Weiwei Zhao Ting Wang Qiang Luo Yan Chen Victor Y. L. Leung Chunyi Wen Mohammed F. Shah Haobo Pan KwongYuen Chiu Xu Cao William W. Lu 《Journal of orthopaedic research》2016,34(5):763-770
Transforming growth factor‐β (TGF‐β) has been demonstrated as a potential therapeutic target in osteoarthritis. However, beneficial effects of TGF‐β supplement and inhibition have both been reported, suggesting characterization of the spatiotemporal distribution of TGF‐β during the whole time course of osteoarthritis is important. To investigate the activity of TGF‐β in osteoarthritis progression, we collected knee joints from Dunkin–Hartley (DH) guinea pigs at 3, 6, 9, and 12‐month old (n = 8), which develop spontaneous osteoarthritis in a manner extraordinarily similar to humans. Via histology and micro‐computed tomography (CT) analysis, we found that the joints exhibited gradual cartilage degeneration, subchondral plate sclerosis, and elevated bone remodeling during aging. The degenerating cartilage showed a progressive switch of the expression of phosphorylated Smad2/3 to Smad1/5/8, suggesting dual roles of TGF‐β/Smad signaling during chondrocyte terminal differentiation in osteoarthritis progression. In subchondral bone, we found that the locations and age‐related changes of osterix+ osteoprogenitors were in parallel with active TGF‐β, which implied the excessive osteogenesis may link to the activity of TGF‐β. Our study, therefore, suggests an association of cartilage degeneration and excessive bone remodeling with altered TGF‐β signaling in osteoarthritis progression of DH guinea pigs. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:763–770, 2016. 相似文献
17.
Sunghyeok Ye Woo‐Keun Kwon Taegeun Bae Sunghyun Kim Jang‐Bo Lee Tai‐Hyoung Cho Jung‐Yul Park Kyoungmi Kim Junho K. Hur Junseok W. Hur 《Journal of orthopaedic research》2019,37(12):2634-2644
Ligamentum flavum hypertrophy (LFH) is the most important component of lumbar spinal canal stenosis. Although the pathophysiology of LFH has been extensively studied, no method has been proposed to prevent or treat it. Since the transforming growth factor‐β (TGF‐β) pathway is known to be critical in LFH pathology, we investigated whether LFH could be prevented by blocking or modulating the TGF‐β mechanism. Human LF cells were used for the experiments. First, we created TGF‐β receptor 1 (TGFBR1) knock out (KO) cells with CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 biotechnology and treated them with TGF‐β1 to determine the effects of blocking the TGF‐β pathway. Subsequently, we studied the effect of CCN5, which has recently been proposed to modulate the TGF‐β pathway. To assess the predisposition toward fibrosis, α‐smooth muscle actin (αSMA), fibronectin, collagen‐1, collagen‐3, and CCN2 were evaluated with quantitative real‐time polymerase chain reaction, western blotting, and immunocytochemistry. The TGFBR1 KO LF cells were successfully constructed with high KO efficiency. In wild‐type (WT) cells, treatment with TGF‐β1 resulted in the overexpression of the messenger RNA (mRNA) of fibrosis‐related factors. However, in KO cells, the responses to TGF‐β1 stimulation were significantly lower. In addition, CCN5 and TGF‐β1 co‐treatment caused a notable reduction in mRNA expression levels compared with TGF‐β1 stimulation only. The αSMA protein expression increased with TGF‐β1 but decreased with CCN5 treatment. TGF‐β1 induced LF cell transdifferentiation from fibroblasts to myofibroblasts. However, this cell transition dramatically decreased in the presence of CCN5. In conclusion, CCN5 could prevent LFH by modulating the TGF‐β pathway. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2634–2644, 2019 相似文献
18.
19.
20.
Yi‐Chin Fong Ming‐Chei Maa Fuu‐Jen Tsai Wen‐Chi Chen Jaung‐Geng Lin Long‐Bin Jeng Rong‐Sen Yang Wen‐Mei Fu Chih‐Hsin Tang PhD 《Journal of bone and mineral research》2008,23(6):961-970
Introduction: The bone marrow microenvironment is further enriched by growth factors released during osteoclastic bone resorption. It has been reported that the chemokine interleukin (IL)‐8 is a potent and direct activator of osteoclastic differentiation and bone resorption. However, the effect of bone‐derived growth factors on the IL‐8 production in human cancer cells and the promotion of osteoclastogenesis are largely unknown. The aim of this study was to investigate whether osteoblast‐derived TGF‐β1 is associated with osteolytic bone diseases. Materials and Methods: IL‐8 mRNA levels were measured using RT‐PCR analysis. MAPK phosphorylation was examined using the Western blot method. siRNA was used to inhibit the expression of TGF‐β1, BMP‐2, and IGF‐1. DNA affinity protein‐binding assay and chromatin immunoprecipitation assays were used to study in vitro and in vivo binding of c‐fos, c‐jun, p65, and p50 to the IL‐8 promoter. A transient transfection protocol was used to examine IL‐8, NF‐κB, and activator protein (AP)‐1 activity. Results: Osteoblast conditioned medium (OBCM) induced activation of IL‐8, AP‐1, and NF‐κB promoter in human cancer cells. Osteoblasts were transfected with TGF‐β1, BMP‐2, or IGF‐1 small interfering RNA, and the medium was collected after 48 h. TGF‐β1 but not BMP‐2 or IGF‐1 siRNA inhibited OBCM‐induced IL‐8 release in human cancer cells. In addition, TGF‐β1 also directly induced IL‐8 release in human cancer cells. Activation of AP‐1 and NF‐κB DNA‐protein binding and MAPKs after TGF‐β1 treatment was shown, and TGF‐β1–induced IL‐8 promoter activity was inhibited by the specific inhibitors of MAPK cascades. Conclusions: In this study, we provide evidence to show that the osteoblasts release growth factors, including TGF‐β1, BMP‐2, and IGF‐1. TGF‐β1 is the major contributor to the activation of extracellular signal‐related kinase (ERK), p38, and c‐Jun N‐terminal kinase (JNK), leading to the activation of AP‐1 and NF‐κB on the IL‐8 promoter and initiation of IL‐8 mRNA and protein release, thereby promoting osteoclastogenesis. 相似文献