首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Nerve growth factor (NGF) is produced in target issues of sympathetic and neural-crest derived sensory neurons, including skin, to provide them trophic support. The biological effects of NGF on responsive cells are mediated by specific high-affinity receptors. Recently, a protein tyrosine kinase of ? 140 kDa molecular weight, encoded by the proto-oncogene trkA, has been identified as the high-affinity NGF receptor (gp140-trkA). The present work was undertaken to study the localization of gp140-trkA-like immunoreactivity (IR) in human peripheral ganglia (sympathetic and dorsal root ganglia), and in glabrous skin. Methods: Lumbar dorsal root ganglia, para- and prevertebral sympathetic ganglia, and digital glabrous skin were studied immunohistochemically using a rabbit anti-gp140-trkA polyclonal antibody. In order to accurately establish the localization of gp140-trkA IR, the neurofilament proteins and S-100 protein were studied in parallel in: (1) sensory and sympathetic ganglia, to label neuron cell bodies and satellite or supporting cells, respectively; (2) human skin, to label axons, Schwann and related cells within nerves and sensory corpuscles. Moreover, a quantitative study (neuron size, intensity of immunostaining) was carried out on sympathetic and dorsal root ganglia neuron cell bodies. Results: A specific gp140-trkA-like IR was found in: (1) a subpopulation (65%) of primary sensory neuron cell bodies, including most of the largesized ones but also small- and intermediate-sized ones; (2) most of sympathetic neuron cell bodies (82%); (3) theineurial cell, Schwann cells, and large axons of the nerve trunks supplying digital skin; (4) the lamellar cells of Meissner corpuscles; (5) the central axon, inner-core, outer-core, and capsule of Pacinian corpuscles. In addition, the occurrence of gp140-trkA-like IR was observed in some non-nervous tissues of the skin, including epidermis (mainly in the basal layer), sweat glands, and arterial blood vessels. Conclusions: Present results provide evidence for the localization of gp140-trkA-like IR in: (1) nerve cells which are known to be NGF-responsive, and (2) non-nervous cutaneous tissues which are innervated by NGF-dependent peripheral neruons. These findings suggest that, in addition to the well-established role of NGF on sensory and sympathetic neurons, this neurotrophin may be able to regulate some other functions on non-nervous cell which are targets for NGF-dependent peripheral neurons. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The sensory deficit in TrkB deficient mice was evaluated by counting the neuronal loss in lumbar dorsal root ganglia (DRG), the absence of sensory receptors (cutaneous—associated to the hairy and glabrous skin - muscular and articular), and the percentage and size of the neurocalcin-positive DRG neurons (a calcium-binding protein which labels proprioceptive and mechanoceptive neurons). Mice lacking TrkB lost 32% of neurons, corresponding to the intermediate-sized and neurocalcin-positive ones. This neuronal lost was accomplished by the absence of Meissner corpuscles, and reduction of hair follicle-associated sensory nerve endings and Merkel cells. The mutation was without effect on Pacinian corpuscles, Golgi's organs and muscle spindles. Present results further characterize the sensory deficit of the TrkB−/− mice demonstrating that the intermediate-sized neurons in lumbar DRG, as well as the cutaneous rapidly and slowly adapting sensory receptors connected to them, are under the control of TrkB for survival and differentiation. This study might serve as a baseline for future studies in experimentally induced neuropathies affecting TrkB positive DRG neurons and their peripheral targets, and to use TrkB ligands in the treatment of neuropathies in which cutaneous mechanoreceptors are primarily involved.  相似文献   

3.
Summary The cellular distribution of parvalbumin-like immunoreactivity in autonomic ganglia such as superior cervical sympathetic ganglia, paravertebral sympathetic chain ganglia (T6), ciliary ganglia and enteric ganglia was investigated by immunohistochemical peroxidase—antiperoxidase methods using an antiserum against rat skeletal muscle parvalbumin. We detected parvalbumin-like immunoreactivity in almost all neurons of rat superior cervical sympathetic ganglia and other paravertebral sympathetic chain ganglia, where the antigen was located in the cytoplasm but the nuclei were not labelled. No neurons positive for parvalbumin-like immunoreactivity were observed in rat ciliary ganglia or enteric ganglia. In monkey, almost all neurons of the superior cervical sympathetic ganglia contained parvalbumin-like immunoreactivity, but none of the neurons of the ciliary ganglia were labelled with the antiserum to parvalbumin. These results suggest that parvalbumin-like immunoreactivity exists in a specific subpopulation of the neurons of the autonomic nervous system.  相似文献   

4.
Calretinin is a calcium-binding protein found widely distributed in the central nervous system and chemosensory cells of the teleosts, but its presence in the peripheral nervous system of fishes is unknown. In this study we used Western blot analysis and immunohistochemistry to investigate the occurrence and distribution of calretinin in the cranial nerve ganglia, dorsal root ganglia, sympathetic ganglia, and enteric nervous system of the adult zebrafish. By Western blotting a unique and specific protein band with an estimated molecular weight of around 30 kDa was detected, and it was identified as calretinin. Immunohistochemistry revealed that calretinin is selectively present in the cytoplasm of the neurons and never in the satellite glial cells. In both sensory and sympathetic ganglia the density of neurons that were immunolabelled, their size and morphology, as well as the intensity of immunostaining developed within the cytoplasm, were heterogeneous. In the enteric nervous system calretinin immunoreactivity was detected in a subset of enteric neurons as well as in a nerve fibre plexus localized inside the muscular layers. The present results demonstrate that in addition to the central nervous system, calretinin is also present in the peripheral nervous system of zebrafish, and contribute to completing the map of the distribution of this protein in the nervous system of teleosts.  相似文献   

5.
6.
The presence of neuron-specific enolase (NSE) and S-100 protein, which are nerve specific proteins, was immunohistochemically investigated on the cutaneous nerves. NSE was found in the axons of the cutaneous nerve bundles and the terminal axons in the Meissner and Pacinian corpuscles of the normal human and macaque skin. S-100 protein was found in the Schwann cells, lamellar cells of the Meissner corpuscles, and inner core cells of the Pacinian corpuscles. After denervation of the ulnar nerve on macaque, NSE on axons of the cutaneous nerves and Meissner and Pacinian corpuscles was completely disappeared in the 5th digit. However, S-100 protein was still maintained in the Schwann cells and Meissner and Pacinian corpuscles in the same digit. From these results, we conclude that the comparative immunohistochemical staining of NSE and S-100 protein is simple and reliable method to demonstrate the cutaneous nerves in normal and pathological conditions.  相似文献   

7.
The presence of nerve growth factor receptors (NGFr) in sensory nerve corpuscles of human digital skin, primarily Meissner and Pacinian corpuscles, was investigated immunohistochemically using two monoclonal antibodies directed against human-NGFr. To ensure the localization of NGFr immunoreactivity (IR) alternative sections to that processed for NGFr detection were assayed for neurofilament protein (NFP) and S-100 protein which selectively label the axon and the periaxonic specialized cells (lamellar cells of Meissner's corpuscles; inner-core cells of Pacinian corpuscles), respectively. Occurrence of NGFr IR was observed in both types of sensory corpuscles. In Meissner's corpuscles NGFr-IR was found in the lamellar cells, whereas in the Pacinian corpuscles the lamellae of the inner core, outer core, and capsule displayed NGFr IR. Moreover, a positive IR was observed in the central axon of some Pacinian corpuscles. However, remarkable differences were encountered among Pacinian corpuscles in the pattern of NGFr IR distribution. Present results demonstrate puscles in the pattern of NGFr IR distribution. Present results demonstrate the presence of NGFr IR in sensory nerve corpuscles of the human digital skin, suggesting that NGFr could be involved in the concentration of NGF and in the conveying of this molecule from the cutaneous sources to the cell body of NGF-dependent primary sensory neurons. However, the mechanisms involved in this process remain to be clarified. © 1993 Wiley-Liss, Inc.  相似文献   

8.
The occurrence and distribution of Bcl-2, a protein involved in the death-life cell pathways, was investigated in the peripheral sensory nervous system of healthy adult humans, including lumbar dorsal root ganglia, nerve trunks and glabrous skin (to analyze sensory corpuscles) using Western blot and immunohistochemistry. The antibody used labelled a protein of 26 kDa of estimated molecular weight corresponding with Bcl-2. Immunohistochemistry showed that only a neuronal population in dorsal root ganglia, some axons in peripheral nerves and the axon supplying Meissner and Pacinian corpuscles contained Bcl-2, whereas peripheral glial cells (i.e. satellite glial cells, Schwann cell, and lamellar cells of sensory corpuscles) did not. These results suggest that in normal conditions, Bcl-2 is only present in some neuronal, but not glial, elements of the sensory peripheral nervous system. The functional significance, if any, of these results remains to be determined.  相似文献   

9.
Summary We have investigated the capacity of injured axons in the spinal dorsal columns of young adult rats to reinnervate grafted Pacinian corpuscles. A branch of the hindlimb interosseous nerve with a group of crural Pacinian corpuscles attached to it was autotransplanted to the surface of the spinal cord and the nerve stump was implanted into the dorsal column. Two to three months later 16 grafts were removed for examination by light and electron microscopy. By 3 months after transplantation almost all Schwann cell columns of the grafted nerve branch were occupied by regenerated myelinated and unmyelinated axons. Of 41 corpuscles examined by electron microscopy 24 were reinnervated by 1–3 myelinated fibres which gave rise to multiple terminals in the inner core. The remaining corpuscles appeared to be denervated. Only two of the reinnervated corpuscles contained regenerated endings which reiterated the distinct ultrastructure of normal presynaptic terminals of CNS axons, characterized by clusters of lucent vesicles and paramembranous densities. All other corpuscles were reinnervated by terminals which resembled peripheral mechanosensory endings as they contained mitochondria and very few vesicles. One such corpuscle was coinnervated by small terminals filled with large dense cored vesicles. We assume that the majority of grafted Pacinian corpuscles have been reinnervated by dorsal column axons and that the regenerated terminals with the ultrastructure of peripheral mechanosensory endings derive from central axons of primary sensory neurons, which are apparently capable of constructing mechanosensory-like terminals in response to signals from the Pacinian corpuscles. The vesicle-filled endings are probably formed by second order sensory neurons, corticospinal neurons and small peptidergic neurons unable to adjust their terminals to the new target.  相似文献   

10.
Increasing evidence suggests that, in addition to peripheral sensory and sympathetic neurons, the enteric neurons are also under the control of neurotrophins. Recently, neurotrophin receptors have been detected in the developing and adult mammalian enteric nervous system (ENS). Nevertheless, it remains to be established whether neurotrophin receptors are expressed in all enteric neurons and/or in glial cells and whether expression is a common feature in the enteric nervous system of all mammals or if interspecific differences exist. Rabbit polyclonal antibodies against Trk proteins (regarded as essential constituents of the high-affinity signal-transducing neurotrophin receptors) and p75 protein (considered as a low-affinity pan-neurotrophin receptor) were used to investigate the cell localization of these proteins in the ENS of adult man, horse, cow, sheep, pig, rabbit, and rat. Moreover, the percentage of neurons displaying immunoreactivity (IR) for each neurotrophin receptor protein was determined. TrkA-like IR and TrkC-like IR were observed in a neuronal subpopulation in both the myenteric and submucous plexuses, from esophagus to rectum in humans, and in the jejunum-ileum of the other species. Many neurons, and apparently all glial cells, in the human and rat enteric nervous system also displayed p75 IR. TrkB-like IR was found restricted to the glial cells of all species studied, with the exception of humans, in whom IR was mainly in glial cells and a small percentage of enteric neurons (about 5%). These findings indicate that the ENS of adult mammals express neuronal TrkA and TrkC, glial TrkB, and neuronal-glial p75, this pattern of distribution being similar in all examined species. Thus, influence of specific neurotrophins on their cognate receptors may be considered in the physiology and/or pathology of the adult ENS. Anat. Rec. 251:360–370, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Some mechanoreceptors in mammals depend totally or in part on the neurotrophins brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4 (NT‐4), and their receptor TrkB, for development and maintenance. These actions are presumably exerced regulating the survival of discrete sensory neurons in the dorsal root ganglia which form mechanoreceptors at the periphery. In addition, the cells forming the mechanoreceptors also express both neurotrophins and their receptors although large differences have been described among species. Pacinian corpuscles are rapidly adapting low‐threshold mechanoreceptors whose dependence from neurotrophins is not known. In the present study, we analyzed expression of TrkB and their ligands BDNF and NT‐4 in the cutaneous Pacinian corpuscles of Macaca fascicularis using immunohistochemistry and fluorescent microscopy. TrkB immunoreactivity was found in Pacinian corpuscles where it co‐localized with neuron‐specific enolase, and occasionally with S100 protein, thus suggesting that TrkB expression is primarily into axons but also in the lamellar cells and even in the outer core. On the other hand, BDNF immunoreactivity was found the inner core cells where it co‐localized with S100 protein but also in the innermost layers of the outer core; NT‐4 immunostaining was not detected. These results describe for the first time the expression and distribution of a full neurotrophin system in the axon‐inner core complex of mature Pacinian corpuscles. The data support previous findings demonstrating large differences in the expression of BDNF‐TrkB in mammalian mechanoreceptors, and also suggest the existence of a retrograde trophic signaling mechanism to maintain morphological and functional integrity of sensory neurons supplying Pacinian corpuscles. Anat Rec, 298:624–629, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Acid-sensing ion channel 2 (ASIC2) is a member of the degenerin/epithelial sodium channel superfamily, presumably involved mechanosensation. Expression of ASIC2 has been detected in mechanosensory neurons as well as in both axons and Schwann-like cells of cutaneous mechanoreceptors. In these studies we analysed expression of ASIC2 in the cutaneous sensory corpuscles of Macaca fascicularis using immunohistochemistry and laser confocal-scanner microscopy. ASIC2 immunoreactivity was detected in both Meissner and Pacinian corpuscles. It was found to co-localize with neuron-specific enolase and RT-97, but not with S100 protein, demonstrating that ASIC2 expression is restricted to axons supplying mechanoreceptors. These results demonstrate for the first time the presence of the protein ASIC2 in cutaneous rapidly adapting low-threshold mechanoreceptors of monkey, suggesting a role of this ion channel in touch sense.  相似文献   

13.
In vitro anterograde tracing of axons in mesenteric nerve trunks using biotinamide in combination with immunohistochemical labelling was used to characterize the extrinsic nerve projections in the myenteric plexus of the mouse jejunum. Anterogradely-labelled spinal sensory fibres innervating the enteric nervous system were identified by their immunoreactivity for calcitonin gene-related peptide (CGRP), while sympathetic noradrenergic fibres were detected with tyrosine hydroxylase (TH), using confocal microscopy. The presence of these markers has been previously described in the spinal sensory and sympathetic fibres. Labelled extrinsic nerve fibres in the myenteric plexus were identified apposing enteric neurons that were immunoreactive for either calretinin (CalR), calbindin (CalB) or nitric oxide synthase (NOS). Of the total anterogradely labelled axons in the myenteric plexus, 20% were CGRP-immunoreactive. Labelled CGRP-immunoreactive varicosities were closely apposed to CalR-immunoreactive myenteric cells, many of which were Dogiel type I (40%; interneurons) or type II (20%; intrinsic sensory) neurons. Labelled CGRP-immunoreactive varicosities were also observed in close appositions to CalB-immunoreactive myenteric cell bodies, of which a small subset had type II morphology (18%; intrinsic sensory neurons). A further 43% of all biotinamide-filled fibres were immunoreactive for TH and these fibres were apposed to CalR-immunoreactive cell bodies (small-sized; excitatory motor neurons) and NOS-immunoreactive cell bodies (either type I or small neurons; inhibitory motor neurons and interneurons) in the myenteric plexus. The results provide a neurochemical and neuroanatomical basis for connections between dorsal root afferent neurons and myenteric neurons and suggest an anatomical substrate for the well-known modulation of enteric circuits from sympathetic nerves. No anterogradely-labelled fibres were stained for NOS-immunoreactivity, despite more than 60% of dorsal root ganglion (DRG) neurons retrogradely labelled from the jejunum showing NOS-immunoreactivity. This was due to a substantial, time-dependent, and apparently selective, loss of NOS from extrinsic axons under in vitro conditions. Lastly, a small population of non-immunoreactive biotinamide-filled fibres (<1%) gave rise to dense terminal structures around individual myenteric cell bodies lacking CalR, CalB or NOS. These specialized endings may represent vagal fibres or a subset of spinal sensory neurons that do not contain CGRP.  相似文献   

14.
The development of Meissner-like and Pacinian corpuscles was studied in mice [from postnatal day (Pd) 0 to 42] by using immunohistochemistry for specific corpuscular constituents. The battery of antigens investigated included PGP 9.5 protein and neurofilaments, as markers for the central axon; S100 protein, vimentin, and p75(LNGFR) protein, to show Schwann-related cells; and epithelial membrane antigen to identify perineurial-related cells. In Meissner-like corpuscles immunoreactivity (IR) for neuronal markers was found by Pd7 and later. The lamellar cells of these corpuscles expressed first S100 protein IR (Pd7 to Pd42), then vimentin IR (Pd12 to Pd42), and transitory p75(LNGFR) IR (Pd7 to Pd19-20). Vimentin IR, but not epithelial membrane antigen, was detected in the capsule-like cells of the Meissner-like corpuscles. On the other hand, the density of Meissner-like corpuscles progressively increased from Pd0 to Pd19-20. Pacinian corpuscles were identified by Pd7. From this time to Pd42 the central axon showed IR for neuronal markers, and the inner core cells were immunoreactive for S100 protein. Moreover, vimentin IR was detected in the inner core cells by Pd19 and later. Unexpectedly, the central axons displayed S100 protein IR (from Pd7 to P28), while p75(LNGFR) protein IR or epithelial membrane antigen IR were never detected. Taken together, and based on the expression of the assessed antigens alone, the present results suggest that the Meissner-like and the Pacinian corpuscles in mice become mature around Pd19-Pd28 and Pd20, respectively. Furthermore, these results provide a baseline timetable for future studies in the normal or altered development of sensory corpuscles in mice since specific sensory corpuscles are functionally associated with different subtypes of sensory neurons the development of which is selectively disturbed in genetically manipulated mice.  相似文献   

15.
The target organs of neurotrophin-dependent sympathetic and sensory neurons, including the skin, synthesize and release neurotrophins, primarily NGF. Neurotrophins undergo retrograde axonal transport, and exert specific function in the perikarya of the responsive neurons. Moreover, evidence exists for an autocrine and/or paracrine function of neurotrophins in the skin. This study analyses the immunohistochemical localization of low (gp75) and high-affinity (gp140 trkA, gp145trkB and gp145trkC) neurotrophin receptor proteins in the human glabrous skin. We consider that the expression of neurotrophin receptors may be indicative of neurotrophin activity. Specific gp75 and gp140trkA-like immunoreactivity (IR) were observed highly co-localized in (1) epidermis, primarily in the basal keratinocytes; 2) sweat glands; (3) blood vessel walls, mainly in the muscular layer; (4) Schwann and perineurial cells of nerve trunks; (5) periaxonic cells forming sensory nerve formations (Meissner's and Pacini's corpuscles); (6) large axons of nerve bundles and of sensory corpuscles; gp145trkB-like and gp145trkC-like were found labelling nerve fibers and sensory nerve formations, as well as blood vessels and sweat glands, but not epidermic cells. The results suggest that, in addition to the well known neurotrophic functions, neurotrophins may also regulate unknown functions in non-nervous cutaneous cells, which are targets for neurotrophin-dependent sympathetic and sensory neurons.  相似文献   

16.
S100 protein in the vertebrate peripheral nervous system consists of homo- or heterodimers of S100α and S100β proteins, the first predominating in neurons and the second in glial cells. Recently, however, occurrence of S100β protein in neurons has been reported. The expression of S100 protein by Schwann cells, as well as their derivatives in sensory corpuscles, depends on the sensory axon (i.e., the Schwann cell–axon contact). The present study analyzed the distribution of S100α and S100β proteins in human cutaneous sensory corpuscles and the effects of peripheral or central sensory axon severance in the expression of these proteins. Simple or double immunohistochemistry was carried out using a panel of antibodies against S100α, S100β or S100α+β proteins, and the sections were examined by light or laser confocal scanning microscopy. Skin samples were obtained from normal subjects and patients with spinal cord injury, nerve entrapment, and nerve sections plus graft. The lamellar cells of Meissner corpuscles as well as the inner-core lamellae of the Pacinian corpuscles displayed strong immunoreactivity (IR) for all antigens examined, the most intense labeling being obtained for S100β protein. The pattern of immunostaining was unchanged after spinal cord injury, whereas the number of stained corpuscles as well as the intensity of IR for each antigen decreased in cutaneous sensory corpuscles after nerve injury, both entrapment and section plus graft. No evidence was found of axonal labeling. The present results provide evidence that Schwann-related cells in human cutaneous sensory corpuscles contain both S100α and S100β and that the expression of these proteins is dependent on the functional and structural integrity of sensory fibers. Anat. Rec. 251:351–359, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Summary This study addresses two questions. Can mature, denervated and transplanted Pacinian corpuscles accept innervation from motor axons? If so, does the alien target influence the structural characteristics of the regenerated motor axon terminals? Pacinian corpuscles from the hind leg of young rats, together with a segment of the nerve branch through which they receive their sensory innervation, were autotransplanted to the surface of the spinal cord and the nerve stump anastomosed to the central stump of a transected lumbar ventral root. Between 4 and 5 months later the grafts were studied by electron microscopy. Ventral root axons regenerated through the endoneurial tubes of the grafted nerve to reach the corpuscles, most of which became reinnervated by one to three myelinated fibres. The fibres lost their myelin sheaths before entering the inner core, branched, and gave rise to multiple terminals in the inner core. The regenerated terminals were packed with spherical synaptic vesicles and closely resembled normal motor nerve terminals. Thus motor axons are able to reinnervate Pacinian corpuscles but the structural characteristics of the terminals are apparently not modified by the alien target tissue. This finding contrasts with previous studies, in which it was found that terminals of the central axons of large dorsal root ganglion cells, induced to reinnervate Pacinian corpuscles, displayed the structural characteristics of peripheral sensory endings rather than those of dorsal root terminals in the spinal cord.  相似文献   

18.
Dorsal root ganglion (DRG) neurons specifically project axons to central and peripheral targets according to their sensory modality. The Runt-related genes Runx1 and Runx3 are expressed in DRG neuronal subpopulations, suggesting that they may regulate the trajectories of specific axons. Here we report that Runx3-deficient (Runx3(-/-)) mice displayed severe motor uncoordination and that few DRG neurons synthesized the proprioceptive neuronal marker parvalbumin. Proprioceptive afferent axons failed to project to their targets in the spinal cord as well as those in the muscle. NT-3-responsive Runx3(-/-) DRG neurons showed less neurite outgrowth in vitro. However, we found no changes in the fate specification of Runx3(-/-) DRG neurons or in the number of DRG neurons that expressed trkC. Our data demonstrate that Runx3 is critical in regulating the axonal projections of a specific subpopulation of DRG neurons.  相似文献   

19.
Neurofilament heterogeneity has been demonstrated using a monoclonal antibody (CH1) specific for the 150,000 molecular weight neurofilament subunit. In the peripheral nervous system of adult rats CH1 stained selectively sympathetic and parasympathetic neurons and a subpopulation of small neurons in the sensory dorsal root ganglia. Somatic motor neurons and large neurons in dorsal root ganglia were completely unreactive. In contrast, the anti-neurofilament antibody iC8, directed against the 150,000 molecular weight subunit, labelled all peripheral nervous system neurons. The immunostaining pattern with both antibodies was unchanged by phosphatase treatment. These data indicate that two antigenically distinct variants of the 150,000 molecular weight neurofilament subunit exist in somatic and autonomic neurons of adult animals. In addition, the phosphatase treatment suggests that the antigen recognized by CH1 is not masked by phosphorylation. In contrast, all neurons were labelled by this antibody in the peripheral nervous system of newborn rats. It is suggested that CH1 identifies a fetal 150,000 molecular weight neurofilament polypeptide isoform whose expression is prevented by the growth of somatic neurons and is selectively maintained in autonomic and small sensory neurons.  相似文献   

20.
Using antibodies raised against gamma-aminobutyric acid (GABA)-glutaraldehyde complexes, we have found neurons with GABA-like immunoreactivity in the superior cervical ganglion of adult rats. The processes of these neurons formed pericellular networks around the principal ganglion cells. Electron microscopy revealed that the immunoreactive dendrites were innervated by non-reactive axon terminals which formed asymmetrical synapses and probably originated from the preganglionic nerve. Axons with GABA-like immunoreactivity, especially axonal varicosities filled with synaptic vesicles, were found in direct apposition to principal ganglion cells. The GABA-positive axons and axon varicosities persisted in experimentally decentralized (deafferented) ganglia, suggesting that the perikarya of the immunoreactive neurons were intrinsic to the superior cervical ganglion. Taken together with data on inhibitory effects of GABA in sympathetic ganglia, these findings suggest that the superior cervical ganglion of rats contains a subpopulation of inhibitory interneurons which is GABAergic. This would indicate that GABAergic neurons do not only occur in the central but also in the peripheral nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号