首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It is important to estimate the defective metabolism caused by genetic polymorphism of drug metabolizing enzymes before the clinical stage. We evaluated the utility of cryopreserved human hepatocytes of CYP2D6 poor metabolizer (PM) for the estimation of the metabolism in PM using dextromethorphan (DEX) as the probe drug for CYP2D6 substrate. The results of low formations of dextrorphan (DXO) and 3-hydroxymorphinan (3-HM) in CYP2D6 PM hepatocytes incubated with dextromethorphan reflected the clinical data. Formation of 3-methoxymorphinan (3-MEM) normalized by CYP3A4/5 activity in the PM hepatocytes reached about 2.8-fold higher than that in CYP2D6 extensive metabolizer (EM) hepatocytes, which clearly showed the compensatory metabolic pathway of O-demethylation catalyzed by CYP2D6 as seen in clinical study. On the contrary, in the condition of the EM hepatocytes with CYP2D6 inhibitors, the enhancement of 3-MEM formation was not observed. In phase II reaction, the glucuronide formation rate of DXO in the PM hepatocytes was lower than that in the EM hepatocytes, which was consistent with clinical data of DXO-glucuronide (DXO-glu) concentration. These results would suggest that CYP2D6 PM hepatocytes could be a good in vitro tool for estimating CYP2D6 PM pharmacokinetics.  相似文献   

2.
The polymorphic enzyme cytochrome P450 CYP2D6 is involved in the metabolism of many antidepressants, including nortriptyline and fluoxetine. Some 7%-10% Caucasians have inactivating mutations in both alleles of the CYP2D6 gene, and are referred to as poor metabolizers (PMs). Several case reports and clinical studies suggest that CYP2D6 PMs are at a greater risk of developing adverse drug reactions (ADRs) on antidepressant medication than extensive metabolizers (EMs). However, few clinical trials have investigated whether CYP2D6 PM genotype is predictive of ADRs during antidepressant treatment. This paper explores the link between CYP2D6 genotype and antidepressant-associated ADRs in outpatients being treated for major depression with either nortriptyline or fluoxetine. Patients were randomized to fluoxetine (n=65) or nortriptyline (n=60) for the 6 week trial. CYP2D6 genotypes predicted that of these patients 115 were EM and the remaining 10 were PMs. ADRs attributed to antidepressant usage were recorded over the 6-week trial. Although the type of ADR was, as expected, different between drugs, the frequency of ADRs experienced did not differ significantly between the two antidepressants or between CYP2D6 PMs and EMs. In addition, the frequency at which PMs discontinued antidepressant medication was not noticeably different from EMs, although with only 10 PMs the study is under powered to detect moderate or small differences. These findings suggest that inability to efficiently metabolize antidepressants that are CYP2D6 substrates does not necessarily lead to increased occurrence of antidepressant-associated ADRs. Thus, for clinicians prescribing antidepressant monotherapy, CYP2D6 polymorphisms are probably not of relevance to antidepressant side effects and therapy.  相似文献   

3.
文拉法辛与细胞色素P450酶的相关性研究进展   总被引:1,自引:0,他引:1  
张瑞  张鸿燕 《中国新药杂志》2007,16(12):929-933
文拉法辛是具有5-HT和NE双重再摄取抑制作用的新型抗抑郁药,与文拉法辛代谢密切相关的2种酶是CYP3A4和CYP2D6。CYP2D6将其生物转化为主要的活性代谢产物——O-去甲基文拉法辛(ODV),同时CYP3A4将文拉法辛转化为非活性代谢产物N-去甲基文拉法辛(NDV)。在常规治疗剂量下文拉法辛对于CYP3A4缺乏明显的诱导或抑制作用。而CYP2D6的活性直接影响文拉法辛和ODV的代谢和浓度,由于CYP2D6存在着基因遗传多态性,不同表型有着不同的文拉法辛代谢能力,而慢代谢者更易发生不良反应。研究证实文拉法辛与ODV的浓度比log(VENL/ODV)可作为异常代谢的指标,较简便地发现大多数异常基因型患者。  相似文献   

4.
目的:探讨β1肾上腺素受体与CYP2D6基因多态性对美托洛尔抗高血压治疗的影响.方法:将2008年10月至2009年10月在安徽省皖南地区收集的120例原发性高血压患者进行岛肾上腺素能受体(β1-AR)和代谢酶细胞色素2136(CYP2D6)基因多态性检测,将β1-AR 389位携带Arg的118例患者按照CYP2D6...  相似文献   

5.
The role of the polymorphic cytochrome p450 2D6 (CYP2D6) in the pharmacokinetics of atomoxetine hydrochloride [(-)-N-methyl-gamma-(2-methylphenoxy)benzenepropanamine hydrochloride; LY139603] has been documented following both single and multiple doses of the drug. In this study, the influence of the CYP2D6 polymorphism on the overall disposition and metabolism of a 20-mg dose of (14)C-atomoxetine was evaluated in CYP2D6 extensive metabolizer (EM; n = 4) and poor metabolizer (PM; n = 3) subjects under steady-state conditions. Atomoxetine was well absorbed from the gastrointestinal tract and cleared primarily by metabolism with the preponderance of radioactivity being excreted into the urine. In EM subjects, the majority of the radioactive dose was excreted within 24 h, whereas in PM subjects the majority of the dose was excreted by 72 h. The biotransformation of atomoxetine was similar in all subjects undergoing aromatic ring hydroxylation, benzylic oxidation, and N-demethylation with no CYP2D6 phenotype-specific metabolites. The primary oxidative metabolite of atomoxetine was 4-hydroxyatomoxetine, which was subsequently conjugated forming 4-hydroxyatomoxetine-O-glucuronide. Due to the absence of CYP2D6 activity, the systemic exposure to radioactivity was prolonged in PM subjects (t(1/2) = 62 h) compared with EM subjects (t(1/2) = 18 h). In EM subjects, atomoxetine (t(1/2) = 5 h) and 4-hydroxyatomoxetine-O-glucuronide (t(1/2) = 7 h) were the principle circulating species, whereas atomoxetine (t(1/2) = 20 h) and N-desmethylatomoxetine (t(1/2) = 33 h) were the principle circulating species in PM subjects. Although differences were observed in the excretion and relative amounts of metabolites formed, the primary difference observed between EM and PM subjects was the rate at which atomoxetine was biotransformed to 4-hydroxyatomoxetine.  相似文献   

6.
In-vitro data indicated a contribution of cytochrome P450 enzymes 1A2, 3A4, 2C9, 2C19 and 2D6 to biotransformation of doxepin. We studied the effects of genetic polymorphisms in CYP2D6, CYP2C9 and CYP2C19 on E- and Z-doxepin pharmacokinetics in humans. Doxepin kinetics was studied after a single oral dose of 75 mg in healthy volunteers genotyped as extensive (EM), intermediate (IM) and poor (PM) metabolizers of substrates of CYP2D6 and of CYP2C19 and as slow metabolizers with the CYP2C9 genotype *3/*3. E-, Z-doxepin and -desmethyldoxepin were quantified in plasma by HPLC. Data were analyzed by non-parametric pharmacokinetics and statistics and by population pharmacokinetic modeling considering effects of genotype on clearance and bioavailability. Mean E-doxepin clearance (95% confidence interval) was 406 (390-445), 247 (241-271), and 127 (124-139) l h(-1) in EMs, IMs and PMs of CYP2D6. In addition, EMs had about 2-fold lower bioavailability compared with PMs indicating significant contribution of CYP2D6 to E-doxepin first-pass metabolism. E-doxepin oral clearance was also significantly lower in carriers of CYP2C9*3/*3 (238 l h(-1) ). CYP2C19 was involved in Z-doxepin metabolism with 2.5-fold differences in oral clearances (73 l h(-1) in CYP2C19 PMs compared with 191 l h(-1) in EMs). The area under the curve (0-48 h) of the active metabolite -desmethyldoxepin was dependent on CYP2D6 genotype with a median of 5.28, 1.35, and 1.28 nmol l h(-1) in PMs, IMs, and EMs of CYP2D6. The genetically polymorphic enzymes exhibited highly stereoselective effects on doxepin biotransformation in humans. The CYP2D6 polymorphism had a major impact on E-doxepin pharmacokinetics and CYP2D6 PMs might be at an elevated risk for adverse drug effects when treated with common recommended doses.  相似文献   

7.
CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous for the functional (wild type) gene, D6-wt. However, the D6-wt gene was apparently also present in 11 (12%) of the PM who accordingly were incorrectly genotyped as EM. The specificity of genotyping PM thus was 100% but the sensitivity was only 88%. The most common allele was the D6-wt with an apparent frequency of 0.741 (0.026) in the Danish population and the second most common allele was the D6-B with an apparent frequency of 0.194 (0.024). The median (range) of the sparteine metabolic ratio (MR) in 47 homozygous D6-wt EM was 0.28 (0.11–4.10) and the corresponding value in heterozygous EM was 0.36 (0.11–9.10). The median difference was 0.09 (95% confidence interval: 0.02–0.16). CYP2D6 phenotyping is a promising tool in tailoring the individual dose of tricyclic antidepressants, some neuroleplics and some antiarrhythmics. However if the genotype test could be improved with regard to both sensitivity in PM and the ability to predict CYP2D6 activity in EM then it would be of even greater clinical value in therapeutic drug monitoring.  相似文献   

8.
We observed variations in the metabolism of diazepam in Wistar rats. We studied these variations carefully, and found that the variations are dimorphic and about 17% of male rats of Wistar strain we examined showed two times higher diazepam metabolic activities in their liver microsomes than the rest of animals at the substrate concentrations less than 5 microM. We classified them as extensive metabolizer (EM) and poor metabolizer (PM) of diazepam. No sex difference was observed in the frequency of appearance of EM. Activities of the primary metabolic pathways of diazepam were examined to elucidate the cause of this polymorphism in male Wistar rats. No significant differences were observed in activities of neither diazepam 3-hydroxylation or N-desmethylation between EM and PM rats, while activity of diazepam p-hydroxylation was markedly (more than 200 times) higher in EM rats, indicating that this reaction is responsible for the polymorphism of diazepam metabolism in Wistar rats. We examined the expression levels of CYP2D1, which was reported to catalyze diazepam p-hydroxylation in Wistar rats to find no differences in the expression levels of CYP2D1 between EM and PM rats. The kinetic study on diazepam metabolism in male Wistar rats revealed that EM rats had markedly higher V(max) and smaller K(m) in diazepam p-hydroxylation than those of PM rats, indicating the presence of high affinity high capacity p-hydroxylase enzyme in EM rats. As a consequence, at low concentrations of diazepam, major pathways of diazepam metabolism were p-hydroxylation and 3-hydroxylation in male EM rats, while in male PM rats, 3-hydroxylation followed by N-desmethylation. Due to this kinetic nature of p-hydroxylase activity, EM rats had markedly higher total CL(int) of diazepam than that of PM rats. Polymorphism in diazepam metabolism in humans is well documented, but this is the first report revealing the presence of the polymorphism in diazepam metabolism in rats. The current results infer polymorphic expression of new diazepam p-hydroxylating enzyme with lower K(m) than CYP2D1 in EM Wistar rats.  相似文献   

9.
The role of the polymorphic cytochrome P450 2D6 (CYP2D6) in the metabolism of risperidone to its major active metabolite, 9-hydroxyrisperidone (9-OH-risperidone), has been documented after single oral doses of the drug. In this study, the influence of the CYP2D6 polymorphism on the steady-state plasma concentrations of risperidone and 9-OH-risperidone was investigated. Thirty-seven schizophrenic patients on monotherapy with risperidone, 4–8 mg/day, were genotyped by RFLP and PCR for the major functional variants of the CYP2D6 gene. Steady state plasma levels of risperidone and 9-OH-risperidone were analysed by HPLC. Based on the genotype analysis, three patients were classified as ultrarapid metabolizers (UM) with an extra functional CYP2D6 gene, 16 were homozygous extensive metabolizers (EM), 15 heterozygous EM and three poor metabolizers (PM). The median steady-state plasma concentration-to-dose (C/D) ratios of risperidone were 0.6, 1.1, 9.7 and 17.4 nmol/l per mg in UM, homozygous EM, heterozygous EM and PM, respectively, with statistically significant differences between PM and the other genotypes (P<0.02). The C/D of 9-OH-risperidone also varied widely but was not related to the genotype. The risperidone/9-OH-risperidone ratio was strongly associated with the CYP2D6 genotype, with the highest ratios in PM (median 0.79). Heterozygous EM also had significantly higher ratios than homozygous EM (median value 0.23 versus 0.04; P<0.01) or UM (median 0.03; P<0.02). No significant differences were found in the C/D of the sum of the plasma concentrations of risperidone and 9-OH-risperidone between the genotype groups. In conclusion, the steady-state plasma concentrations of risperidone and the risperidone/9-OH-risperidone ratio are highly dependent on the CYP2D6 genotype. However, as risperidone and 9-OH-risperidone are considered to have similar pharmacological activity, the lack of relationship between the genotype and the sum of risperidone and 9-OH-risperidone indicates that the CYP2D6 polymorphism may be of limited importance for the clinical outcome of the treatment. Received: 3 March 1999 / Final version: 28 June 1999  相似文献   

10.
Minimizing interindividual variability in drug exposure is an important goal for drug discovery. The reliability of the selective CYP2D6 inhibitor quinidine was evaluated in a retrospective analysis using a standardized approach that avoids laboratory-to-laboratory variation. The goal was to evaluate the reliability of in vitro metabolism studies for predicting extensive metabolizer (EM)/poor metabolizer (PM) exposure differences. Using available literature, 18 CYP2D6 substrates were selected for further analysis. In vitro microsomal studies were conducted at 1 microM substrate and 0.5 microM P450 to monitor substrate depletion. An estimate of the fraction metabolized by CYP2D6 in microsomes was derived from the rate constant determined with and without 1 microM quinidine for 11 substrates. Clearance in EM and PM subjects and fractional recovery of metabolites were taken from the literature. A nonlinear relationship between the contribution of CYP2D6 and decreased oral clearance for PMs relative to EMs was evident. For drugs having <60% CYP2D6 involvement in vivo, a modest difference between EM and PM exposure was observed (<2.5-fold). For major CYP2D6 substrates (>60%), more dramatic exposure differences were observed (3.5- to 53-fold). For compounds primarily eliminated by hepatic P450 and with sufficient turnover to be evaluated in vitro, the fraction metabolized by CYP2D6 in vitro compared favorably with the in vivo data. The in vitro estimation of fraction metabolized using quinidine as a specific inhibitor provided an excellent predictive tool. Results from microsomal substrate depletion experiments can be used with confidence to select compounds in drug discovery using a cutoff of >60% metabolism by CYP2D6.  相似文献   

11.
The pharmacokinetics of celecoxib, a cyclooxygenase-2 inhibitor, was characterized in beagle dogs. Celecoxib is extensively metabolized by dogs to a hydroxymethyl metabolite with subsequent oxidization to the carboxylic acid analog. There are at least two populations of dogs, distinguished by their capacity to eliminate celecoxib from plasma at either a fast or a slow rate after i.v. administration. Within a population of 242 animals, 45.0% were of the EM phenotype, 53.5% were of the PM phenotype, and 1.65% could not be adequately characterized. The mean (+/-S.D.) plasma elimination half-life and clearance of celecoxib were 1.72 +/- 0.79 h and 18.2 +/- 6.4 ml/min/kg for EM dogs and 5.18 +/- 1.29 h and 7.15 +/- 1.41 ml/min/kg for PM dogs. Hepatic microsomes from EM dogs metabolized celecoxib at a higher rate than microsomes from PM dogs. The cDNA for canine cytochrome P-450 (CYP) enzymes, CYP2B11, CYP2C21, CYP2D15, and CYP3A12 were cloned and expressed in sf 9 insect cells. Three new variants of CYP2D15 as well as a novel variant of CYP3A12 were identified. Canine rCYP2D15 and its variants, but not CYP2B11, CYP2C21, and CYP3A12, readily metabolized celecoxib. Quinidine (a specific CYP2D inhibitor) prevented celecoxib metabolism in dog hepatic microsomes, providing evidence of a predominant role for the CYP2D subfamily in canine celecoxib metabolism. However, the lack of a correlation between celecoxib and bufuralol metabolism in hepatic EM or PM microsomes indicates that other CYP subfamilies besides CYP2D may contribute to the polymorphism in canine celecoxib metabolism.  相似文献   

12.
The individual cytochrome P450 isoforms in dextropropoxyphene N-demethylation to nordextropropoxyphene were determined and the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in cytochrome P4502D6 (CYP2D6) extensive (EM) and poor (PM) subjects were characterized. Microsomes from six CYP2D6 extensive metabolizers and one CYP2D6 poor metabolizer were used with isoform specific chemical and antibody inhibitors and expressed recombinant CYP enzymes. Groups of three CYP2D6 EM and PM subjects received a single 65-mg oral dose of dextropropoxyphene, and blood and urine were collected for 168 and 96 h, respectively. Nordextropropoxyphene formation in vitro was not different between the CYP2D6 extensive metabolizers (Km = 179 +/- 74 microM, Cl(int) = 0.41 +/- 0.26 ml mg(-1)h(-1)) and the PM subject (K = 225 microM, Cl(int) = 0.19 ml mg(-1) h(-1)) and was catalysed predominantly by CYP3A4. There was no apparent difference in the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in CYP2D6 EM and PM subjects. CYP3A4 is the major CYP enzyme catalysing the major metabolic pathway of dextropropoxyphene metabolism. Hence variability in the pharmacodynamic effects of dextropropoxyphene are likely due to intersubject variability in hepatic CYP3A4 expression and/or drug-drug interactions. Reported CYP2D6 phenocopying is not due to dextropropoxyphene being a CYP2D6 substrate.  相似文献   

13.
1.?The individual cytochrome P450 isoforms in dextropropoxyphene N-demethylation to nordextropropoxyphene were determined and the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in cytochrome P4502D6 (CYP2D6) extensive (EM) and poor (PM) subjects were characterized.

2.?Microsomes from six CYP2D6 extensive metabolizers and one CYP2D6 poor metabolizer were used with isoform specific chemical and antibody inhibitors and expressed recombinant CYP enzymes. Groups of three CYP2D6 EM and PM subjects received a single 65-mg oral dose of dextropropoxyphene, and blood and urine were collected for 168 and 96 h, respectively.

3.?Nordextropropoxyphene formation in vitro was not different between the CYP2D6 extensive metabolizers (Km = 179 ± 74 μM, Clint = 0.41 ± 0.26 ml mg?1 h?1) and the PM subject (Km = 225 μM, Clint = 0.19 ml mg?1 h?1) and was catalysed predominantly by CYP3A4. There was no apparent difference in the pharmacokinetics of dextropropoxyphene and nordextropropoxyphene in CYP2D6 EM and PM subjects.

4.?CYP3A4 is the major CYP enzyme catalysing the major metabolic pathway of dextropropoxyphene metabolism. Hence variability in the pharmacodynamic effects of dextropropoxyphene are likely due to intersubject variability in hepatic CYP3A4 expression and/or drug–drug interactions. Reported CYP2D6 phenocopying is not due to dextropropoxyphene being a CYP2D6 substrate.  相似文献   

14.
Objective: Among Caucasians, a lack of cytochrome P 450 enzyme CYP2D6 is observed in 5–10% of individuals, named poor metabolizers (PMs). A consequence may be an impaired metabolism of many drugs such as most of the psychotropic drugs with an increased risk of drug side effects. This enzyme is also involved in the metabolism of endogenous compounds, including neurotransmitters such as dopamine and dopamine-related neurotransmitters which play a role in the mechanism of action of extrapyramidal drug side effects. The present study investigates whether patients who have developed and those who have not developed extrapyramidal drug side effects differ in their CYP2D6 genotypes and phenotypes. Methods: The CP2D6 genotype (method involving restriction length fragment polymorphism and polymerase chain reaction-single strand conformation polymorphism) was determined in 65 drug-treated in-patients, and the CYP2D6 phenotype (with dextromethorphan probe) in 62 of them. Two groups were constituted, one with 22 patients who had developed extrapyramidal drug side effects, and the second with 43 patients without such side effects. Results: In the whole population, there was an over-representation of PM phenotypes – more marked in the first group than the second (45% vs 14%). Concerning the genotypes, we observed that the percentage of functional alleles (with extensive metabolic capacity) was higher in group 2, whereas the percentage of non-functional alleles (without metabolic activity) was higher in group 1; this frequency difference was only marginally significant (χ2 5.95; P < 0.0509; degrees of freedom=2). Consequently, there was a higher percentage of genotypes with no (extensive) functional alleles in the group of patients suffering from extrapyramidal side effects than in the other group (P < 0.00001). Conclusion: CYP2D6-impaired metabolic capacity may be a contributory factor in extrapyramidal drug side effects. Received: 25 May 1999 / Accepted in revised form: 18 August 1999  相似文献   

15.
Debrisoquine-hydroxylase (P450 2D6) not equal to phenotype was determined in 116 individuals using dextromethorphan as the substrate probe. Polymerase chain reaction and restriction fragment length polymorphism analyses were used to detect inactivating mutations in the CYP2D6 gene and assign genotype in all 116 individuals. Using a urinary metabolic ratio (DM/DT) of > or = 0.3 to define poor metabolizer (PM) phenotypes, 96 subjects were extensive metabolizers (EM) and 20 were PMs. The CYP2D6(B) mutation was the most common mutation, present in 18% of phenotypic EM alleles and 66% of the alleles in PM phenotypes. The CYP2D6(A) mutation (8% of PM alleles) and the CYP2D6 gene deletion (2.6% of PM alleles) were found less frequently. Seven different variants of the CYP2D6 gene were found. In subjects with two mutant alleles, genotype correctly predicted the PM phenotype in 100% (n = 13). Overall, genotype agreed with phenotype assignments in 109 of 116 (94%) subjects. Seven subjects with a wild-type allele at the CYP2D6(A) and CYP2D6(B) loci were phenotypic PMs, representing the only discrepant results. These discrepancies could be due to the imprecision of phenotype assignment or to as yet unknown mutations in CYP2D6. Although the median urinary metabolic ratio was significantly lower in homozygous EMs compared with heterozygous EMs, there was extensive overlap in metabolic ratios in these two groups, indicating that the DM/DT metabolic ratio cannot reliably discriminate homozygous EMs from heterozygous EMs.  相似文献   

16.
This review highlights the present knowledge on the CYP2D6 (sparteine/debrisoquine) and the CYP2C19 (mephenytoin) polymorphisms. The relevant mutations at genomic level affecting protein expression and function and consequences for first-pass metabolism and effects of cardiovascular and neuroactive drugs are highlighted. In vitro techniques for identification of metabolic steps catalyzed by polymorphic enzymes will be discussed as well as drug-drug interactions related to CYP2D6 and CYP2C19. The importance of the CYP2D6 polymorphism arises from the fact that this enzyme, which is involved in metabolism of more than 50 drugs, is not active in about 8% of a Caucasian population. This group is named poor metabolizers in contrast to the remainder of the population called extensive metabolizers. Depending on the pharmacokinetic and pharmacodynamic properties of the administered drug and its metabolites elevated concentrations of the parent compound can result in an increased risk of toxicity or loss of therapeutic effects in poor metabolizers. On the other hand ultrarapid metabolizers of CYP2D6 might require higher doses than recommended in order to achieve therapeutic drug levels. Moreover, consequences of polymorphic CYP2C19 expression, which is not active in 20% of Orientals and 3% of Caucasians, for drug disposition will be outlined.  相似文献   

17.
OBJECTIVE: We examined a large database containing results on CYP2D6 and CYP2C19 activity of 4301 Dutch volunteers phenotyped in the context of various clinical pharmacology studies. METHODS: The subjects were given 22 mg dextromethorphan, 100 mg mephenytoin and 200 mg caffeine. For CYP2D6, the dextromethorphan/dextrorphan metabolic ratios in urine samples taken for a subsequent 8 h were used. Dextromethorphan and dextrorphan were quantified by reversed-phase high performance liquid chromatography. For CYP2C19 similarly obtained (R)-mephenytoin and (S)-mephenytoin ratios were used. (S)-mephenytoin and (R)-mephenytoin were analysed and quantified by enantioselective capillary gas chromatography. In addition, CYP2C19 poor metabolizer (PM) subjects were reanalysed after acidic pre-treatment of urine samples to confirm the PM status. RESULTS: The investigated population mainly comprised Caucasian (98.9%) males (68%). The age ranged from 18 to 82 years. For CYP2D6, it was found that 8.0% of the subjects were PMs. The average metabolic ratio was 0.014 (0.033) for subjects who showed extensive metabolizing activity (EM) and 5.4 (7.6) for PM subjects. For CYP2C19, it was found that 1.8% of the subjects were PMs. The metabolic ratio was 0.162 (0.124) for EM subjects and 1.076 (0.040) for PM subjects. Within the EM group the metabolic ratio in females was significantly lower for CYP2D6 (-20%) and significantly higher for CYP2C19 (+40%) compared with males. For PMs there was no such difference for CYP2D6 (P = 0.79) or CYP2C19 (P = 0.20). Oral contraceptive (OC) use significantly decreased the CYP2C19 activity by 68% for mephenytoin as compared to non-OC using females. CONCLUSIONS: For CYP2D6, the PM incidence (8.0%) is in accordance with literature data. The CYP2C19, PM incidence (1.8%) is low compared to reports from other European countries. For mephenytoin, the acidification procedure has been shown to be very important for the confirmation of CYP2C19 PMs. In EM females compared to EM males, CYP2D6 activity is increased and CYP2C19 activity is reduced. For CYP2C19 in particular this reduction is substantial and most pronounced in the age range from 18 to 40 years. For CYP2C19, the reduced activity is associated with the use of oral contraceptives.  相似文献   

18.
There is evidence that the antipsychotic drug perazine is an inhibitor of CYP2D6. This study aimed at evaluating its effect on CYP2D6 and CYP2C19 activities in submitting psychiatric patients to phenotyping with dextromethorphan and mephenytoin, respectively, substrates of these enzymes, before and during a treatment with perazine. A total of 31 patients were phenotyped with dextromethorphan (CYP2D6) and mephenytoin (CYP2C19) before and after a 2‐week treatment with 450 ± 51 mg/day (mean ± sd) perazine. At baseline, five patients appeared to be poor metabolizers (PM) of dextromethorphan and two patients of mephenytoin. The metabolic ratio (MR) of dextromethorphan/dextrorphan as determined in collected urine increased significantly (Wilcoxon; P < .0001) from baseline (0.39 ± 1.38 [mean ± sd]) till day 14 (1.46 ± 2.22). In 19 out of 26 extensive metabolizers (EM) of dextromethorphan, the phenotype changed from EM to PM. This suggests an almost complete inhibition of CYP2D6 by perazine and/or its metabolites. On the other hand, perazine (or some of its metabolites) did seemingly not inhibit CYP2C19. In conclusion, this study suggests that in patients treated with perazine and co‐medicated with CYP2D6 substrates, there could be an increased risk of adverse effects as a consequence of a pharmacokinetic interaction.  相似文献   

19.
Clomiphene is a first line treatment for anovulation, a common cause of infertility. Response to clomiphene is variable and unpredictable. Tamoxifen is structurally related to clomiphene, and also shows considerable variation in response. CYP2D6 and CYP3A4 are major contributors to the metabolism of tamoxifen. The aim of the present work was to define the role of CYP2D6 and CYP3A4 in the in vitro metabolism of enclomiphene, regarded by some as the more active isomer of clomiphene. Enclomiphene (25 microM) was incubated with human liver microsomes (from 4 extensive (EM) and 1 poor metaboliser with respect to CYP2D6) and with microsomes from lymphoblastoid cells expressing CYP2D6. Microsomes from all the EM livers and recombinant CYP2D6 metabolised enclomiphene (the disappearance of drug ranged from 40-60%). No metabolism was detected in microsomes from the PM liver. Quinidine (1 microM) completely inhibited the metabolism of enclomiphene by all the EM livers and by recombinant CYP2D6 (p<0.001, one way ANOVA). Ketoconazole (2 microM) had no significant effect on enclomiphene metabolism in 3 out of the 4 EM livers. The extent of enclomiphene metabolism was correlated with the amount of CYP2D6 present (p<0.001, Pearson correlation test). The findings indicate that CYP2D6 is primarily responsible for the metabolism of enclomiphene.  相似文献   

20.
Allelic variation at the CYP2D6 gene has been suggested to be associated with CNS disorders, including Parkinson's disease and Lewy body dementia. In order to elucidate whether a relationship exists between CYP2D6 polymorphism and the risk of developing Alzheimer's disease (AD), CYP2D6 allele and genotype frequencies have been evaluated in 94 patients from Southern Italy (29 men and 65 women, aged 74+/-8 years) with AD, and in 350 healthy controls (204 men, 146 women, aged 33+/-9 years) from the same geographical region. Allele frequencies among AD patients were not significantly different from those in healthy controls. Subjects could be divided in four CYP2D6 genotype groups: 52 (56%) patients and 205 (59%) controls carried no mutated alleles (homozygous extensive metabolizers (EM)), 33 (35%) patients and 109 (31%) controls carried one mutated allele (heterozygous EM), while 4 (4%) patients and 11 (3%) controls were found to have two mutated alleles (poor metabolizers (PM)). Five (5%) patients and 25 (7%) controls carried extra copies of a functional gene (ultrarapid metabolizers (UM)). Our results indicate that CYP2D6 polymorphism is unlikely to represent a major risk factor in susceptibility to Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号